
(C) 2012, 2016 Technologeeks.com

Hack in the (sand)Box

(The Apple Sandbox - five years later)

Jonathan Levin
http://NewOSXBook.com/
http://technologeeks.com

The Apple Sandbox

• Introduced way back in Mac OS 10.5 as “Seatbelt”
– Very naive implementation originally, bypassed and opt-in

• Revamped in Mac OS 10.7 as “The App Sandbox”
– Stronger implementation, introducing containers
– Opt-in for Apple’s own binaries and apps
– Mandatory for Mac App Store apps (but not for DMG based)

• Far stronger still in iOS
– Mandatory for all third party applications
– Evolved beyond MacOS implementation

(C) 2012, 2016 Technologeeks.com

Intro

Sandbox versions

(C) 2012, 2016 Technologeeks.com

Version OS Version Notable Features

.. OS X 10.5/iOS 1-3 Initial version, white list approach

.. OS X 10.6/iOS 4

165 OS X 10.7/iOS 5 Basic containers

220 OS X 10.8/iOS 6 Sandbox exceptions

278-300 OS X 10.9/iOS 7 IOKit get property, vnode renaming

358 OS X 10.10/iOS 8 Rootless (introduction, non-enforcing), get-task,
AMFI integration (in OS X version), kexts (kind of)

460 OS X 10.11/iOS 9 Rootless enforcement, container manager
Host special ports, kexts, OSX NVRAM finally protected
Policy moved to __DATA.__const (iOS 9.2)

592 OS X 10.12/iOS 10 Container Manager enforcement (iOS)
User data items

Intro

So Why Are We Here?
• Last actual research conducted in 2011:

– Dionysus Balazakis seminal work - “The Apple Sandbox”

• Very little further research – partial, unpublished or both

• Sandbox has evolved by leaps and bounds
– Further evolves in iOS 10 and MacOS 12
– Provides “System Integrity Protection” as of MacOS 11 (not yet iOS)

• Provides first, strongest, and sometimes last line of defense
– Tons of exploitable bugs in services and kexts blocked by sandbox
– Breaking out of the sandbox is toughest stage of jailbreaking.
– ... And eight of you here voted for this talk ☺

(C) 2012, 2016 Technologeeks.com

Intro

Plan

• Prerequisite: MACF
• MacOS (“App Sandboxing”)
• *OS (Containers)
• Reversing (MacOS, iOS implementations)
• Sandbox APIs

You’re welcome to follow along:
http://NewOSXBook.com/articles/hitsb.html

(C) 2012, 2016 Technologeeks.com

Intro

Prerequisite: MACF

• Mandatory Access Control Framework serves as substrate
– XNU’s implementation modeled after FreeBSD’s
– Compare - SELinux/SEAndroid

• Simple idea, powerful impact:
– Kernel extensions provide a “policy” and call mac_policy_register
– Policy contains “hooks” (callbacks)
– Depending on process label, callbacks get invoked
– Kernel extension gets to inspect operation arguments
– Return 0 to allow, non-zero to thwart operation
– All registered hooks must allow operation.

(C) 2012, 2016 Technologeeks.com

MACF

MACF Policy Hooks

User mode process

sysent/mach_trap_table

Syscall/trap #n
Policy Module

User Mode Daemon

Process perfoms a system call
(or mach trap)

Corresponding function in
kernel is called from table

Function calls out to Mandatory
Access Control Framework

MACF calls out to
interested policies

Policy module inspects
operation, and allows or
denies

Policy module may perform
upcalls to user mode lackey

Only if all MACF modules
approve, syscall/mach_trap will
be executed

MACF

MACF checks if any policy modules
requested to hook the particular functionality
in their policy

Additional Policy
Module...

MACF

MACF Policy Modules

• Serves as basis for virtually all of Apple’s OS Security
• Currently 5 known policy modules:

• Labels can define which policy, if any, will take effect
– Process can be execed into label with mac_execve(#380)
– posix_spawnattrs can similarly enforce sandbox
– Sandbox has own spawnattrs (for specific container or profile)

(C) 2012, 2016 Technologeeks.com

Kext Oses # Ops Purpose

Quarantine MacOS ~15-17 Gatekeeper. Sort of.

