

Interlude: Property Lists

Property lists are an integral part of Darwin architecture, and are used system-wide as the
file format of (no) choice to store key/value based information. Apple provides basic
documentation on their use in the man page of plist(5), and the CoreFoundation Guide[2].
The latter primarily focuses on the programmatic APIs used to manipulate them into
CoreFoundation objects: Property lists are readily (de)serialized info (and out of)
CFDictionary objects - their in-memory representation (e.g. +[NSDictionary
dictionaryWithContentsOfFile:]) - and can assume several forms - XML, binary or
JSON.

XML property lists

Property lists are another legacy of NeXTSTEP (though back then plain text was preferred)
and their XML format has been attributed to Apple. The most common representation nowadays
is XML, conforming to a grammar wherein the following always hold:

The !DOCTYPE definition holds constant, with a document type definition pointing to
http://www.apple.com/DTDs/PropertyList-1.0.dtd. The URL is valid and actually holds an
XML DTD.

The XML root element is always named <plist>. It is also the only element which may
have attributes, and has a single attribute called version whose value is presently fixed
at 1.0.

Other XML elements are <key>s, but since they are not allowed attributes, the element
value serves as the key name, and the actual value follows, using one of the basic
"datatypes" shown in table 2-3:

Table 2-3: The data types allowed in property lists

type tag CF* type Holds
string CFString Strings, either ASCII or Unicode

integer CFNumber Integer numbers

real CF... Arbitrary precision numbers (float)

date CFDate A 64-bit date

array CFArray An array of any other (usually, not necessarily single) data type

dict CFDictionary A nested key/value dictionary

true
CFBoolean Boolean true/false, as value-less elements

false

Apple discourages manual editing of property list files, explicitly warning that "the tags may
change in future releases", and associating Xcode's Property List Editor with the file type. In
practice, the format hasn't changed in generations, and textual editing often proves quicker,
especially when validated by the plutil(1) utility. This useful command can be used to
validate syntax (its default, or when used with -lint), and to convert between the various
formats (using -convert [xml1/binary1/json]). It can also perform basic editing of the
plist (using -insert/replace/remove). An additional interactive utility can be found in
PlistBuddy(8).

As an example of a property list, consider the telnet.plist launch daemon property list, as
shown in Output 2-4. Note the use of plutil(1) here, which is used in order to dump the
property list in XML form, rather than its native binary representation. Although plutil(1) can
operate on property lists in place, it is generally a safer practice to have it write to standard
output, as specified by -o - :

��

&KDSWHU�����(�3OXULEXV�8QXP��7KH�
26�$UFKLWHFWXUH

Output 2-4: Displaying an XML property list

morpehus@Zephyr (~)$ plutil -convert xml1 /System/Library/LaunchDaemons/telnet.plist -o -
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Disabled</key>
 <true/>
 <key>Label</key>
 <string>com.apple.telnetd</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/libexec/telnetd</string>
 </array>
 <key>SessionCreate</key>
 <true/>
 <key>Sockets</key>
 <dict>
 <key>Listeners</key>
 <dict>
 <key>Bonjour</key>
 <true/>
 <key>SockServiceName</key>
 <string>telnet</string>
 </dict>
 </dict>
 <key>inetdCompatibility</key>
 <dict>
 <key>Wait</key>
 <false/>
 </dict>
</dict>
</plist>

Binary property lists

While fairly readable, the XML format is cumbersome for machine-processing, requiring
fairly heavy parsers and taking up a large number of bytes. It therefore makes sense to use a
less human readable but far more machine friendly format of a binary property list. This
format is used far more frequently in *OS, though XML property lists can still be seen in some
cases. Binary plists are also found in MacOS, though not as commonly as XML ones.

bplist00

Binary property list files are identifiable by a magic of bplist00 (In Base64, YnBsaX). The
file format isn't officially documented by Apple, and regarded in the man page of plist(5) as
an "optimized, opaque binary format". Output 2-5 shows the same telnet.plist example, this time
in its natural binary form:

Output 2-5: Examining a binary property list

00000000 62 70 6c 69 73 74 30 30 d6 01 02 03 04 05 06 07 |bplist00........|
00000010 07 09 0c 13 15 58 44 69 73 61 62 6c 65 64 5d 53 |.....XDisabled]S|
00000020 65 73 73 69 6f 6e 43 72 65 61 74 65 5f 10 12 69 |essionCreate_..i|
00000030 6e 65 74 64 43 6f 6d 70 61 74 69 62 69 6c 69 74 |netdCompatibilit|
00000040 79 57 53 6f 63 6b 65 74 73 5f 10 10 50 72 6f 67 |yWSockets_..Prog|
00000050 72 61 6d 41 72 67 75 6d 65 6e 74 73 55 4c 61 62 |ramArgumentsULab|
00000060 65 6c 09 09 d1 0a 0b 54 57 61 69 74 08 d1 0d 0e |el.....TWait....|
00000070 59 4c 69 73 74 65 6e 65 72 73 d2 0f 10 07 12 57 |YListeners.....W|
00000080 42 6f 6e 6a 6f 75 72 5f 10 0f 53 6f 63 6b 53 65 |Bonjour_..SockSe|
00000090 72 76 69 63 65 4e 61 6d 65 09 56 74 65 6c 6e 65 |rviceName.Vtelne|
000000a0 74 a1 14 5f 10 14 2f 75 73 72 2f 6c 69 62 65 78 |t.._../usr/libex|
000000b0 65 63 2f 74 65 6c 6e 65 74 64 5f 10 11 63 6f 6d |ec/telnetd_..com|
000000c0 2e 61 70 70 6c 65 2e 74 65 6c 6e 65 74 64 08 15 |.apple.telnetd..|
000000d0 1e 2c 41 49 5c 62 63 64 67 6c 6d 70 7a 7f 87 99 |.,AI\bcdglmpz...|
000000e0 9a a1 a3 ba 00 00 00 00 00 00 01 01 00 00 00 00 |................|
000000f0 00 00 00 16 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000100 00 00 00 ce |....|
00000104

