OS X Resource Management — MacSysAdmin.se 2015

Resource Management in OS X

Jonathan Levin

NewQOSXBook.com
Technologeeks.com - @Technologeeks

Resource Management

Resource Management

* Problem statement:

... One machine

.. Finite resources

... Seemingly infinite clients (users, processes)

.. And they all want everything to themselves.

Notes by Jonathan Levin, http://NewOSXBook.com

OS X Resource Management — MacSysAdmin.se 2015

Resource Management

Resource Management

* Resources:

CPU: Processor(s) on the system, including cores/hyperthreads

RAM: Physical memory

Disk: Storage —HDD or Flash

Network: NFS/SMB, remote hosts, RPC, bandwidth

CPU Management

Resource Management:: CPU

* OS X distinguishes between logical and physical CPUs
— Physical: A processor or processor core
— Logical: Hyperthread (Core i7)

« Hostinfo(8) will tell you how many processors
— Updated in 10.10 to finally match modern (post 80486) CPUs ©

morpheus@zephyr (~)$ hostinfo
Mach kernel version:
Darwin Kernel Version 14.3.0: Mon Mar 23 11:59:05 PDT 2015;
root:xnu-2782.20.48~5/RELEASE_X86_64
Kernel configured for up to 4 processors.
2 processors are physically available.
4 processors are Tlogically available.
Processor type: x86_64h (Intel x86-64h Haswell)
Processors active: 0 1 2 3
Primary memory available: 8.00 gigabytes
Default processor set: 196 tasks, 796 threads, 4 processors
Load average: 0.92, Mach factor: 3.07

Notes by Jonathan Levin, http://NewOSXBook.com

OS X Resource Management — MacSysAdmin.se 2015

CPU Management

CPU Monitoring

e Basic option: top(1)
— Aggregate CPU statistics, but does allow “o-cpu” sort

» Dtrace scripts exist, but aren’t (in this case) overly useful:

morpheus@zepyhr(~)$ man -k cpu | grep DTr

cpuwalk.d(1m) - Measure which CPUs a process runs on. Uses DTrace
dispqlen.d(1m) - dispatcher queue length by CPU. Uses DTrace
runocc.d(1m) - run queue occupancy by CPU. Uses DTrace
sampleproc(1m) - sample processes on the CPUs. Uses DTrace

* NewOSXBook.com’s procexp(1) goes over the top:
— Per CPU monitoring using “1” (like Linux top)
— Also works in iOS (jailbroken, of course)

CPU Management

Resource Management:: CPU

» Apple developers are expected to adopt the Apple model:
— Grand Central Dispatcher handles threading
— XPC handles IPC, services on demand, and isolation

* Model for most apps is that of thread pools

— Kernel provides “work queues” on demand
Programmers are discouraged from creating own threads
Instead, programmers create or use “dispatch queues”
Programs assign tasks to queues, specifying order/dependencies
Queues mapped to worker threads internally by GCD.

Notes by Jonathan Levin, http://NewOSXBook.com

OS X Resource Management — MacSysAdmin.se 2015

CPU Management

CPU::Affinity Linuc. taskset

» Apple doesn't provide utils for processor affinity
— In fact the view is: don't bother. Use GCD. We do the magic

* The Mach APIs are intentionally crippled (not supported)
.. Can only assign threads to processor sets ...

.. The thread_assign mach message is unsupported

.. There’s just one processor set (PsetO, the default)

.. Processor set creation is unsupported.

Still this way in XNU32xx, but may (someday) change?

« Stopping/starting a processor is simple (but not useful)

CPU Management

CPU::Management

» Basic interface provided is the process priority

* OS X, like all UN*X provides nice(1)/renice(8)
— Processes run at implicit priority of “0”
— Users can be nice and give up up to 20 levels of priority
— Root user can be not-so-nice and boost up to 20 levels
— Root user can also dynamically renice value for others

* The real picture is a bit more complicated than this

Notes by Jonathan Levin, http://NewOSXBook.com

OS X Resource Management — MacSysAdmin.se 2015

CPU Management

The top 25% of the priorfty range (LAXPRL - (NRQS / &) + 1
s aliocated for real tme threads. Mach defines RTQUEUES here,
which are threads whose policy is set 1o TH_MODE_REALTIME.