MCXALR MacOS 1 Managed Client Extensions (MDM/Parental Controls)

TMSafetyNet MacOS ~26 TimeMachine hooks on file access

AMFI All (OSX >=10.10) ~8-13 Enforce code signing, some entitlements & Mach ports

Sandbox All 130+ Confine, strangle and block Applications at every turn

MACF

Sandboxing

• Original sandbox approach – “seatbelt” – opt in:
– You’d have to ask to confined (like, want to go to jail!)
– Like its namesake, most people find it borderline troublesome.

• Contemporary sandbox approach is radically different:
– You are either containerized or you are not:

• Voluntary: because you are a responsible developer
• Semi-voluntary: Code signature or location (Apple controlled)
• Non-voluntary: Based on install location (*OS)

– If containerized, Sandbox intercepts all important operations

• Definition of important keeps increasing to include more..

• Operation assessed versus a profile, or entitlements

(C) 2012, 2016 Technologeeks.com

Sandbox

MacOS : App Sandboxing

• Sandbox no longer requires sandbox_init – but signature
– This way Apple, not developer, can enforce sandboxing
– In iOS, /var/mobile/Containers/Bundle location auto-sandboxes

• In MacOS, com.apple.security.app-sandbox sandboxes

• com.apple.application-identifier for container
– Otherwise defaults to CFBundleIdentifier from App’s Info.plist

• com.apple.application-groups (~10.7.5, 10.8.3 and later)
– ~/Library/Group Containers/…

(C) 2012, 2016 Technologeeks.com

App Sandbox

_libsecinit_setup_app_sandbox

libdispatch_init

libSystem.B.initializer

__sandbox_ms

<key>SECINITD_REGISTRATION_MESSAGE_SHORT_NAME_KEY</key>

<string>TextEdit</string>

<key>SECINITD_REGISTRATION_MESSAGE_IS_SANDBOX_CANDIDATE_KEY</key>

<bool>true</bool>

<key>SECINITD_REGISTRATION_MESSAGE_ENTITLEMENTS_DICT_KEY</key>

<dict> ... Entitlement dictionary</dict>

<key>SECINITD_REPLY_MESSAGE_CONTAINER_ID_KEY</key>

<string>com.apple.TextEdit</string>

<key>SECINITD_REPLY_MESSAGE_QTN_PROC_FLAGS_KEY</key>

<integer>10</integer>

<key>SECINITD_REPLY_MESSAGE_CONTAINER_ROOT_PATH_KEY</key>

<string>/Users/morpheus/Library/Containers/com.apple.TextEdit/Data“</string>

<key>SECINITD_REPLY_MESSAGE_SANDBOX_PROFILE_DATA_KEY</key <data>

0x00003a014c004d0.. Compiled sandbox profile...</data>

<key>SECINITD_REPLY_MESSAGE_VERSION_NUMBER_KEY</key>

<integer>1</integer>

<key>SECINITD_MESSAGE_TYPE_KEY</key>

<integer>2</key>

<key>SECINITD_REPLY_FAILURE_CODE</key>

<integer>0</key>

xpc_copy_entitlements_for_pid

_libsecinit_setup_secinitd_client

libsecinit_initialize_once

libsecinit_initializer

xpc_pipe_routine

s

e

c

i

n

i

t

d

1) Process loads libSystem.B

2) libSystem Initializer calls libsecinit

3) Libsecinit registers with securityd

4) Securityd decides whether or not

process needs to be sandboxed

5) If decision is affirmative, libsecinit

voluntarily imposes sandbox on process

App Sandbox

(C) 2012, 2016 Technologeeks.com

App Sandbox

MacOS : App Sandboxing

• Containers created at ~/Library/Containers/{CFBundleIdentifier}

• All Structured the same way:

– Container.plist: metadata (in bplist00 format)

• Identity (Unicode, Base64)

• Compiled profile (SandboxProfileData, base64)

• SandboxProfileDataValidationInfo (long dict...)

