
7
The Alpha and the Omega —
launchd

When you power on your Mac or i-Device, the boot loader (OS X: EFI, iOS: iBoot), described
in the previous chapter is responsible for fi nding the kernel and starting it up. The kernel boot
is described in detail in Chapter 7. The kernel, however, is merely a service provider, not an
actual application. The user mode applications are those which perform the actual work in a
system, by building on kernel primitives to provide the familiar user environment rich with
fi les, multimedia, and user interaction. It all has to start somewhere, and in OS X and iOS —
it starts with launchd.

LAUNCHD
launchd is OS X’s and iOS’s idea of what other UN*X systems call init. The name may be dif-
ferent, but the general idea is the same: It is the fi rst process started in user mode, which is
responsible for starting — directly or indirectly — every other process in the system. In addi-
tion, it has OS X and iOS idiosyncratic features. Even though it proprietary, it still falls under
the classifi cation of Darwin, and so it is fully open source[1].

Starting launchd
launchd is started directly by the kernel. The main kernel thread, which is responsible for
loading the BSD subsystem, spins off a thread to execute the bsdinit_task. The thread
assumes PID 1, with the temporary name of “init,” a legacy of its BSD origins. It then
invokes load_init_program(), which calls the execve() system call (albeit from kernel
space) to execute the daemon. The name — /sbin/launchd — is hard coded as the variable
init_program_name.

The daemon is designed to be started in this way, and this way only; It cannot be started by
the user. If you try to do so, it will complain, as shown in Listing 7-1.

c07.indd 227c07.indd 227 10/5/2012 4:16:41 PM10/5/2012 4:16:41 PM

228 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

LISTING 7-1: Attempting to start launchd will result in failure

root@Minion (/)# /sbin/launchd
launchd: This program is not meant to be run directly.

Although launchd cannot be started, it can be tightly controlled. The launchctl(1) command may
be used to interface with launchd, and direct it to start or stop various daemons. The command is
interactive, and has its own help.

launchd is usually started with no arguments, but does optionally accept a single command line
argument: -s. This argument is propagated to it by the kernel, if the latter was started with -s,
either through its boot-args, or by pressing Option-S during startup.

launchd can be started with several logging and debugging features, by creating special dot fi les in
[/private]/var/db. The fi les include .launchd_log_debug, .launchd_log_shutdown (output
to /var/tmp/launchd-shutdown.log), and .launchd_use_gmalloc (enabling libGMalloc, as
discussed in Chapter 3). launchd also checks for the presence of the /AppleInternal fi le (on the
system root) for some Apple internal logging.

launchd’s loading of libGMalloc on iOS (if /var/db/.launchd_use has been
used by the jailbreaker comex in what is now known as the interposition exploit.
launchd executes with root privileges, and by crafting a Trojan library, code can
be injected into userland root — one step closer to subverting the kernel.

System-Wide Versus Per-User launchd
If you use ps(1) or a similar command on OS X, you will see more than one instance of launchd:
The fi rst is PID 1, which was started by the kernel in the manner described previously. If anyone is
logged on, there will be another launchd, forked from the fi rst, and owned by the logged in user,
shown in Listing 7-2. You may also see other instances, belonging to system users (e.g. spotlight -
uid 89).

LISTING 7-2: Two instances of launchd

morpheus@ergo (/)$ ps -ef | grep sbin/launchd
 0 1 0 0 6:32.43 ?? 6:37.98 /sbin/launchd
 501 95 1 0 0:06.44 ?? 0:11.07 /sbin/launchd

The per-user launchd is executed whenever a user logs in, even remotely over SSH (though once per
logged in user). On iOS there is only one instance of launchd, the system-wide instance.

It is impossible to stop the system-wide launchd (PID 1). In fact, launchd is the only immortal pro-
cess in the system. It cannot be killed, and that makes sense. There is absolutely no reason to termi-
nate it. In most UN*X, if the init process dies unexpectedly the result is a kernel panic. launchd is
also the last process to exit, when the system is shut down.

c07.indd 228c07.indd 228 10/5/2012 4:16:46 PM10/5/2012 4:16:46 PM

launchd x 229

Daemons and Agents
The core responsibility of launchd is, as its name implies, launching other processes, or jobs, on a
scheduled or on-demand basis. launchd makes a distinction between two types of background jobs:

 ‰ Daemons are, like the traditional UNIX concept, background services that normally have no
interaction with the user. They are started automatically by the system, whether or not any
users are logged on.

 ‰ Agents are special cases of daemons that are started only when a user logs on. Unlike
daemons, they may interface with the user, and may in fact have a GUI.

 ‰ iOS does not support the notion of a user login, which is why it only has LaunchDaemons
(though an empty /Library/LaunchAgents does exist).

 ‰ Both daemons and agents are declared in their individual property list (.plist) fi les. As
described in Chapter 2, these are commonly XML (in OS X) or binary (in iOS). A detailed
discussion of the valid plist entries in the verbose man page — launchd.plist(5), though
it should be noted the man page does leave out a few undocumented keys. The rest of this
chapter demonstrates the plist format through various examples. The complete list of job
keys (including useful keys for sandboxing jobs) can be found in launchd’s launch_priv.h
file.

The list of daemons and agents can be found in the locations noted in Table 7-1.

TABLE 7-1: Launch Daemon locations

DIRECTORY USED FOR

/System/Library/LaunchDaemons Daemon plist fi les, primarily those belonging to the sys-
tem itself.

/Library/LaunchDaemons Daemon plist fi les, primarily third party.

/System/Library/LaunchAgents Agent plist fi les, primarily those belonging to the system
itself.

/Library/LaunchAgents Other agent plist fi les, primarily third party. Usually
empty.

~/Library/LaunchAgents User-specifi c launch agents, executed for this user only.

launchd uses the /private/var/db directory for its runtime confi guration, creating com.apple
.launchd[.peruser.%d] fi les for runtime override and disablement of daemons.

The Many Faces of launchd
launchd is the fi rst process to emerge to user mode. When the system is at its nascent stage, it is
(briefl y) the only process. This means that virtually every aspect of system startup and function is
either directly or indirectly dependent on it. In OS X and iOS, launchd serves multiple roles, which
in other UN*X are traditionally delegated to several daemons.

c07.indd 229c07.indd 229 10/5/2012 4:16:47 PM10/5/2012 4:16:47 PM

230 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

init
The fi rst, and chief role played by launchd is that of the daemon init. The job description of the lat-
ter involves setting up the system by spawning its myriad daemons, then fading to the background,
and ensuring these daemons are alive. If one dies, launchd can simply respawn it.

Unlike traditional init, however, the launchd implementation is somewhat different, and consider-
ably improved, as shown in Table 7-2:

TABLE 7-2: init vs. launchd

RESPONSIBILITY TRADITIONAL INIT LAUNCHD

Function as PID 1,
great ancestor of all
processes

init is the fi rst process to emerge
into user mode, and forks other pro-
cesses (which in turn may fork others).
Resource limits it sets for itself are
inherited by all of its descendants.

Same. launchd also sets Mach
exception ports, which are used
by the kernel internally to handle
exception conditions and gener-
ate signals (see Chapter 8).

Support “run levels” Traditional init supports run levels:
0 – powero!
1 – single user
2 – multi-user
3 – multi-user + NFS
5 – halt
6 – reboot

launchd does not recognize run
levels and allows only for indi-
vidual per-daemon or per-agent
fi les. There is, however, a distinc-
tion for single-user mode.

Start system services init runs services in order, per fi les
listed in /etc/rc?.d (corresponding to
run level), in lexicographic order.

launchd runs both system ser-
vices (daemons), and per-user
services (agents).

System service
specifi cation

init runs services as shell scripts,
unaware and oblivious to their contents.

launchd processes property list
fi les, with specifi c keywords.

Restart services on exit init recognizes the respawn keyword in
/etc/inittab for restart.

launchd allows a KeepAlive key
in the daemon or agent’s prop-
erty list.

Default user Root. Root, but launchd allows a user-
name key in the property list.

Per-User Initialization
Traditional UN*X has no mechanism to run applications on user login. Users must resort to shell
and profi le scripts, but those quickly get confusing since each shell uses different fi les, and not all
shells are necessarily login shells. Additionally, in a GUI environment it is not a given that a shell

c07.indd 230c07.indd 230 10/5/2012 4:16:47 PM10/5/2012 4:16:47 PM

launchd x 231

would be started, at all (as is indeed the case with most OS X users, who remain unaware of the
Terminal.app).