Examining the CF's open source CFBinaryPList.c reveals a summary of the format in a
comment, as well as some struct definitions. The format is shown in Figure 2-6:

��

26�,QWHUQDOV��8VHU�6SDFH

Figure 2-6: The bplist00 file format

Applying the structure in Figure 2-6 on Output 2-5, note the following:

The trailer starts at 0xe7 (In the output, highlighted with a dull background). This can be
deduced from the fixed size of the trailer, and more easily identified by locating the
"signature" of three unused zero values, then the sort version (0), Offset IntSize (1) and
Object RefSize (1). This also shows the number of objects is 22 (0x16).

The offset table is at 0xce (In the output, highlighted with a white background). This is
indicated by the last field of the trailer. Each table entry in this particular case is (as per
Offset IntSize) one byte. The table spans until the trailer, and the top level object (at
offset 0 of the table, as indicated by the trailer, or 0xce of the file) is 0x08 - right after the
bplist00 magic.

The element at offset 0x08 is a dictionary containing 6 key references (as indicated by
0xD6). Each reference is (as per Object RefSize) 1 byte, The references are at offset table
entries 0x01 through 0x06, and their corresponding values are at 0x07, 0x07, 0x09
through 0x15 (which makes sense, as the number of objects is 0x16). Note that this
allows for a simple form of compression, as value 0x07 (i.e. at offset 0x62 - 0x09,
denoting <true/>) repeats and is therefore encoded only once.

Values shorter than 15 bytes can be encoded in the four least significant bits of the type
specifier (e.g. 0x58 ('X') for "Disabled", indicating a string (0x50) of 8 bytes. Longer
values are encoded as 0x0F, and a separate integer (0x1.) follows. In this way,
"ProgramArguments" (16 bytes) is encoded as 0x5F, followed by 0x10 0x10 (the first 0x10
specifying an integer with a length of 2^0 bytes, and the second being the actual length
(1 length byte, specifying 16 bytes).

��

&KDSWHU�����(�3OXULEXV�8QXP��7KH�
26�$UFKLWHFWXUH

bplist15 and bplist16

There are at least two other variant of binary property lists, with a magic of bplist15 and
bplist16. Unlike bplist00, there is no documentation for either format, save for some scant
comments in the aforementioned CFBinaryPList.c as to some supported types.

The bplist15 format appears to be internal to CoreFoundation, and is not present in
CFLite. It is rarely used, with one example being ApplePushService.framework's topic
subscription messages. The bplist16 format is internal to Foundation, and is used almost
exclusively in Objective-C remoting over XPC. This fact alone makes bplist16 important to
reverse engineer. The format is similar, but not compatible with bplist00, noting the following
differences:

No footer: bplist16s don't have a trailer, and the items start directly at the head of the
property list, right after the bplist16 magic, and are packed (not aligned).

More data types: As the comment in CFBinaryPlist.c states, the 1+ formats allow for UUID,
URL, UTF-8, sets, ordered sets and NULL values.

JSON property lists

With so many technologies incorporating web services, it is only natural for property lists to
also be transferred over HTTP, and serialized into the JavaScript Object Notation (JSON) format.
Though less used in the file format, it is not uncommon to see JSON-serialized plists over Apple's
HTTP-borne protocols.

Figure 2-7: The JSON file format

can also do this with simplist -j
morpheus@Zephyr (~)$ cat /System/Library/LaunchDaemons/telnet.plist | \
 plutil -convert json -o - -
{"ProgramArguments":["\/usr\/libexec\/telnetd"],"Sockets":{"Listeners":{"Bonjour":true,
"SockServiceName":"telnet"}},"Disabled":true,"Label":"com.apple.telnetd","SessionCreate":
true,"inetdCompatibility":{"Wait":false}}

SimPLISTic format

The book's companion website offers the jlutil(j) tool, which is not only free, but is
also available for *OS variants and even Linux. Another feature of this useful tool is presenting
the property list in an alternate, simpler format, with or without color. Continuing the example of
telnet.plist, in simPLISTic format it would look like:

Output 2-8: Displaying a property list in simpler form with jlutil(j)

morpheus@Zephyr (~)$ jlutil /System/Library/LaunchDaemons/telnet.plist
 Disabled: true
 SessionCreate: true
 inetdCompatibility:
 Wait: false
 Sockets:
 Listeners:
 Bonjour: true
 SockServiceName: telnet
 ProgramArguments[0]: /usr/libexec/telnetd
 Label: com.apple.telnetd

The simPLISTic format is clearer to read than cumbersome XML (or curly-braced JSON), and
is entirely isomorphic to either. When symlinked or renamed to plutil(1), jlutil(j) will
emulate plutil, so it can be used as a drop-in replacement in any scripts. Note, that
jlutil(j) can also parse bplist16 (which the original plutil(1) cannot).

��

26�,QWHUQDOV��8VHU�6SDFH