• Version (36 = MacOS 10, 38 = MacOS 11, 39 = MacOS 12)

– Data: Directory structure, mimicking user’s home directory:

• .CFUserTextEncoding

• Documents

• Library

• Music

• Desktop

• Downloads

• Movies

• Pictures

(C) 2012, 2016 Technologeeks.com

App Sandbox

MacOS : App Sandboxing

• Data directories are often symbolic links(!)

– SandboxProfileDataValidationRedirectablePathsKey limits links

• Metadata also holds entitlements, and other parameters

– SandboxProfileDataValidationEntitlementsKey

– SandboxProfileDataValidationParametersKey

iOS: Containers

(C) 2012, 2016 Technologeeks.com

iOS Sandbox

• Also allows for shared containers
– Apps with same team-id can share data

(C) 2012, 2016 Technologeeks.com

iOS 10

iOS 10 Containers

iOS: Containers

• The sandboxd has been entirely removed in iOS as of 9.x
– Still used in MacOS, primarily for tracing

• New daemon – containermanagerd – takes over
– Part of MobileContainer private framework
– Communicates with user mode (installd, etc) over XPC port
– Communicates with kernel mode (kext) over Special Port #25

• MIG message 0x13392fd4 (322514900)
• Contains sb_packbuff payload of kernel requests

(C) 2012, 2016 Technologeeks.com

iOS 10

AMFI

• Sandbox and AMFI make good bedfellows
• AMFI ensures signature, provides entitlement services
• Sandbox depends on AMFI (as of 358 in MacOS)

• iOS Sandbox uses specific entitlements:
– seatbelt-profiles – assign a particular profile to binary
– com.apple.private.security.container-required - Sandboxes built-in apps

(C) 2012, 2016 Technologeeks.com

morpheus@Zephyr(~)$ kextstat
19 2 0xffffff7f8100f000 0xd000 0xd000 com.apple.driver.AppleMobileFileIntegrity (1.0.5) <7 6 5 4 3 2 1>
22 2 0xffffff7f8101c000 0x5000 0x5000 com.apple.kext.AppleMatch (1.0.0d1) <4 1>
23 1 0xffffff7f81021000 0x17000 0x17000 com.apple.security.sandbox (300.0) <22 19 7 6 5 4 3 2

iOS Sandbox

Deconstructing Sandbox

• MacOS Sandbox.kext can serve as a good reference
– Largely same codebase, with some differences, but symbolicated

• Joker can auto-symbolicate plenty*:
– Stubs to kernel functions
– Entire MACF Policy (120+ functions!)

• Can get other functions (no names, yet) with jtool:
– grep BL.*0x | cut –dx –f2 then feedback to companion file
– About 150 additional functions revealed by this method

• Important functions (e.g. smalloc, sfree) yield rest.
– Hook_policy_syscall especially important (for mac_policy_syscall)

Reversing

* - Joker 3 can now handle split kexts from XNU 3750 +!

Sandbox MACF Policy Hooks

• Most MACF Policy hooks call cred_sb_evaluate
– 1st argument (in R0/X0/RDI) is MACF’s
– 2nd argument (in R1/X1/ESI) encodes operation number

(C) 2012, 2016 Technologeeks.com

Reversing

• Operation numbers correspond to hard-coded names

– Can also be found in older libsandbox.1.dylib
• Removed (precompiled) into 570+

– Names can be found in kext’s __DATA__CONST.__const
• Not going away since they are needed for APIs

– There are more operations than there are MACF hooks
• Some are callable from user mode by apps (e.g. AppleEvents, TCC)

(C) 2012, 2016 Technologeeks.com

Sandbox MACF Policy Hooks

Reversing

• cred_sb_evaluate calls sb_evaluate
– 1st parameter is sandbox obtained from label_get_sandbox
– Operation as 2nd Parameter
– Buffer as 3rd Parameter

(C) 2012, 2016 Technologeeks.com

Reversing

Sandbox MACF Policy Hooks

• cred_sb_evaluate derives credentials, and calls eval *
– May or may not report sandbox violations (based on argument to check)

• Evaluation first attempted against platform_profile
• Can default to specific process-defined (container) profile

* - MacOS implementation slightly different (include s csr_check, etc). iOS also inlines eval_filter int o eval

Sandbox MACF Policy Hooks

Reversing

Reversing Profiles

• Sandbox Profiles are written in tinyScheme (UGH!)
– In MacOS – plaintext, in /System/Library/Sandbox/Profiles

• Per framework profiles also exist for Apple’s frameworks

– in iOS – compiled & built-in!