By using LaunchAgents, launchd enables per-user launching of specifi c applications. Agents can
request to be loaded by default in all sessions, or only in GUI sessions, by specifying the LimitLoad-
ToSessionType key with values such as LoginWindow or Aqua, or Background.

atd/crond
UN*X traditionally defi nes two daemons — atd and crond — to run scheduled jobs, as in
executing a specifi ed command at a given time. The fi rst daemon, atd, serves as the engine
allowing the at(1) command for one-time jobs, whereas the second, crond, provides recurring
job support.

Apple is gradually phasing out atd and crond. The atd is no longer a stand-alone daemon, but is
now started by launchd. This service, defi ned in com.apple.atrun.plist, (shown in Listing 7-3) is
usually disabled:

LISTING 7-3: The com.apple.atrun.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>com.apple.atrun</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/libexec/atrun</string>
 </array>

 <key>StartInterval</key>
 <integer>30</integer>

 <key>Disabled</key>
 <true/>
</dict>
</plist>

The atrun plist must be enabled to allow the at(1) family of commands to work. Otherwise, it will
schedule jobs, but they will never happen (as the author learned the hard way, once relying on it to
set a wake-up alarm).

The crond service is still supported (in com.vix.crond.plist), although launchd has its own set of
StartCalendarInterval keys to replace it. Apple supplies periodic(8) as a replacement. Listing
7-4 shows com.apple.periodic-daily, one of the several cron-substitutes (along with –weekly
and –monthly):

launchd starts atrun(8) every 30
seconds, if enabled

Disabled by default. Setting Disabled:false
(or removing key) enables

c07.indd 231c07.indd 231 10/5/2012 4:16:47 PM10/5/2012 4:16:47 PM

232 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

LISTING 7-4: com.apple.periodic-daily.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>com.apple.periodic-daily</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/sbin/periodic</string>
 <string>daily</string>
 </array>
 <key>LowPriorityIO</key>
 <true/>
 <key>Nice</key>
 <integer>1</integer>
 <key>StartCalendarInterval</key>
 <dict>
 <key>Hour</key>
 <integer>3</integer>
 <key>Minute</key>
 <integer>15</integer>
 </dict>
 <key>AbandonProcessGroup</key>
 <true/>
</dict>
</plist>

In iOS, an alternate method of specifying periodic execution is with the StartInterval key. The
/usr/sbin/daily service, for example, specifi es a value of 86,400 seconds (24 hours). Other ser-
vices, such as itunesstored and softwareupdateservicesd also use this method.

inetd/xinetd:
In UN*X, inetd (and its successor, xinetd) is used to start network servers. The daemon is respon-
sible for binding the port (UDP or TCP), and — when a connection request arrives — it starts the
server on demand, and connects its input/output descriptors (stdin, stderr, and stdout) to the
socket.

This approach is highly benefi cial to both the network server, and the system. The system does not
need to keep the server running if there are no active requests to be serviced, thereby reducing sys-
tem load. The server, on its part, remains totally agnostic of the socket handling logic, and can be
coded to use only the standard descriptors. In this way, an administrator can whimsically reassign
port numbers to services, and essentially run any CLI command, even a shell, over a network port.

launchd integrates the inetd functionality into itself*, by allowing daemons and agents to request a
particular socket. All the daemon has to do is ask, using a Sockets key in its plist. Listing 7-5 shows
an example of requesting TCP/IP socket 22, from ssh.plist:

* Technically, the inetd functionality is handled by launchproxy(8), also part of the launchd project. The
 manual page has been promising the two would be merged eventually, but it has yet to happen.

c07.indd 232c07.indd 232 10/5/2012 4:16:47 PM10/5/2012 4:16:47 PM

launchd x 233

LISTING 7-5: ssh.plist, demonstrating IP socket registration

<plist version="1.0">
<dict>
 <key>Disabled</key>
 <true/>

 <key>Label</key>
 <string>com.openssh.sshd</string>

 <key>Program</key>
 <string>/usr/libexec/sshd-keygen-wrapper</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/sbin/sshd</string>
 <string>-i</string>
 </array>

 <key>Sockets</key>
 <dict>
 <key>Listeners</key>
 <dict>
 <key>SockServiceName</key>
 <string>ssh</string>

 <key>Bonjour</key>
 <array>
 <string>ssh</string>
 <string>sftp-ssh</string>
 </array>
 </dict>
 </dict>
 <key>inetdCompatibility</key>
 <dict>
 <key>Wait</key>
 <false/>
 </dict>

 <key>StandardErrorPath</key>
 <string>/dev/null</string>

 <key>SHAuthorizationRight</key>
 <string>system.preferences</string>
</dict>
</plist>

Unlike inetd, the socket the daemon is requesting may also be a UNIX domain socket. Listing 7-6,
an excerpt from com.apple.syslogd.plist, demonstrates this:

Disabled by default. Setting
Disabled:false (or removing key) enables

"Label" defines the service
internally (for launchctl(8))

"Program" specifies path to execute.
Command line arguments are specified in
an array

SockServiceName refers to /etc/services:
ssh 22/tcp # SSH Remote Login Protocol

Bonjour advertises the
service(s) over multicast

inetdCompatibility allows porting from
the legacy inetd.conf (here, "nowait",
allowing multiple instances)

StandardErrorPath redirects
stderr to /dev/null.

c07.indd 233c07.indd 233 10/5/2012 4:16:48 PM10/5/2012 4:16:48 PM

234 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

LISTING 7-6: com.apple.syslogd.plist, demonstrating UNIX socket registration

...
<key>ProgramArguments</key>
 <array>
 <string>/usr/sbin/syslogd</string>
 </array>
 <key>Sockets</key>
 <dict>
 <key>AppleSystemLogger</key>
 <dict>
 <key>SockPathMode</key>
 <integer>438</integer>
 <key>SockPathName</key>
 <string>/var/run/asl_input</string>
 </dict>
 <key>BSDSystemLogger</key>
 <dict>
 <key>SockPathMode</key>
 <integer>438</integer>
 <key>SockPathName</key>
 <string>/var/run/syslog</string>
 <key>SockType</key>
 <string>dgram</string>
 </dict>
 </dict>

The two socket families — UNIX and INET — are not mutually exclusive, and may be specifi ed in
the same clause. The previous syslogd plist, for example, can easily be modifi ed to allow syslog to
accept messages from UDP 514 by adding a SockServiceName:syslog key (and optionally append-
ing –udp_in and 1 to the ProgramArguments array). The iOS daemon lockdownd listens in this way
on TCP port 62078 and the UNIX socket /var/run/lockdown.sock.

mach_init
True to its NEXTStep origins and before the advent of launchd in OS X 10.4, the system startup
process was called mach_init. This daemon was actually responsible for later spawning the BSD
style init, which was a separate process. The two were fused into launchd, and it has assumed mach_
init’s little documented, but chief role of the bootstrap service manager.

Mach’s IPC services rely on the notion of “ports” (vaguely akin to TCP and UDPs), which serve as
communication endpoints. This is described (in great detail) in Chapter 10. For the moment, how-
ever, it is suffi cient to consider a port as an opaque number that can also be referenced by a fully
qualifi ed name. Servers and clients alike can allocate ports, but servers either require some type of
locator service to allow clients to fi nd them, or otherwise need to be “well-known.”

Enter: the bootstrap server. This server is accessible to all processes on the system, which may
communicate with it over a given port — the bootstrap_port. The clients can then request, over
this port, that the server lookup a given service by its name and match them with its port. (UNIX

c07.indd 234c07.indd 234 10/5/2012 4:16:48 PM10/5/2012 4:16:48 PM

launchd x 235

has a similar function in its RPC portmapper, also known as sunrpc. The mapper listens on a well-
known port (TCP/UDP 111) and plays matchmaker for other RPC services)1.

Prior to launchd, mach_init assumed the role of bootstrap_server. launchd has since taken over
this role and claims the port (aptly named bootstrap_port) during its startup. Since all processes
in the system are its progeny, they automatically inherit access to the port. bootstrap_port is
declared as an extern mach_port_t in <servers/bootstrap.h>.