BASEPRI_REALTIME 96

MAXPRI_KERNEL 85
The next 12.5% of the priority range (BASEPRI_REALTIME - (XRQS / 8))
s allocated for kemel priorities
MINPRI_KERNEL 80
MAXPRI_RESERVED | 79
The next 12.5% of the priority ronge (MINPRI_KERNEL - (NRQS / 8))
s reserved for system
MINPRI_RESERVED 64
MAXPRI_USER 63
Whever is ieft after MINPRI_RESERVED (i.e., 50% of the priority range)
s left for the plebes
52
51 [+20 |
BASEPRI_CONTROL a8 Tasks given roles of CONTROL, FOREGROUND
or BACKGROUND [giscussed under "The Mach
BASEPRI_FOREGROUND | 47 Implementation.” later) enjoy & higher priority
than the default
BASEPRI_BACKGROUND | 46

BASEPRI_DEFAULT rz: rc t nice{2) range

n +20 |

0

MINPRI, MINPRI_USER ro

CPU Management

CPU::Management

* Apple doesn't tell you about process_policy
— Undocumented, non POSIX system call, #323

PROC_POLICY_ Behavior
BACKGROUND Not supported yet (at least not on OS X)
BOOST Set an IMPORTANT or DONATION
HARDWARE_ACCESS Not supported yet
RESOURCE_USAGE Only supports CPU but will likely be expanded for

WIRED/VIRTMEM, DISK, NETWORK and POWER
RESOURCE_STARVATION How to handle low resource situations
APPTYPE Change application behavior

— Also settable via Mach’s task_policy_set (requires task port)
— Command line: taskpolicy(8) and taskinfo(l)

Notes by Jonathan Levin, http://NewOSXBook.com

OS X Resource Management — MacSysAdmin.se 2015

CPU Management

CPU::Management Linux:. cgroups

« XNU-205x (and later) support ledgers .

* XNU-24xx provides thread level QoS
— Leaky bucket model for continuous service class, allows bursts

« XNU-27xx extends with vouchers, banks and ATMs

* XNU-27xx also allows grouping tasks into coalitions
— Ledger can be assigned to coalition, thereby pooling resources
— XNU-32xx extends coalitions by allowing different types

* APIlis entirely undocumented
— Expect a new tool soon to monitor and possibly control ledgers
— A lot more detail on that in MOXil 2" Ed

RAM Management

RAM management

Physical memory (RAM) is also a limited resource
— Machine has large, but still finite RAM, usually from 2-16GB
— Processes work with Virtual Memory, allowing up to 128TB

Fortunately:
— Most processes don't use that big an amount of memory
— We can (usually) rely on swap

Unfortunately:
— Some processes actually need tons of memory
— Swap is finite (and in iOS — not available!)

Misconception: It's all about maximizing free memory

Notes by Jonathan Levin, http://NewOSXBook.com

OS X Resource Management — MacSysAdmin.se 2015

RAM Management
morpheus@zephyr (~)$ vm_stat
Mach Vvirtual Memory Statistics: (page size of 4096 bytes)
Pages free: 406153. # Free, as 1in entirely unused
Pages active: 489115. # In use
Pages inactive: 545971. # Next to be cleared
Pages speculative: 131636. # In memory, but read-ahead
pPages throttled: 0.
Pages wired down: 449851. # Resident and can’t be evicted
Pages purgeable: 108016. # Automatically cleared on Tow mem
"Translation faults": 39723111. # Page faults
Pages copy-on-write: 411043. # Implicitly shared
pPages zero filled: 21050217. # anonymous clean
Pages reactivated: 19409086. # Wwere inactive, now active
Pages purged: 4211760.
File-backed pages: 653981. # mmap(), will commit to files
Anonymous pages: 512741. # malloc(), will commit to swap
Pages stored in compressor: 162832. # 10.9 and later:
Pages occupied by compressor: 73847. # Memory Compressor
Decompressions: 8951036. # statistics
compressions: 20099788.
Pageins: 1941796. # count of page ins from filesys
Pageouts: 133969. # or page outs to filesys
swapins: 2160243. # of in from swap
Swapout 5282556. # or out to swap

RAM Management

Classifying Memory

TABLE 4-10: Physical Page States

PAGE STATE APPLIES WHEN

Free Physical page is not used for any virtual memory page. it may be instantly
reclaimed, if the need arises.

Active Physical page is currently used for a virtual memory page and has been recently
referenced. It is not likely to be swapped out, unless no more inactive pages
exist. If the page is not referenced in the near future, it will be deactivated.

Inactive Physical page is currently used for a virtual memory page but has not been
recently referenced by any process. It is likely to be swapped out, if the need
arises. Alternatively, if the page is referenced at any time, it will be reactivated.

Speculative Pages are speculatively mapped. Usually this is the result of a guessed alloca-
tion about possibly needing the memory, but it is not active yet (nor really inac-
tive, as it might be accessed shortly).