• The gist:
– (version 1) (only version supported)
– (deny default) (least privilege)
– (allow ……) (selectively allow APIs)
– (deny ……) (selectively disallow APIs)

• Can apply and trace using sandbox-exec:

(C) 2012, 2016 Technologeeks.com

(version 1)
(trace "/tmp/appTrace.sb")

Profiles

Sandbox-exec

(C) 2012, 2016 Technologeeks.com

• Simple binary (300-500 lines of ASM)

• MacOS 11 adds undocumented “-t” for tracing
– Tracing broken in iOS with the removal of sandboxd �

• Closed source – but....
– Fully compatible clone at http://NewOSXBook.com/tools/sob.html
– Wil l also dump compiled profile in /tmp
– Provides first implementation of sandbox-exec for iOS!

morpheus@Zephyr (~)$ sandbox-exec
Usage: sandbox-exec [options] command [args]
Options:
-f profile-file Read profile from file.
-n profile-name Use pre-defined profile.
-p profile-string Specify profile on the command line.
-D key=value Define a profile parameter.

Exactly one of -f, -n, -p must be specified.

Profiles

Built-in Profiles

(C) 2012, 2016 Technologeeks.com

• MacOS originally had 4 “built-in” profiles
– Weren’t so useful in the first place and largely deprecated

• iOS extends that to dozens of profiles
– Can be found in kext
– Can also be found in iOS’s libsandbox.1.dylib

• AGXCompilerService ... wifiFirmwareLoader

• Built-in profiles are precompiled
– Originally, maintained by sandboxd
– In iOS 9+, maintained inside kext (__TEXT.__const)

Profiles

Containerizing Applications (iOS)

(C) 2012, 2016 Technologeeks.com

amfi_copy_seatbelt_profile_names Get <seatbelt-profiles> entitlement, if any

PE_I_can_haz_debugger

check sandbox spawnattrs

Upcall to container manager

Several validations on spawn attributes

get_signing_identifier

get_container_required_entitlement

mpo_cred_label_update_execve hook MACF calls sandbox, because it registered hook

Allows debug_mode (if boot arg was set, non-issue)

Gets application-identifier (from entitlement)

Get com.apple.private.security.container-required ent

iOS Containers

Containerizing Applications (iOS)

(C) 2012, 2016 Technologeeks.com

Validate container name No null bytes, special cases for plugins, keyboard, etc..

builtin_sandbox_create

cred_set_sandbox

Revoke privileged ports

Attach sandbox struct to kauth credentials

platform_set_container

Create executable extension Allow App to access and launch own executable

Remove access to dangerous Mach Ports

Create a sandbox object, from a builtin (precompiled) profile

Create com.apple.sandbox.containe Sandbox Extension

iOS Containers

Sandbox APIs
• Sandbox usermode APIs provided by two libraries:

– /usr/lib/system/libsystem_sandbox.dylib
• Re-exported by LibSystem.B.dylib
• Mostly direct APIs to kext

– /usr/lib/libsandbox.1.dylib
• Profile compilation
• TinyScheme implementation statically linked in
• Plenty of Scheme strings/profile definitions in __TEXT.__const

• Containment (often) performed over mac_execve()
• KEXT APIs invoked over macf_syscall()

(C) 2012, 2016 Technologeeks.com

User-Mode APIs

Sandbox APIs
• mac_syscall (#381) used extensively:

– Allows ioctl(2) style multiplexing of syscalls provided by a kext

– Generic mechanism, used by all policy modules

– On kext end, hook_policy_syscall enables multiplexing

– Different offerings in MacOS and *OS

(C) 2012, 2016 Technologeeks.com

User-Mode APIs

• Syscall implementations differ in between OSes, versions!