Servers wishing to register their ports with the bootstrap server can use the port to do so, using
functions defi ned in <servers/bootstrap.h>. These functions (bootstrap_create_server and
bootstrap_create_service) are still supported, but long deprecated. Instead, the service can
be registered with launchd in the server’s plist, and a simpler function — bootstrap_check_in()
— remains to allow the server to request launchd to hand over the port when it is ready to service
requests:

kern_return_t bootstrap_check_in(mach_port_t bp, // bootstrap_port
 const name_t service_name, // name of service
 mach_port_t *sp); // out: server port

launchd pre-registers the port when processing the server’s plist. The server port is usually ephem-
eral, but can also be well known if the key HostSpecialPort is added. (This is discussed in more
detail in Chapter 10, under “Host Special Ports”). launchd can be instructed to wait for the server’s
request, as is shown in Listing 7-7. com.apple.windowserver.active will be advertised to clients
only after WindowServer checks in with launchd using functions from <launch.h>.

LISTING 7-7: com.apple.WindowServer.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>com.apple.WindowServer</string>
 <key>ProgramArguments</key>
 <array>

 <string>/System/Library/Frameworks/ApplicationServices.framework/Frameworks/
 CoreGraphics.framework/Resources/WindowServer</string>
 <string>-daemon</string>
 </array>
 <key>MachServices</key>
 <dict>
 <key>com.apple.windowserver</key>
 <true/>
 <key>com.apple.windowserver.active</key>
 <dict>

1Readers familiar with Android will note the similarity to its Binder mechanism, which (among other IPC
related tasks) also allows system services to be published, albeit using a character device, /dev/binder, rather
than a port.

continues

c07.indd 235c07.indd 235 10/5/2012 4:16:48 PM10/5/2012 4:16:48 PM

236 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

 <key>HideUntilCheckIn</key>
 <true/>
 </dict>
 </dict>
</dict>
</plist>

Any clients wishing to connect to a given service, can then look up the server port using a similar
function:

kern_return_t bootstrap_look_up(
 mach_port_t bp, // always bootstrap_port
 const name_t service_name, // name of service
 mach_port_t *sp); // out: server port

If the server’s port is available and the server has checked in, it will be returned to the client, which
may then send and receive messages (using mach_msg(), also discussed in Chapter 10). The Mach
messages for the bootstrap protocol are defi ned in the launchd source in .defs fi les, which are pre-
processed by the Mach Interface Generator (MIG) (also discussed in Chapter 10). You can view a
list of the active daemons using the bslist subcommand of launchctl(1). The list prints out a
fl attened view of the hierarchical namespace of bootstrap servers visible in the current context. The
bstree subcommand displays the full hierarchical namespace (but requires root privileges). In Lion
and later, bstree also shows XPC namespaces (discussed later in this chapter).

The bootstrap mechanism is now implemented over launchd’s vproc, a new library introduced in
Snow Leopard, which also provides for the next feature, transactions.

Transaction Support
launchd is smarter than the average init. Unlike init, which can just start or stop its daemons,
launchd supports transactions, a useful feature exported by launchd’s vproc, which daemons can
access through the public <vproc.h>. Daemons using this API can mark pending transactions by
encapsulating them between vproc_transaction_begin, which generates a transaction handle, and
vproc_transaction_end on that handle, when the transaction completes. A transaction-enabled
daemon can also indicate the EnableTransactions key in its plist, which enables launchd to check
for any pending transactions when the system shuts down, the user logs out, or after a specifi ed
timeout. If there are no outstanding transactions (the process is clean), the daemon will be shot
down (with a kill -9) instead of gracefully terminated (kill -15), speeding up the shutdown or
logout process, or freeing system resources after suffi cient inactivity.

Resource Limits and Throttling
launchd can enforce self-imposed resource limits on its jobs. A job (daemon or agent) can specify
HardResourceLimits or SoftResourceLimits dictionaries, which will cause launchd to call
setrlimit(2). The Nice key can be used to set the job’s nice value, as per nice(1). Additionally,
a job can be marked with the LowPriorityIO key which causes launchd to call iopolicysys (sys-
tem call #322, discussed in Chapter 14) and lower the job’s I/O priority. Lastly, launchd is integrated
with iOS’s Jetsam mechanism (also known as memorystatus, and discussed in Chapter 14), which

LISTING 7-7 (continued)

c07.indd 236c07.indd 236 10/5/2012 4:16:48 PM10/5/2012 4:16:48 PM

launchd x 237

can enforce virtual memory utilization limitations, a feature that is especially important in iOS,
which has no swap space.

Autorun Emulation and File System Watch
One of Windows’ most known (and often annoying) features is autorun, which can automati-
cally start a program when removable media (such as a CD, USB storage, or hard disk) is attached.
launchd offers the StartOnMount key, which can trigger a daemon to start up any time a fi le system
is mounted. This can not only emulate the Windows functionality, but is actually safer, as the auto-
run feature in Windows has become a vector for malware propagation. launchd’s daemon are run
from the permanent fi le system, rather than the removable one.

launchd can also be made to watch a particular path, not necessarily a mount point, for changes,
using the WatchPaths or the QueueDirectories keys. This is very useful, as it can react in real time
to fi le system changes. This functionality is achieved by listening on kernel events (kqueues), as dis-
cussed in Chapter 3. Daemons may be further extended to support FSEvents as well (described in
Chapter 4), by specifying a LaunchEvents dictionary with a com.apple.fsevents.matching dict
of matching cases.

I/O Kit Integration
A new feature in Lion is the integration of launchd with I/O Kit. I/O Kit is the runtime environment
of device drivers. Launch daemons or agents can request to be invoked on device arrival by specify-
ing a LaunchEvents dictionary containing a com.apple.iokit.matching dictionary. For the spe-
cifi cs of I/O Kit and its matching dictionaries, turn to Chapter 19. A high-level example, however,
can be seen in Listing 7-8, which shows an excerpt from the com.apple.blued.plist launch dae-
mon, which is triggered by the to handle Bluetooth SDP transactions.

LISTING 7-8: com.apple.blued.plist, demonstrating I/O Kit triggers

<plist version="1.0">
<dict>
 <key>EnableTransactions</key>
 <true/>
 <key>KeepAlive</key>
 <dict>
 <key>SuccessfulExit</key>
 <false/>
 </dict>
 <key>Label</key>
 <string>com.apple.blued</string>
 <key>MachServices</key>
 <dict>
 <key>com.apple.blued</key>
 <true/>
 <key>com.apple.BluetoothDOServer</key>
 <dict>
 <key>ResetAtClose</key>
 <true/>
 </dict>

continues

c07.indd 237c07.indd 237 10/5/2012 4:16:49 PM10/5/2012 4:16:49 PM

238 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

 </dict>
 <key>Program</key>
 <string>/usr/sbin/blued</string>
 <key>LaunchEvents</key>
 <dict>
 <key>com.apple.iokit.matching</key>
 <dict>
 <key>com.apple.bluetooth.hostController</key>
 <dict>
 <key>IOProviderClass</key>
 <string>IOBluetoothHCIController</string>
 <key>IOMatchLaunchStream</key>
 <true/>
 </dict>
 </dict>
 </dict>
</dict>
</plist>

Experiment: Setting up a Custom Service
One of the niftiest features of UNIX inetd was its ability to run virtually any UNIX utility on any
port. The combination of the inetd’s handling of socket logic on the one hand, and the ability to
treat a socket as any other fi le descriptor on the other, provides this powerful functionality.

This is also possible, if a little more complicated with launchd. First, we need to create a launchd
plist for our program. Fortunately, this is a simple matter of copy, paste, and modify, as Listing 7-5
can do just fi ne if you change the Label, Program, ProgramArguments, and Sockets keys to what-
ever you wish.

But here, we encounter a problem: launchd does allow the running of any arbitrary program in
response to a network connection, but supports only the redirection of stdin, stdout, and stderr
to fi les. We want the application’s stdin, stdout, and stderr to be connected to the socket that
launchd will set up for us. This means the program we launch has to be launchd-aware and request
the socket handoff.

To solve this, we need to create a generic wrapper, as is shown in Listing 7-9.