Wired down Physical page is currently used for a virtual memory page but cannot be paged
out, regardless of referencing.

Speculative

: age“"“y %

mlock, vm wire Timeout

Wired munlock, vm unwire Active Page access Inactive

Notes by Jonathan Levin, http://NewOSXBook.com

OS X Resource Management — MacSysAdmin.se 2015

Swapping

* Basic idea:

Use disk as backing store for RAM

When RAM is low, take least recently used RAM, dump to disk

Reuse pages for new RAM requirements

When swapped RAM is needed, swap in, dump someone else

OS X swaps to path specified by vm. swapfileprefix sysctl
 Basic statistics kept in vm.usage
e Old dynamic_pager trick doesn’t work anymore

RAM Management
Swapping
* Advanced idea:
RAM
— Use disk as backing store for RAM
compress

When RAM is low, take least recently used RAM, dump-te-disk-

Reuse pages for new RAM requirements
decompress/compress

When swapped RAM is needed;swap-in, dump someone else

OS X compresses by vm. compressor_mode sysctl (read-only)
 Basic statistics kept in vm. compressor_*

Notes by Jonathan Levin, http://NewOSXBook.com

OS X Resource Management — MacSysAdmin.se 2015

RAM Management

Memory Pressure

* A memory pressure occurs when free memory is low
— Actual free memory is in “memorystatus” value, as %

» Kernel notification gets sent to willing listeners*
— Process may decide to respond by freeing memory
— Processes may preempt this by classifying memory as purgeable

» Kernel will purge memory, and flush caches

* When that's not enough, memorystatus/jetsam kick in

— Memorystatus (OS X): Gently terminates (idle-exits) processes
e Use dmesg | grep memorystatus

— Jetsam (i0S): Jettisons (evicts) processes forcefully
e /Library/Logs/CrashReporter/LowMemory-YYYY-MM-DD. .

* - Processes must opt-in to low memory notifications. AppKit/UIKit frameworks in Apps do so automatically

RAM Management

Memory Pressure

» Apple’s memory_pressure(1) (10.9+) can be used to:
— View memory statistics
— Simulate memory pressure

morpheus@zephyr (~)$ memory_pressure
The system has 2147483648 (524288 pages with a page size of 4096).

Stats:
Free, purgeable and purged..

Swap I/0:
Swap in, out

Page Q counts:
Inactive/Active/Speculative/Throttled

Compressor Stats:
Compressor

File I/0:
File Mappings

System-wide memory free percentage: ..%

Notes by Jonathan Levin, http://NewOSXBook.com

OS X Resource Management — MacSysAdmin.se 2015

RAM Management

Viewing memory with procexp

|Memory Status (%free) |

Process malloc
08:07:19 Up 05:41:09 Load Average: 2.81 2.31 2.21 172 processes
: 4/4 activg 5.39% User, 35.60% System, 59.02% Idle
3 111M Free+ 8077M Used (Active: 1062M + Inactive: 3258M + Wired: 3408, Comp: 349M) 120M purgeable
M

Memstatus: 54 Comp: 77968M , Decomp: 167214M File: 3341M Anon: 1074M Throttled:

Swap: 1475M Free + 572M U B -
TP R FPIIIITM Compressor statistics

iFi: Connected to MacSysAdmin, RSSI: -53 i1 h
Batt: 100% (on AC Power, Not Charging) File cache

501 [|a788 1 Imdworker || 3 | 4 6764 (32 28] s [18foxfss]l ee.03 | os:04:a1 | 9

Proc memory band:
0-20, lower values
get idle exit first

Experiment:

create a 40 MB file, 4K at a time, based on pseudo random data
morpheus@zephyr (~)$ dd if=/dev/urandom of=~/foo bs=4096 count=10240

.. File cache will increase
morpheus@zephyr rm ~/foo
.. File cache purges automatically when inode is unlinked

ulimit(1)

* An ounce of prevention is worth a pound of cure
* Run before executing command (usually in shell, builtin)

* Any user can employ to restrict, only root can unrestrict

morpheus@zephyr (~)$ ulimit -a

core file size (blocks, -c) 0

data seg size (kbytes, -d) unlimited
file size (blocks, -f) unlimited
max locked memory (kbytes, -1) unlimited
max memory size (kbytes, -m) unlimited
open files (-n) 256

pipe size (512 bytes, -p) 1

stack size (kbytes, -s) 8192

cpu time (seconds, -t) unlimited
max user processes (-u) 709
virtual memory (kbytes, -v) unlimited

e Setin launchd.plist(5) using soft/HardrResourceLimits

Notes by Jonathan Levin, http://NewOSXBook.com

11

OS X Resource Management — MacSysAdmin.se 2015

I/0 Management

Disk Monitoring

Apple’s top (1) will (kind of) show you disk statistics
— Aggregate statistics only, not per process