• Get a more accurate list with jtool’s switch detection (ARM64)

Sandbox APIs

Op Sandbox function Purpose
0-1 _set_profile[_builtin] Set a profile (=label & containment) of a process

2 _check Check if operation is allowed in confines of sandbo x

3 _note Attaches a note (memory buffer) to sandbox (offset 0x80)

4 _container_path_for_pid Retrieve container path for a given PID

5-7 _extension_issue/consume/release Issue, apply and remove a temporary exception

8-9 _extension_update_file[_with_new_type] Update/twiddle extension

10-11 _suspend/unsuspend Suspend/resume sandbox checks for PID*

13-15 _policy_syscall related... iOS, routed to container manager

16 _inspect Dump tons of great information on SB.

17 profile_dump Dumps compiled profile for a PID (Mac OS, AppleInternal** �)

19 _vtrace[|enable|disable|report] Trace operation to a buffer. Not on iOS �

21 _rootless_allows_task_for_pid Does current policy allow task_for_pid call?

User-Mode APIs

* - Don’t get excited. Process can only do it on its elf, if entitled as a sandbox-manager *and* another exception entitlement..
** - csr_check(0x01) – can be tweaked via direct acce ss to NVRAM

Sandbox APIs

• sandbox_check especially useful:
– Widely used in tweaks to gauge sandbox restrictions
– Commonly used with SANDBOX_CHECK_NO_REPORT

• Performs check silently, without any user-mode output

• Really useful for probing container XPC/file restrictions
– Much more reliable than decompiling!

• Sandbox 570+ adds sandbox_check_bulk

(C) 2012, 2016 Technologeeks.com

User-Mode APIs

Demo: sbtool

(C) 2012, 2016 Technologeeks.com

User-Mode APIs

Sandbox APIs - undocumented

• sandbox_inspect_pid super useful, but undocumented:
– Available in *OS as of somewhere in 460 (iOS 9.something)

– Implemented via __sandbox_ms (..., 0x10);
– Very valuable information on process, directly from kext

• Requires root privileges (or AppleInternal build)

(C) 2012, 2016 Technologeeks.com

User-Mode APIs

int sandbox_inspect_pid(int pid, /* in */
char **buf, /* out */
int *size); /* out */

Demo: sbtool

(C) 2012, 2016 Technologeeks.com

User-Mode APIs

Sandbox Extensions

Extensions allow exceptions to a given profile

iOS apps get the “standard extensions”:
- com.apple.sandbox.executable
- com.apple.sandbox.container
- com.apple.sandbox.application-group

(C) 2012, 2016 Technologeeks.com

User-Mode APIs

Sandbox Extensions

Apple’s App provide even more extensions for themselves:

(C) 2012, 2016 Technologeeks.com

User-Mode APIs

Extension

com.apple.security.exception.shared-preference.read-write

com.apple.sandbox.application-group

com.apple.tcc.kTCCServiceAddressBook

com.apple.sandbox.executable

com.apple.app-sandbox.read

com.apple.security.exception.mach-lookup.global-name

com.apple.security.exception.iokit-user-client-class

com.apple.security.exception.files

com.apple.sandbox.container

Sandbox Extensions

• Before sandboxing, caller can set extensions (unless forbidden)

• Extensions are issued by sandbox kext as “tokens”
• Hmac_sha1 with secret value (not exposed to user space)

(C) 2012, 2016 Technologeeks.com

User-Mode APIs

Take Aways

• If you’re even loosely interested in OSX/iOS:
– The sandbox is the first, possibly last line of security
– In iOS, provides the most important obstacle to jailbreaking
– In MacOS, containerizes AppStore Apps, and implements SIP

• http://NewOSXBook.com/articles/hitsb.html
– Source of sandbox_exec clone
– Sbtool – open source
– Ongoing documentation on profile reversing
– Fully symbolicated companion file for iOS 10 kext

(C) 2012, 2016 Technologeeks.com

Summary

Suggested Links

(C) 2012, 2016 Technologeeks.com

• http://NewOSXBook.com/ - MOXiI, 2nd Edition
– Volume III (Security & Insecurity) available for pre-order!

• http://NewOSXBook.com/forum - Open forum for MOXiI

• http://Technologeeks.com/OSXRE - Related Training