LISTING 7-9: A generic launchd wrapper

#include <stdio.h>
#include <sys/socket.h>
#include <launch.h> // LaunchD related stuff
#include <stdlib.h> // for exit, and the like
#include <unistd.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <netdb.h> // for getaddrinfo
#include <fcntl.h>

LISTING 7-8 (continued)

c07.indd 238c07.indd 238 10/5/2012 4:16:49 PM10/5/2012 4:16:49 PM

launchd x 239

#define JOBKEY_LISTENERS "Listeners"
#define MAXSIZE 1024
#define CMD_MAX 80

int main (int argc, char **argv)
{
 launch_data_t checkinReq, checkinResp;
 launch_data_t mySocketsDict;
 launch_data_t myListeners;

 int fdNum;
 int fd;
 struct sockaddr sa;
 unsigned int len = sizeof(struct sockaddr);
 int fdSession ;

 /* First, we must check-in with launchD. */
 checkinReq = launch_data_new_string(LAUNCH_KEY_CHECKIN);
 checkinResp = launch_msg(checkinReq);

 if (!checkinResp) {
// Failed to checkin with launchd - this can only be because we are run outside
// its context. Print a message and exit

 fprintf (stderr,"This command can only be run under launchd\n");
 exit(2);
 }

 mySocketsDict = launch_data_dict_lookup(checkinResp, LAUNCH_JOBKEY_SOCKETS);

 if (!mySocketsDict)
 { fprintf (stderr, "Can't find <Sockets> Key in plist\n"); exit(1); }

 myListeners = launch_data_dict_lookup(mySocketsDict, JOBKEY_LISTENERS);

 if (!myListeners)
 {fprintf (stderr, "Can't find <Listeners> Key inside <Sockets> in plist\n");
 exit(1);

 fdNum = launch_data_array_get_count(myListeners);
 if (fdNum != 1) {
 fprintf (stderr,"Number of File Descriptors is %d - should be 1\n", fdNum);
 exit(1);
 }

 // Get file descriptor (socket) from launchd
 fd = launch_data_get_fd(launch_data_array_get_index(myListeners,0));

 fdSession = accept(fd, &sa, &len);

 launch_data_free(checkinResp); // be nice..

continues

c07.indd 239c07.indd 239 10/5/2012 4:16:49 PM10/5/2012 4:16:49 PM

240 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

// Print to stderr (/var/log/system.log) before redirecting..

 fprintf (stderr, "Execing %s\n", argv[1]);

 dup2(fdSession,0); // redirect stdin
 dup2(fdSession,1); // redirect stdout
 dup2(fdSession,2); // redirect stderr
 dup2(fdSession,255); // Shells also like FD 255.

// Quick and dirty example – assumes at least two arguments for the wrapper,
// the first being the path to the program to execute, and the second (and later)
// being the argument to the launchd program

 execl(argv[1], argv[1], argv[2], NULL);

// If we're here, the execl failed.
 close(fdSession);

 return (42);
}

As the listing shows, the wrapper uses launchd_ APIs (all clearly prefi xed with launch_ and defi ned
in <launch.h>) to communicate with launchd and request the socket. This is done in several stages:

 ‰ Checking in with launchd — This is done by sending it a special message, using the launch_
msg() function. Since checking in is a standard procedure, it’s a simple matter to craft the
message using launch_data_new_string(LAUNCH_KEY_CHECKIN) and then pass that mes-
sage to launchd.

 ‰ Get our plist parameters — Once launchd has replied to the check-in request, we can use its
APIs to get the various settings in the plist. Note that there are two ways to pass parameters
to the launched daemons, either as command-line arguments (the ProgramArguments array),
or via environment variables, which are passed in an EnvironmentVariables dictionary,
and read by the daemon using the standard getenv(3) call.

 ‰ Get the socket descriptor — Getting any type of fi le descriptor is a little tricky, since it’s not
as straightforward to pass between processes as strings and other primitive data types are.
Still, any complexity is well hidden by launch_data_get_fd.

Once we have the fi le descriptor (which is the socket that launchd opened for us), we call accept() on
it, as any network server would. This will yield a connected socket with our client on the other end.
All that’s left to do is to use the dup2() system call to replace our stdin, stdout, and stderr with
the accepted socket, and exec() the real program. Because exec() preserves fi le descriptors, the new
program receives these descriptors in their already connected state, and its read(2) and write(2)
will be redirected over the socket, just as if it would have called recv(2) and send(2), respectively.

To test the wrapper, you will need to drop its plist in /System/Library/LaunchDaemons (or another
LaunchDaemons directory) and use launchctl(1) to start it, as shown in Output 7-1. The wrapper
in this example was labeled com.technologeeks.wrapper, and was placed in an eponymous plist.
Note in the output, that launchctl(1) isn’t the chatty type and no comment implies the commands
were successful.

LISTING 7-9 (continued)

c07.indd 240c07.indd 240 10/5/2012 4:16:49 PM10/5/2012 4:16:49 PM

Lists of LaunchDaemons x 241

OUTPUT 7-1: Using launchctl(1) to start a LaunchDaemon

root@Minion (~)# launchctl
launchd% load /System/Library/LaunchDaemons/com.technologeeks.wrapper.plist
launchd% start com.technologeeks.wrapper
launchd% exit

Because the wrapper is intentionally generic, you can specify any program you want, assuming
this program uses stdin, stdout, and stderr (which all command line utilities do, anyway). This
enables nice backdoor functionality, as you can easily set up a root shell on any port you want. Set-
ting the command line arguments to your wrapper to /bin/zsh -i will result in output similar to
Output 7-2:

OUTPUT 7-2: Demonstrating a launchd-wrapped root shell

root@Minion (~)# telnet localhost 1024 # or whereever you set your SockServiceName
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
zsh# id;
uid=0(root) gid=0(wheel) groups=0(wheel),401(com.apple.access_screensharing),
402(com.apple.sharepoint.group.1),1(daemon),
2(kmem),3(sys),4(tty),5(operator),8(procview),9(procmod),12(everyone),
20(staff),29(certusers),
33(_appstore),61(localaccounts)80(admin),98(_lpadmin),100(_lpoperator),
204(_developer)
zsh: command not found: ^M
zsh# whoami;
root
zsh: command not found: ^M

Note that a semicolon must be appended to shell commands. This is because you are working
directly over the shell’s stdin, and not a terminal, so the enter key is sent out as a literal Ctrl-M.
The semicolon added terminates the command so the shell can parse it, making the Ctrl-M into a
separate, invalid command. A minor annoyance in exchange for remote root capabilities.

LISTS OF LAUNCHDAEMONS
There are an inordinate amount of LaunchDaemons in OS X and iOS. Indeed, many sites devote
countless HTML pages and SMTP messages to debating the purpose and usefulness of the daemons
and agents, especially in iOS, where unnecessary CPU cycles not only impact performance, but also
dramatically shorten battery life. The following section aims to elucidate the purpose of these dae-
mons and agents.

iOS and OS X share some common LaunchDaemons. All plists (and their Mach service entries)
have the com.apple prefi x, and usually run their binaries from /usr/libexec. They are shown in
Table 7-3:

c07.indd 241c07.indd 241 10/5/2012 4:16:50 PM10/5/2012 4:16:50 PM

242 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

TABLE 7-3: Daemons common to iOS and OS X

LAUNCHDAEMON

(/USR/LIBEXEC)

MACH SERVICES

(COM.APPLE.*)

NOTES

DumpPanic
(CoreServices)

DumpPanic When kernel boots, collects
any leftover panic data from
a previous panic. Runs with
RunAtLoad=true.

appleprofilepolicyd appleprofilepolicyd System profi ling. Communicates
with profi ling kernel extensions.
Registers HostSpecialPort 16.

aslmanager --- Apple system Llog. Runs /usr/
bin/aslmanager, and sets a
WatchPath on /var/log/asl/
SweepStore.

Backupd
(MobileBackup framework)

Backupd RunAtLoad = true.

chud.chum Runs /Developer/usr/
libexec/chum, the CHUD
helper daemon allowing access
to privileged kernel interfaces
from user mode.

configd SCNetworkReachability
Configd

KeepAlive = true.

AppleIDAuthAgent
(CoreServices)

coreservices.appleid
.authentication
coreservices.appleid
.passwordcheck

Handles AppleID-related
requests. Whereas iOS has both
services, OS X version only has
the second service, which runs
with a –checkpassword switch.

cvmsServer cvmsServ Internal to OpenGL(ES)
framework.

fseventsd FSEvents In OS X, fseventsd is run from
the CarbonCore framework,
which is internal to CoreServices.

locationd locationd.registration
locationd.simulation (i)
locationd.spi (i)
locationd.synchronous (i)
locationd.agent (SL)
locationd.services(SL)

Location services.

c07.indd 242c07.indd 242 10/5/2012 4:16:50 PM10/5/2012 4:16:50 PM

Lists of LaunchDaemons x 243

LAUNCHDAEMON

(/USR/LIBEXEC)

MACH SERVICES

(COM.APPLE.*)

NOTES

mDNSResponder mDNSResponder Multicast DNS listener. Core part
of Apple’s “Bonjour.”

mDNSResponderHelper mDNSResponderHelper Provides privilege separation for
mDNSResponder.

notifyd
(/usr/sbin)

system.
notification_center

System notifi cation center:
handles kernel and other
notifi cations.

racoon
(/usr/sbin)

Racoon Open source VPNd. Thanks to
this daemon iOS5 proved jail-
breakable (twice).