The jostat(8) tool improves by providing throughput

morpheus@zephyr (~)$ jostat
disk0o cpu load average
KB/t tps MB/s us sy id 1m S5m 15m
83.76 93 7.58 10 15 75 1.43 1.36 1.41

Activity Monitor is great, but requires GUI

procexp (1) provides Activity Monitor-like stats, in CLI:
— Aggregate statistics, and per process
— New Delta Mode to see disk throughput

I/0 Management

Disk Monitoring

» The Dtrace facility provides MUCH better tools

morpheus@zephyr (~)$ man -k disk | grep DTra
bitesize.d(1m) - analyse disk I/0 size by process. Uses DTrace

diskhits(1m) disk access by file offset. Uses DTrace
hotspot.d(1m) print disk event by location. Uses DTrace
iopattern(1lm) print disk I/0 pattern. Uses DTrace

iopending(1m) plot number of pending disk events. Uses DTrace
iotop(1m) display top disk I/0 events by process. Uses DTrace

seeksize.d(1m)
bitesize.d(1m)

print disk event seek report. Uses DTrace
analyse disk I/0 size by process. Uses DTrace

diskhits(1m) disk access by file offset. Uses DTrace
hotspot.d(1m) print disk event by location. Uses DTrace
iopattern(1lm) print disk I/0 pattern. Uses DTrace

iopending(1m) plot number of pending disk events. Uses DTrace
iotop(1m) display top disk I/0 events by process. Uses DTrace

seeksize.d(1m) print disk event seek report. Uses DTrace

» Dtrace is super useful, but probes can be super heavy

Notes by Jonathan Levin, http://NewOSXBook.com

12

OS X Resource Management — MacSysAdmin.se 2015

Monitoring individual file access

Presently open Files:

e Apple’s 1sof (1) and fuser(1)

e procexp [all|p7id] fds

I/0 Management

Monitoring individual file access

On access monitoring:

« DTrace scripts (heavy)

* Apple’s fs_usage (1)

— Uses kdebug, misses nothing (but exclusive use, TMI)

» Can also use auditing

¢ NewOSXBook's filemon for OS X and iOS:
— Really simple (but useful) FSEvents client
— Clones /dev/fsevents, listens for notifications
— All important filesystem operations relayed, post factum
— Not 100% reliable due to FSEvents being lossy

I/0 Management

Notes by Jonathan Levin, http://NewOSXBook.com

OS X Resource Management — MacSysAdmin.se 2015

Network Management

Network Monitoring & QoS

* Rogue applications (or users) can encumber bandwidth

e Can usually solve this at network level
— Requires QoS equipment or centralized firewall rules

* OS X has powerful network filtering capabilities
— Useful for both ingress and egress
— Kind of documented
— Nobody actually reads the manual pages

Network Management

Network Monitoring

Apple’s Tools:
- netstat(l)
- nettop(1l)
— Activity Monitor

Or tools from http://NewOSXBook.com/:
— Isock — for OS X/iOS
- procexp all sockets, or full screen with network view

Programmatically:
- com.apple.network.statistics kctl socket
- Requires special entitlement (enforced as of 10.11)

Notes by Jonathan Levin, http://NewOSXBook.com

14

OS X Resource Management — MacSysAdmin.se 2015

Network Monitoring & QoS

* Ingress management:
— Useful on servers
— Filter unwanted connected (a.k.a Firewalling)
— Enforce bandwidth constraints to control/mitigate DoS

* Egress management:
— Useful on client machines
— Can restrict access to unwanted sites
— Can control bandwidth

Network Management

Network Management & QoS

* Pre 10.8: ipfw

— Command line utility: ipfw(8)

e Asof 10.8: pf

— Command line utility: pfct1(8)

* In any version: dummynet
— Command line utility: dnct1(8)

— Reference: dummynet (4)
— In a nutshell: Set up pipes, set bandwidth/rules, and assign flows

Network Management

Notes by Jonathan Levin, http://NewOSXBook.com

OS X Resource Management — MacSysAdmin.se 2015

Network Management

Network Management & QoS
| %) 3] a

Acknowledgments.pdf Apple Bluetooth Bluetooth Explorer HemeKit Accessory
Guidelines Validation Simulator
A 2 ' %
|ORegistryExplorer License.pdf Network Link PacketLogger