ReportCrash
(/System/Library/
CoreServices)

ReportCrash.*
(OS X has ReportCrash., iOS
has JetSam, SafetyNet, Simu-
lateCrash, and StackShot.)

The default crash handler, which
intercepts all application crashes.
Runs automatically on crash by
setting job’s Mach exception
ports (discussed in Chapter 11).

sandboxd Sandboxd Also uses HostSpecialPort 14.

securityd Securityd
SecurityServer (SL)

Handles key access and authori-
zation. Written by Perry the Cynic,
apparently.
OnDemand.

syslogd system.logger Passes messages to ASL via the
asl_input socket (discussed in
Chapter 4).

A list of OS X specifi c LaunchDaemons (and a host of LaunchAgents), is too large and tedious to fi t
in these pages, but is maintained on the book’s companion website.

iOS launchdaemons
Table 7-4 details some of the daemons specifi c to iOS, in alphabetical order:

c07.indd 243c07.indd 243 10/5/2012 4:16:50 PM10/5/2012 4:16:50 PM

244 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

TABLE 7-4: Some of the iOS daemons in /System/Library/LaunchDaemons

LAUNCHDAEMON

(/USR/LIBEXEC)

MACH SERVICES

(COM.APPLE.*)

NOTES

accessory_device_
arbitrator

mobile.accessory_device_
arbitrator

Handles accessories plugged
into i-Device, such as docks. Set
to respond to events from I/O Kit
on the IOUSBInterface, so it
can be started whenever such an
accessory is connected. Formerly
accessoryd.

Accountsd
(Accounts.framework)

accountsd.accountmanager
accountsd.oauthsigner

Single sign-on. Runs as mobile.

Amfid MobileFileIntegrity Discouraging any attempt to run
unsigned, un-entitled code in iOS.
Arch-nemesis of all jailbreakers.
Uses HostSpecialPort 18.

Apsd
(ApplePushService
.framework)

Apsd Apple Push Service Daemon (the
APS private framework). Runs as
mobile.

Assetsd
(AssetsLibrary.framwork)

PersistentURLTranslator
.Gatekeeper
assetsd.*

Runs as mobile.

Atc Atc Air tra" c controller.

Calaccessd
(EventKit.framework/
Support)

Calaccessd The EventKit’s calendar access
daemon. Runs as mobile.

crash_mover crash_mover Moves crashes to /var/Mobile/
Library/Logs.

fairplayd.XXX Fairplayd
Unfreed

User mode helper for Apple’s
“FairPlay” DRM. This daemon
is hardware specifi c (the plist
contains a LimitedToHardware
key), with XXX specifying the
board type (e.g., N81 for iPod 4,1).

Itunesstored
(iTunesStore.framework/
Support)

iTunesStore.daemon.*
itunesstored.*

The iTunes Store server. Mostly
known for the app store badge
notifi cations.
Runs as mobile.

Lockbot --- Listens on /var/run/lockbot.
Assists in jailing the device.

c07.indd 244c07.indd 244 10/5/2012 4:16:51 PM10/5/2012 4:16:51 PM

Lists of LaunchDaemons x 245

LAUNCHDAEMON

(/USR/LIBEXEC)

MACH SERVICES

(COM.APPLE.*)

NOTES

Lockdownd lockdown.host_watcher See next section of this chapter.

Mobileassetd Mobileassetd Runs with -t 15.

mobile.installd mobile.installd Runs with -t 30 as mobile.

mobile.installd
.mount_helper

mobile.installd
.mount_helper

Mounts the developer image
when device is selected for
development.

mobile_obliterator mobile.obliteration Remotely obliterate (that is, wipe)
the device.

Pasteboard
(UIKit.framework/
Support/)

UIKit.pasteboardd Cut/paste support. Runs as
mobile. Close relative of OS
X’s as pboard(8), which is a
LaunchAgent (q.v., pbcopy(1),
pbpaste(1)).

SpringBoard
(/System/Library/
CoreServices)

CARenderServer
SBUserNotification
UIKit.statusbarserver
bulletinboard.*
chatkit
.clientcomposeserver.xpc
iohideventsystem
smsserver
springboard.*

The chief UI of i-Devices.
Described in its own section in
this chapter.

Twitterd
(Twitter.Framework)

twitter.authenticate
twitterd.server

Twitter support introduced in
iOS 5.

Vsassetsd
(VoiceServices
.framework/Support)

Vsassetd Responsible for voice assets.
Runs as mobile.

Glancing over the table, you may have noticed two special Daemons in iOS: SpringBoard and
lockdownd. SpringBoard is the GUI Shell and is described later in this Chapter. lockdownd
deserves more detail, and is described next.

lockdownd
lockdownd is the arch-nemesis of jailbreakers everywhere, being the user mode cop charged with
guarding the jail. It is started by launchd and handles activation, backup, crash reporting, device
syncing, and other services. It registers the com.apple.lockdown.host_watcher Mach service, and
listens on TCP port 62078, as well as the /var/run/lockdown.sock UNIX domain socket. It is
also assisted by a rookie, /usr/libexec/lockbot.

c07.indd 245c07.indd 245 10/5/2012 4:16:51 PM10/5/2012 4:16:51 PM

246 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

Lockdownd is, in effect, a mini-launchd. It maintains its own list of services to start in /System/
Library/Lockdown/Services.plist, as shown in Listing 7-10.

LISTING 7-10: An excerpt from lockdownd’s services.plist

<plist version="1.0">
<dict>
 <key>com.apple.afc</key>
 <dict>
 <key>AllowUnactivatedService</key>
 <true/>
 <key>Label</key>
 <string>com.apple.afc</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/libexec/afcd</string>
 <string>--lockdown</string>
 <string>-d</string>
 <string>/var/mobile/Media</string>
 <string>-u</string>
 <string>mobile</string>
 </array>
 </dict>
 <key>com.apple.afc2</key>
 <dict>
 <key>AllowUnactivatedService</key>
 <true/>
 <key>Label</key>
 <string>com.apple.afc2</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/libexec/afcd</string>
 <string>--lockdown</string>
 <string>-d</string>
 <string>/</string>
 </array>
</dict>

The listing shows an important service — afc — which is responsible for transferring fi les between
the iTunes host and the i-Device. This is required in many cases, for synchronization as well as
moving crash and diagnostic data. The second instance of the same service (afc2) is automatically
inserted in the jailbreak process, and differs only in its lack of the -u mobile command line argu-
ment to the afc, which makes it retain its root privileges instead of dropping to the non-privileged
user mobile. lockdownd (just like launchd) runs as root and can drop privileges before running
another process if the UserName key is specifi ed.

GUI SHELLS
When the user logs in on the console (either automatically or by specifying credentials), the system
starts a graphical shell environment. OS X uses the Finder, whereas iOS uses SpringBoard, but the
two are often more similar than they let on. From launchd’s perspective, both Finder and
SpringBoard are just one or two more agents in the collection of over 100 daemons and agents they

c07.indd 246c07.indd 246 10/5/2012 4:16:52 PM10/5/2012 4:16:52 PM

GUI Shells x 247

need to start and juggle. But for the user, these programs constitute the fi rst (and often fi nal) frontier
for interaction with the operating system.

Finder (OS X)
Finder is OS X’s equivalent of Windows’ Explorer: It provides the graphical shell for the user. It is
started as a launch agent upon successful login, from the com.apple.Finder.plist property list (in
/System/Library/LaunchAgents)

Finder has dependencies on no less than 30 libraries and frameworks, some of them private, which
you can easily display by using otool(1) -l. Doing so also reveals a peculiarity: Finder is a rare
case of an encrypted binary. OS X supports code encryption, as described in Chapter 4 and detailed
further in Chapter 13, but there are fairly few encrypted binaries. Output 4-3 demonstrated using
otool –l to view the encrypted portion of Finder. Using strings(1) or trying to disassemble Finder
is, therefore, a vain effort (unless the encryption is defeated, for example by a tool like corerupt, pre-
sented in Chapter 12). You can also use GDB to attach to Finder once it is running (yet again, defeat-
ing the whole purpose of the binary protection), and trace its threads (usually only three of them).

Finder is so tightly integrated with the system that the very design of the native fi le system, HFS+,
has been built around it. The fi le and folder data, and indeed the volume data itself, contains special
fi nder information fi elds. These fi elds enable many features, such as reopening folder windows in the
exact dimensions and location the user placed them last. Finder additionally makes use of extended
attributes to store information, such as color labels and aliases. These features are all discussed in
Chapter 16 (which is entirely devoted to HFS+).

With a Little Help from My Friends
All the work of supporting the rich GUI can prove overwhelming for any one process, which is why
the GUI handling is actually split between several processes, which are all in /System/Library/
CoreServices.

The Dock.app is responsible for the familiar tray of icons usually found at the bottom of the desk-
top, as its name implies, but also sets the wallpaper (what X would call the “root window”), as can
be witnessed when the process is killed. It is assisted by com.apple.dock.extra, which connects
the UI actions to the Dock action outlets.

The SystemUIServer.app is responsible for the menu extras (right hand) side of the status bar,
which it loads from /System/Library/CoreServices/Menu Extras. Note that there, menu extras
may also be created programmatically (using [NSStatusBar systemStatusBar] and its setImage/
setMenu methods), in which case these extras are the responsibility of the app which created them.

Due to their important role (and Apple’s desire to keep their UI theirs for as long as possible before
others “adopt” it), Finder’s assistants (as well as other CoreServices apps) are also protected
binaries.

Experiment: Figuring Out Who Owns What in the GUI
Using a shell (preferably over SSH) and the UNIX kill(1) command, you can quickly determine
which process owns what part of the GUI. Your options are to either kill the process violently (using
kill -9) or just pause the process (using kill –STOP and kill -CONT). Doing so on the various

c07.indd 247c07.indd 247 10/5/2012 4:16:52 PM10/5/2012 4:16:52 PM

248 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

processes — Finder, Dock and SystemUIServer — will either briefl y make their UI assets disappear
(if killed, until the processes are automatically restarted by launchd) or hang with the spinning
beachball of death (as long as the processes are stopped) or a “fast forward” effect (when the pro-
cesses are resumed, and all the queued UI messages are delivered). Menu extras created by apps will
be unaffected by SystemUIServer’s suspension or premature demise.

You might want to use killall(1) instead of kill, as it will send a signal by name, rather than by
PID. If you use it this way to kill the same process repeatedly, launchd throttles the processes, which
after a few seconds are respawned.

SpringBoard (iOS)
What Finder is to OS X, SpringBoard is for iOS. In iOS the system need not logon, so SpringBoard
is started automatically, to provide the familiar icon based UI of the system. This UI has served as
the inspiration to Lion’s LaunchPad, which uses the same GUI concepts and is essentially a back
port of SpringBoard into OS X — a fact that is evident as some SpringBoard-named fi les can be
found in LaunchPad binary (which is technically part of the dock). Much like its OS X GUI counter-
part (Finder), SpringBoard is loaded from /System/Library/CoreServices/.

All by Myself (Sort of)
Unlike Finder, SpringBoard handles almost everything by itself, and there are only a few loadable
bundles in the CoreServices directory. Finder’s 30 dependencies are dwarfed by SpringBoard, which
has about 80, as you can see with otool –l, which will also reveal that SpringBoard is (surpris-
ingly) an unprotected binary.

SpringBoard nonetheless does turn to additional bundles for certain tasks. /System/Library/
SpringBoardPlugins contains three types of loadable bundles (as of iOS 5):

 ‰ lockbundle — Lock bundles provide lock screen functionality. The
NowPlayingArtLockScreen.lockbundle is responsible for providing the lock screen when
the music player (Music~iphone or MobileMusicPlayer) is active and the screen is locked.
The PictureFramePlugin shows pictures from the user’s photo library. The iPhone also has
a bundle for VoiceMemosLockScreen (to show voice messages and missed call indicators)

 ‰ servicebundle — Helps SpringBoard with various tasks, such as ChatKit.servicebundle,
IncomingCall.servicebundle, and WiFiPicker.servicebundle.

 ‰ bundle — The original extension before iOS 5. Still exists for NikeLockScreen.bundle and
ZoomTouch.bundle.

Creating the GUI
SpringBoard creates its GUI by enumerating the apps in /Applications /var/mobile/
Applications and displaying icons for them on the i-Device. Icon enumeration is performed auto-
matically when SpringBoard starts. Each app’s Info.plist is read, and the app is displayed on one
of the home screens with the icon specifi ed in its CFBundleIcons property, unless it contains the
SBAppTags key with a hidden array entry). Examples of hidden apps are Apple’s own DemoApp
.app, iOS Diagnostics.app, Field Test.app, Setup.app, and TrustMe.app.

c07.indd 248c07.indd 248 10/5/2012 4:16:52 PM10/5/2012 4:16:52 PM

GUI Shells x 249

iOS devices start Setup.app when fi rst launched to confi gure the device,
register, and activate it. This has been rumored to annoy certain types of people.
A nice way to get past it is to jailbreak the device and boot it (tethered or unte-
thered doesn’t matter), then ssh into it and simply rename (mv) /Applications/
Setup.app (the new name doesn’t matter). Then, restart SpringBoard (killall
SpringBoard), and that setup screen is gone. iTunes will still complain about
device registration when syncing, but there are ways to bypass that, as well.

Icon grouping and the button bar settings are saved to /var/mobile/Library/SpringBoard/
IconState.plist, with general home screen settings (as well as ringtones and other audio effects)
in /var/mobile/Library/Preferences/com.apple.springboard. A third fi le,
applicationstate.plist, controls application settings like badges. Figure 7-1 shows the mapping
between the fi les and the home screen.

~/Library/Springboard/IconState.plist:

<plist version="1.0">
<dict>
 <key>buttonBar</key>
 <array>
 <string>com.apple.mobilephone</string>
 <string>com.apple.mobilemail</string>
 <string>com.apple.mobilesafari</string>
 <string>com.apple.mobileipod</string>
 </array>
<key>iconLists</key>
 <array>
 <array>
 <string>com.apple.MobileSMS</string>
 ...
 <string>com.apple.mobiletimer</string>
 <dict>
 <key>defaultDisplayName</key>
 <array>
 <string>com.apple.MobileAddressBook</string>
 <string>com.apple.calculator</string>
 <string>com.apple.compass</string>
 <string>com.apple.VoiceMemos</string>
 </array>
 <key>listType</key>
 <string>folder</string>
 </dict>
 <string>com.etrade.mobileproiphone</string>
 <string>com.nbcuni.cnbc.cnbcrt</string>
 <string>com.apple.Preferences</string>
 </array>
 <array>
 // Next home screen(s) follow ...
 ...
 </array>
</dict>
</plist>

~/Library/Preferences/com.apple.springboard:

~/Library/Springboard/applicationstate.plist:

<key>com.apple.Preferences</key>
<dict>
 <key>SBApplicationBadgeKey</key>
 <integer>1</integer>
 ……

<key>SBShowBatteryPercentage</key>
<true/>

FIGURE 7-1: SpringBoard’s fi les and how they lay out the iOS home screen.

c07.indd 249c07.indd 249 10/5/2012 4:16:53 PM10/5/2012 4:16:53 PM

250 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

Experiment: Unhiding (or Hiding) an iOS App
It’s a simple matter to hide or unhide apps on a jailbroken device. All it takes is editing the App’s
Info.plist and toggling the SBAppTags key. This is demonstrated in this simple experiment. You
can use the method here to unhide or hide any app you wish.

For the app you choose, take the Info.plist and copy it to /tmp. Then, convert it to the more read-
able XML format (or, if you prefer, JSON) using plutil(1). Edit the fi le to either add or remove
the SBAppTags key with an array, containing a single string value of ‘hidden’. Finally, restart
SpringBoard.