Conditioner.prefPane

=

Ca |] < e Network Link Conditioner Q [
Printer Simulator
Profile: | Wifi <]
5 ¥ DNS Delay: None
® Downlink Uplink
T Network Link Bandwidth: 40 mbps Bandwidth: 33 mbps
Conditioner Packeis Dropped: 0% Packets Dropped: 0%
Delay: 1 ms Delay: 1 ms

ore [Jon

,

[. Click the lock to prevent further changes. Manage Profiles

Profiling Tools

—

Instruments

» Suite of profiling/instrumentation tools
— Most advanced set of tools known to man (or at least yours truly)

“—2x32e

Blank Activity Monitor Allocations. Automation Cocoa Layout Core Animation
l - A\ R : \.-—’
L
Core Data Counters Dispatch Energy File Activity GPU Driver
Diagnostics

» Custom tools can be built using DTrace probes

Notes by Jonathan Levin, http://NewOSXBook.com

16

OS X Resource Management — MacSysAdmin.se 2015

Profiling Tools

iprofiler(1)

* The lesser known sibling of Instruments
* CLI only, recording only, no parsing/displaying capability

» Useful when run from a shell script

* - (Or on a jailbroken iOS device)

Profiling Tools

Process Accounting

Not on by default, but you can easily enable:

root@zephyr(~)# mkdir /var/account
root@zephyr(~)# touch /var/account/acct
root@zephyr(~)# accton /var/account/acct

Statistics can then be gather with sa(8)
Call accton(8) again with no arguments to disable

Also useful for enabling Tastcomm(1)

Notes by Jonathan Levin, http://NewOSXBook.com

17

OS X Resource Management — MacSysAdmin.se 2015

Auditing

* Don’t underestimate the power of auditing
— Usually intended for security purposes
— Also useful for constant watch of system operations

* OS X utilizes Solaris’s OpenBSM, almost to the letter

root@zephyr(~)# 1s -1 /etc/security

total 32

-r--r--r-- 1 root wheel 611 Sep 9 2014 audit_class
Slfemsmmoss 1 root wheel 373 Jul 1 12:51 audit_control
-r--r--r-- 1 root wheel 26649 Sep 9 2014 audit_event
Slfemsmmoss 1 root wheel 77 Sep 9 2014 audit_user

-r-xr-xr-x 1 root

bash-3.2# 1s -1 /var/audit/

total 19040

-r--r----- 1 root wheel 2109592 oct 1 05:05 20151001090430.20151001090548
-r--r----- 1 root wheel 2111225 oct 1 05:10 20151001090548.20151001091012
-r--r----- 1 root wheel 1296707 oct 1 05:14 20151001091012.not_terminated

Trwxr-xr-x 1 root

wheel

wheel

1326 Sep 9 2014 audit_warn

40 oct 1 05:10 current ->

Profiling Tools

/var/audit/20151001091012.not_terminated

Power Management

Oh y and « « « (One more thing ©)

* Power is also a resource
— Especially in portable devices

» Apple provides pmset (1) to control power management
— Try pmset —g

* Prevent sleep by setting IOPMAssertions — caffeinate(8)
- procexp’s ‘p’ ower statistics will tell you if assertions are active

» To check your Macbook’s battery life:

morpheus@zephyr (~)$ ioreg -1 -w 0 | grep Capacity
|] "MaxCapacity" = 6357
|] "CurrentCapacity" = 6355
|| "LegacyBatteryInfo" =
{"Amperage"=0,"Flags"=5,"Capacity"=6357,"Current"=6355, "voltage'"=8507,
"Cycle Count"=283}
|] "DesignCapacity" = 7150

Notes by Jonathan Levin, http://NewOSXBook.com

18

OS X Resource Management — MacSysAdmin.se 2015

Advertisement ©

Finally..

» Check out http://NewOSXBook.com/ for good stuff*
— Mostly intended for developers, but contains plenty of tools
— The forum is always open for questions

» MOXil 2" Edition will be out soon!

— Not the book you see on Amazon.
Will reflect OS X 10.11 and iOS 9 — huge leap from 1t ed 10.7/5.0
Tons more detail about, well.. Everything.
Two volumes — Vol 1 (User mode) and Vol 2 (Kernel mode) — 2016
(Twitter: @Technologeeks or NewOSXBook.com’s rss feed)

* Training/Consulting on all (not just OSX) internals
— http://www.technologeeks.com/

* - And http://NewAndroidBook.com/ for equally good stuff, but for the other operating systems..

Notes by Jonathan Levin, http://NewOSXBook.com