Performing the sequence of operations described here on DemoApp, we would have the sequence
shown in Output 7-3:

OUTPUT 7-3: Toggling the visibility of an iOS app

root@padishah (/)# cp /Applications/DemoApp.app/Info.plist /tmp
root@padishah (/)# plutil -convert xml1 /tmp/Info.plist
Converted 1 files to XML format
root@padishah (/)# cat /tmp/Info.plist
…
 <key>SBAppTags</key>
 <array>
 <string>hidden</string>
 </array>
…

root@padishah (/)# plutil –convert binary1 /tmp/Info.plist
Converted 1 files to binary format

root@padishah (/)# cp /tmp/Info.plist /Applications/DemoApp.app/
root@padishah (/)# killall SpringBoard

Handling the UI
Finder and SpringBoard are both in charge of presenting the UI, but Springboard’s responsibilities
extend above and beyond. SpringBoard is apparently responsible for every type of action in iOS.
Even if it is not the foreground application, if it is stopped (by signal) no UI events get to the active
app, and when it is continued all the events queued are delivered to the app.

Springboard is a multithreaded application. It has far more threads than Finder. Apple's developers
were kind enough to name some of them (using the pthread_setname_np). The names reveal two
Web related threads (WebCore and WebThreads), at least two belonging to
coremedia.player, one for the WiFiManager callbacks (responsible for the WiFi indicator on the
status bar), and three or more threads used for CoreAnimation. Debugging the process requires get-
ting past a system watchdog, which reboots the system if SpringBoard is not responsive for more
than a few minutes.

More information can be gleaned from Springboard’s launchd registration, i.e., the com.apple
.SpringBoard.plist entry in /System/Library/LaunchDaemons, shown in Listing 7-11. Since all

Add or remove this value

c07.indd 250c07.indd 250 10/5/2012 4:16:54 PM10/5/2012 4:16:54 PM

GUI Shells x 251

Mach port registrations go through launchd, this lists the (many) ports which SpringBoard requests
launchd to register.

LISTING 7-11: SpringBoard’s registered Mach ports

<plist version="1.0">
<dict>
 <key>EmbeddedPrivilegeDispensation</key>
 <true/>
 <key>HighPriorityIO</key>
 <true/>
 <key>KeepAlive</key>
 <true/>
 <key>Label</key>
 <string>com.apple.SpringBoard</string>
 <key>MachServices</key>
 <dict>
 <key>PurpleSystemEventPort</key>
 <dict>
 <key>ResetAtClose</key>
 <true/>
 </dict>
 <key>com.apple.CARenderServer</key>
 <dict>
 <key>ResetAtClose</key>
 <true/>
 </dict>
 <key>com.apple.SBUserNotification</key>
 <true/>
 <key>com.apple.UIKit.statusbarserver</key>
 <true/>
 <key>com.apple.bulletinboard.observerconnection</key>
 <true/>
 <key>com.apple.bulletinboard.publisherconnection</key>
 <true/>
 <key>com.apple.bulletinboard.settingsconnection</key>
 <true/>
 <key>com.apple.chatkit.clientcomposeserver.xpc</key>
 <true/>
 <key>com.apple.iohideventsystem</key>
 <dict>
 <key>ResetAtClose</key>
 <true/>
 </dict>
 <key>com.apple.smsserver</key>
 <dict>
 <key>ResetAtClose</key>
 <true/>
 </dict>
 <key>com.apple.springboard</key>
 <dict>
 <key>ResetAtClose</key>
 <true/>

continues

c07.indd 251c07.indd 251 10/5/2012 4:16:54 PM10/5/2012 4:16:54 PM

252 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

 </dict>
 <key>com.apple.springboard.UIKit.migserver</key>
 <dict>
 <key>ResetAtClose</key>
 <true/>
 </dict>
 <key>com.apple.springboard.alerts</key>
 <dict>
 <key>ResetAtClose</key>
 <true/>
 </dict>
 <key>com.apple.springboard.appstatechanged</key>
 <dict>
 <key>HideUntilCheckIn</key>
 <true/>
 </dict>
 <key>com.apple.springboard.backgroundappservices</key>
 <dict>
 <key>HideUntilCheckIn</key>
 <true/>
 <key>ResetAtClose</key>
 <true/>
 </dict>
 <key>com.apple.springboard.blockableservices</key>
 <dict>
 <key>ResetAtClose</key>
 <true/>
 </dict>
 <key>com.apple.springboard.processassertionservices</key>
 <dict>
 <key>HideUntilCheckIn</key>
 <true/>
 <key>ResetAtClose</key>
 <true/>
 </dict>
 <key>com.apple.springboard.processinvalidation</key>
 <dict>
 <key>HideUntilCheckIn</key>
 <true/>
 </dict>
 <key>com.apple.springboard.remotenotifications</key>
 <dict>
 <key>ResetAtClose</key>
 <true/>
 </dict>
 <key>com.apple.springboard.services</key>
 <dict>
 <key>HideUntilCheckIn</key>
 true/>
 <key>ResetAtClose</key>
 <true/>
 <key>com.apple.springboard.watchdogserver</key>

LISTING 7-11 (continued)

c07.indd 252c07.indd 252 10/5/2012 4:16:54 PM10/5/2012 4:16:54 PM

XPC (Lion and iOS) x 253

 <true/>
 </dict>
 <key>ProgramArguments</key>
 <array>
 <string>/System/Library/CoreServices/SpringBoard.app/SpringBoard</string>
 </array>
 <key>ThrottleInterval</key>
 <integer>5</integer>
 <key>UserName</key>
 <string>mobile</string>
</dict>
</plist>

Chief among all these ports is the PurpleSystemEventPort, which handles the UI events as
GSEvent messages. This is understandably undocumented by Apple, but has been reverseengi-
neered[2]. The main thread in Springboard calls processes GSEventRun(), which is the CF RunLoop
that handles the UI messages. The other threads are in similar run loops over the other Mach ports
in Springboard, but due to the opaque nature of these ports, it’s diffi cult to tell which thread is on
which port without the right symbols.

XPC (LION AND IOS)
XPC is a set of lightweight interprocess communication primitives fi rst introduced in Lion and iOS
5. XPC is fairly well documented in Apple Developer[3]. It is also tightly integrated with the Grand
Central Dispatcher (GCD). XPC enables a developer to break down applications into separate
components. This improves both application stability and security, as vulnerable (or unstable) func-
tionality can be contained in an XPC service, which is managed externally — another responsibility
happily assumed by launchd.

Just as with its own LaunchDaemons, launchd takes on the tasks of starting XPC services on
demand, watching over them (restarting on crash), and terminating them (the hard way, with a
kill -9) when they are done or idle. The launchd uses xpcd(8), xpchelper(8), and xpcproxy(8)
to assist with the XPC services. It maintains XPC services alongside standard Mach services,
in separate XPC domains — per-user, private, and singleton. This can be seen in the output of
launchctl’s bstree subcommand, as shown in Output 7-4:

OUTPUT 7-4: XPC Service Domains

root@Simulacrum (/)# launchctl bstree | grep Domain
com.apple.xpc.domain.com.apple.dock.[231] (XPC Private Domain)/
 com.apple.xpc.domain.Dock[175] (XPC Private Domain)/
 com.apple.xpc.domain.peruser.501 (XPC Singleton Domain)/
 com.apple.xpc.domain.imagent[214] (XPC Private Domain)/
 com.apple.xpc.domain.com.apple.audio[203] (XPC Private Domain)/
 com.apple.xpc.domain.peruser.202 (XPC Singleton Domain)/
 com.apple.xpc.domain.coreaudiod[108] (XPC Private Domain)/
 com.apple.xpc.system (XPC Singleton Domain)/
 ...

c07.indd 253c07.indd 253 10/5/2012 4:16:55 PM10/5/2012 4:16:55 PM

254 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

XPC services and client applications link (either directly or through Cocoa) with libxpc.dylib,
which provides the various C-level XPC primitives (such as Mountain Lion’s NSXPCConnection).
The library remains closed source at the time of this writing, but Apple does provide the <xpc/*>
includes which expose the APIs, whose internals are discussed in this section. XPC also relies on the
private frameworks of XPCService and XPCObjects. The former handles runtime aspects of ser-
vices, and the latter provides encoding and decoding services for XPC objects. iOS contains a third
private framework, XPCKit.

XPC Object Types
XPC wraps and serializes various datatypes in a manner akin to the CoreFoundation framework.
<xpc/xpc.h> defi nes the object and data types supported by XPC, shown in Table 7-5. The type
names are #defined as XPC_TYPE_typename macros wrappings pointers to the corresponding types
in the table, and can be instantiated with xpc_typename_create functions. Objects can be retrieved
from messages in most cases using xpc_typename_get_value. Two special object types are dic-
tionaries and arrays, which serve as containers for other object types (which may be created in or
accessed from from them using xpc_[array|dictionary]_[get|set]_typename.

TABLE 7-5: XPC Object and data types

TYPE REPRESENTS

connection An XPC connection, over which messages can be sent and received. A con-
nection can be created using xpc_connection_create(), specifying an
anonymous or named connection, or from a given endpoint, through a call to
xpc_connection_create_from_endpoint().

endpoint Serializable form of a connection. E! ectively a connection factory.

null A null object reference (constant) for comparisons.

bool A Boolean.

true/false Boolean true/false values (constants) for comparisons.

int64/uint64 Signed/Unsigned 64-bit integers.

double Double precision fl oats.

date Date intervals (UNIX time). Can be instantiated from the present time by a call
to xpc_date_create_from_current.

data Array of bytes. The recipient can obtain a pointer to the data by calling
xpc_data_get_bytes_ptr.

string Null terminated C-String (wraps char *). Strings may be created
with a format string, and even with variable arguments (similar to
vsprintf(3)). The recipient can obtain a pointer to the string by calling
xpc_string_get_string_ptr.

c07.indd 254c07.indd 254 10/5/2012 4:16:55 PM10/5/2012 4:16:55 PM

XPC (Lion and iOS) x 255

TYPE REPRESENTS

uuid Universally Unique Identifi er. The recipient can obtain the UUID by a call to
xpc_uuid_get_bytes.

fd File descriptor. The descriptor can be used by the client by calling
xpc_fd_dup.

shmem Shared memory. The shared memory can be mapped into the receipient’s
address space by calling xpc_shmem_map.

array Indexed array of XPC objects. An array may contain any number of
other object types, which may be added to it or retrieved from it using
xpc_array_[get|set]_typename.

dictionary Associative array of XPC objects. A dictionary may contain any number
of other object types, which may be added to it or retrieved from it using
xpc_dictionary_[get|set]_typename.

error Error objects. Used for returning errors. Cannot be instantiated by clients.

Any of the XPC objects can be handled as an opaque xpc_object_t, and manipulated by functions
described in xpc_object(3). These include xpc_retain/release, xpc_get_type (which returns
one of the XPC_TYPEs corresponding to Table 7-5), xpc_hash (used to provide a hash value of an
object for array indexing), xpc_equal (for comparing objects) and xpc_copy.

XPC Messages
Objects may be sent or received in messages. Messages are sent using one of several functions from
<xpc/connection.h>, as shown in Table 7-6:

TABLE 7-6: XPC Messaging functions in <xpc/connection.h>

FUNCTION USAGE

xpc_connection_send_message
 (xpc_connection_t connection,
 xpc_object_t message);

Send message asynchronously on
connection.

xpc_connection_send_barrier
 (xpc_connection_t connection,
 dispatch_block_t barrier);

Execute barrier block after last message
is sent on connection.

xpc_connection_send_message_with_reply
 (xpc_connection_t connection,
 xpc_object_t message,
 dispatch_queue_t replyq,
 xpc_handler_t handler);

Send message, but also asynchronously
execute handler in dispatch queue
replyq when a reply is received.

continues

c07.indd 255c07.indd 255 10/5/2012 4:16:55 PM10/5/2012 4:16:55 PM

256 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

xpc_object_t
xpc_connection_send_message_with_reply_sync
 (xpc_connection_t connection,
 xpc_object_t message);

Send message, blocking until a reply is
received, and return reply as the xpc_
object_t return value

By default, messages are sent asynchronously, and are handled by dispatch queues (i.e., GCD), as
shown in Figure 7-2. By using barriers, the programmer may provide a block to be executed when
all the messages on a particular connection have been sent. Messages may expect replies, which
are again asynchronous, though the _reply_sync function may be used to block until a message is
received.

Validate argument

Create a serializer to handle serialization of message

Call xpc_get_type to ensure argument is a connection,
and jump to xpc_api_misuse if it isn’t.

Invoke serializer to pack message

Release message reference

Enqueue message for asynchronous sending.
xpc_send_serializer calls mach_msg to send the message

_xpc_serializer_create

_xpc_serializer_pack

_xpc_connection_enqueue_async

xpc_release

FIGURE 7-2: Flow of xpc_connection_send_message

XPC messages are implemented over Mach messages and make use of the Mach Interface Genera-
tor (MIG) facility, which provides the xpc_domain subsystem. This subsystem contains messages
to check in, load, or add services, and get the name of a service, similar to the bootstrap protocol
described earlier in this chapter (XPC can be considered a subset of bootstrap, and makes use of it
internally). Mach messages and in particular MIG are detailed in Chapter 10.

XPC services
XPC services can be created in Objective-C, or in C/C++. In either case, the services are started
by a call to libxpc.dylib’s xpc_main. C/C++ services’ main is just a simple wrapper, which
invokes xpc_main (declared in <xpc/xpc.h>) with the event handler function (xpc_connection_
handler_t). Objective-C services also call on xpc_main(), albeit indirectly through
NSXPCConnection’s resume method.

The event handler function takes a single argument, an xpc_connection_t. (Objective-C wraps
this object with Foundation.framework’s NSXPCConnection.) The XPC connection is treated as

TABLE 7-6 (continued)

c07.indd 256c07.indd 256 10/5/2012 4:16:56 PM10/5/2012 4:16:56 PM

Summary x 257

an opaque object, with miscellaneous xpc_connection_* functions. In <xpc/connection.h> used
as getters for its properties, and setters for its event handler and target queue. A connection’s name,
effective UID and GID, PID and Audit Session ID can all be queried.

The normal architecture of an XPC service involves calling dispatch_queue_create to create a
queue for the incoming messages from the client and using xpc_connection_set_target_queue to
assign the queue to the connection. The service also sets an event handler on the connection, call-
ing xpc_connection_set_event_handler with a handler block (which may wrap a function). The
handler is called whenever the service receives a message. A service may create a reply (by calling
xpc_dictionary_create_reply) and send it.

A well-documented example of XPC is SandBoxedFetch, which is available from Apple Developer[4],
alleviating the need for an example in this book.

XPC Property Lists
XPC services are defi ned in their own bundles, contained in an XPCServices subfolder of its parent
application or framework. As with all bundles, they have an Info.plist, which they use to declare
various service properties and requirements:

 ‰ The CFBundlePackageType property is defi ned as “XPC!”

 ‰ The CFBundleIdentifier property defi nes the name of the XPCService. This is set to be the
same as the bundle’s name.

 ‰ The XPCService property defi nes a dictionary, which can specify the ServiceType prop-
erty (Application. User or System), and RunLoopType (dispatch_main or NSRunLoop),
which dictates which run loop style xpc_main() adopts. The dictionary may also contain the
JoinExistingSession Boolean property, to redirect auditing to the application’s existing
audit session.

 ‰ The XPCService dictionary may be used to specify additional properties, prefi xed by an
underscore. These include _SandboxProfile (which allows the optional specifi cation of
a sandbox profi le to enforce on the XPC service, as discussed in Chapter 4) and
_AllowedClients, which can specify the identifi ers of applications which are allowed to
connect to the service.

SUMMARY
This chapter discussed launchd, the OS X and iOS replacement to the traditional UNIX init.
launchd fi lls many functions in both operating systems: both those of UNIX daemons, and those of
Mach. The Mach roles will be discussed further when the concept of Mach messages is elaborated
on in Chapter 10.

The chapter ended with a review of the GUI of both OS X (Finder) and iOS (SpringBoard), in as
much detail as possible on these intentionally undocumented binaries.

c07.indd 257c07.indd 257 10/5/2012 4:16:56 PM10/5/2012 4:16:56 PM

258 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

REFERENCES AND FURTHER READING
1. launchd Sources, http://opensource.apple.com/tarballs/launchd/launchd-392.38

.tar.gz or later.

2. GSEvent iPhone Development Wiki, http://iphonedevwiki.net/index.php/GSEvent

3. Apple Developer, “Daemons and Services Programming Guide” http://developer.apple
.com/library/mac/#documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/
CreatingXPCServices.html

4. Apple Developer, “Sandboxed Fetch” http://developer.apple.com/library/
mac/#samplecode/SandboxedFetch/

c07.indd 258c07.indd 258 10/5/2012 4:16:56 PM10/5/2012 4:16:56 PM

