

Corpses (Darwin 15)

Although Darwin fully supports core dumps, there are several reasons why they are
undesirable. Core dumps take up relatively large amounts of disk space (hundreds of megabytes
or more per dump). This can be a concern, especially on i-Devices. Additionally, they may
contain sensitive information (which is why there is a sugid_coredump sysctl(2) MIB). Core
files also quickly grow stale, especially when created by suicidal processes which are frequently
restarted. Crash reporters and debuggers often need access to a core only briefly, to perform
post-mortem analysis tasks and file a "forensics reports" - after which the core file, no longer of
value, becomes a nuisance.

Darwin 15 (XNU-3248) introduces the notion of corpses. As explained in XNU's
osfmk/corpses/corpse.c, a corpse captures the process in its state post death, after all of its
resources - descriptors and Mach ports - have all been released. The corpse only holds to the
process memory image and runtime statistics, allowing the crash reporting frameworks to
inspect the image for backtrace construction, leak detection, resource usage, and other analysis
tasks. The corpse still takes up the memory of the original process, which is why the system
limits the maximum number of concurrent corpses to the hard-coded value of
TOTAL_CORPSES_ALLOWED (presently #defined to be 5 in task_corpse.h). Corpse functionality
can also be entirely disabled via the -no_corpses boot-argument.

When a process is killed as a result of some exception, its exit processing logic
(proc_prepareexit in bsd/kern/kern_exit.c) fires an EXC_CRASH exception message. If the
exception is not handled, a corpse is automatically created and populated with
TASK_CRASHINFO_* kcdata items (as defined in osfmk/kern/kcdata.h). The underlying task is
marked as a PENDING_CORPSE, preventing it from being fully terminated. Another exception
message, EXC_CORPSE_NOTIFY (see Listing 12-8) is sent, and the corpse is maintained until
the message is handled.

The kcdata is a proprietary data format, described and explained in osfmk/kern/kcdata.h to
be "a self-describing data serialization format". It is also used for other cases wherein the kernel
needs to export data to user space, most notably stack snapshots, which have traditionally used
a proprietary (and unstable) data format. Data items can be serialized not just with the standard
type/length/value, but also with a textual description, enabling forward-compatibility with newer
item-types, and providing clients with an ability to display items along with their semantics. The
kcdata format is also suitable for serializing structures and container-based data.

The task MIG subsystem (from Table 12-7) has been updated as of XNU-3789 (Darwin 16)
to support corpses: The task_generate_corpse (#3442), and the
task_map_corpse_info[_64] calls (#3443/3450) can be used on a given task's send right,
with the latter set useful for obtaining the corpse data. Apple's crash reporter (described later)
can harvest the corpse information and embed in its its crash report, operating directly on the
corpse data, saving it considerable time by already including much of the required crash data.

Assisted Suicide

There are times when a program might want to voluntarily abort and create a crash dump.
Traditionally, this is done with the C assert() macro, which takes a logical expression as an
argument, and triggers a program abort(3) if the assertion has failed. Such assertions can also
be set to #define to nothing in production code.

Darwin offers _os_crash as one of the many undocumented os_* exports from libSystem.
The os_crash function (implemented in libsystem_c.dylib) allows an application to achieve
similar functionality to abort(3) on failure. The trick is, however, that by default the function is
effectively inert, and allows the program to complete execution. Callers are expected to override
os_crash_callback first, providing their own function, which will in turn be called by
os_crash. A good example of how Apple uses this internally can be found in launchd(1), as
shown in Listing 15-49:

Listing 15-49: launchd(1)'s use of the os_crash() facility

_my_crash_callback:
void my_crash_callback (char *CrashString) {
10000acf0 STP X29, X30, [SP, #-16]!
10000acf4 ADD X29, SP, #0 ; R29 = SP
10000acf8 BL _will_abort_with_reason(c) ; 0x100026910
 _will_abort_with_reason(CrashString);
 }
 ...
_main:
10000acfc SUB SP, SP, 288 ; SP -= 0x120 (stack frame)
 ...
 _os_crash_callback = my_crash_callback;
10000ad18 LDR X8, #201576 ; X8 = *(10003c080) = libSystem.B.dylib::__os_crash_callback
10000ad1c ADR X9, #-44 ; _my_crash_callback ; R9 = 0x10000acf0
10000ad20 NOP
10000ad24 STR X9, [X8, #0] ; *libSystem.B.dylib::__os_crash_callback = my_crash_callback
...
 ; Example voluntary crash: failure to call proc_disable_wakemon
 if (proc_disable_wakemon() == -1) {
10000aebc BL libSystem.B.dylib::_proc_disable_wakemon ; 0x10002dc30
10000aec0 CMN W0, #1 ;
10000aec4 B.EQ 0x10000b174 ;
 _os_assert_log(* __error());
10000b174 BL libSystem.B.dylib::___error ; 0x10002d2c4
10000b178 LDRSW X0, [X0] ; R0 = *(__error)()
10000b17c BL libSystem.B.dylib::__os_assert_log ; 0x10002d330
 _os_crash();
10000b180 BL libSystem.B.dylib::__os_crash ; 0x10002d360
10000b184 HALT (self referential branch)
}
...
__will_abort_with_reason(c):
void _will_abort_with_reason(char *Reason) {
100026910 STP X29, X30, [SP, #-16]!
100026914 ADD X29, SP, #0 ; R29 = SP
 (void) abort_with_reason(OS_REASON_LIBXPC, // uint32_t reason_namespace
 1, // uint64_t reason_code
 Reason, // const char *reason_string
 0); // uint64_t reason_flags
100026918 MOV X8, X0 ; X8 = X0 = ARG0
10002691c ORR W0, WZR, #0x7 ; R0 = 0x7
100026920 ORR W1, WZR, #0x1 ; R1 = 0x1
100026924 MOV X2, X8 ; X2 = X8 = ARG0
100026928 MOVZ X3, 0x0 ; R3 = 0x0
10002692c BL libSystem.B.dylib::_abort_with_reason ; 0x10002d3b4
}

Note the flow in the previous listing: When _os_crash is invoked at any time during
program flow, my_crash_callback (0x10000acf0) gets called. It, in turn, goes to call a
wrapper for the abort_with_reason, itself wrapping the abort_with_payload system call.
The system call (#521) is a brand new one - added in Darwin 17, and allows its caller to specify
any one of 21 presently defined "reason namespaces", a code and a reason, as well as flags,
privately #defined in XNU's bsd/sys/reason.h. Listing 9-25 showed some the reason code used
by Jetsam, which uses namespace #1. There are quite a few flags, but the ones allowed from
userspace are masked to be OS_REASON_FLAG_CONSISTENT_FAILURE (0x40),
.._ONE_TIME_FAILURE (0x80) and .._NO_CRASH_REPORT (0x2).

The system call is marked as noreturn - the calling process will be terminated with a
SIGABRT, so in some respects this is in-line with the classic UN*X behavior. Apple no doubt will
expand this mechanism to other daemons, likely enhancing its functions and further integrating
it with the corpse facility.

The following listing demonstrates how the interested reader may make use of os_crash
as well:

Listing 15-50: A simple example of using os_crash

#include <stdio.h>

// Supply own defines here
typedef void (*crash_func)(char *);
extern void _os_crash(char *reason);
extern crash_func _os_crash_callback;

// From XNU's libsyscall/wrappers/terminate_with_reason.c
extern void abort_with_reason (uint32_t reason_namespace,
 uint64_t reason_code,
 const char *reason,
 uint64_t flags);

int death = 0;
void foo(char *ReasonString)
{
 printf("FOO! %s\n", ReasonString);
 if (death == 2) abort_with_reason(5,0xdead, ReasonString, 0);

}
void main (int argc, char **argv) {

 if (argc < 2) {
 fprintf(stderr,"Let's not die prematurely, eh? I need 0, 1 or 2\n");
 exit(1);}
 death = atoi(argv[1]);

 if (death) { _os_crash_callback = foo; }

 _os_crash("Oopsie?");
 printf("..I will survive..\n");

}

#if 0

 Example behaviors of running the above program:

Chimera morpheus$./test 0 # No callback = no crash
..I will survive..
Chimera morpheus$./test 1 # callback = user gets to trap, still no crash
FOO Oopsie?
..I will survive..
Chimera morpheus$./test 2 # callback + abort
FOO Oopsie?
Abort trap: 6

#endif

Crash Reporting

As explained earlier in Chapter 12, one of Mach's most unique design features is exception
handling via messages. This enables the installation of an exception handler at any one of three
levels - the faulting thread, task or host, and can even be extended for handlers on remote
nodes. This is used by Apple to trap program crashes, and produce Crash reports. The dedicated
ReportCrash (internally, the "CrashCatcher") indicates in its Launch plist that is an
ExceptionServer, which tells launchd to forward any messages on the host exception port
to it. Upon receiving an exception message, ReportCrash analyzes the process (or, as of Darwin
16, process corpse), and generates a standardized crash report*.

Indications of crashes (Path of crashing program and Date of crash only) are kept in
property lists in the user's $HOME/Library/Application Support/CrashReporter. The crash logs
themselves are put in /Library/Logs/DiagnosticReports/processName_timestamp_hostName.crash.
The crash reporter can be controlled by means of two per-user (~/Library/Preferences) property
lists. Xcode's "Additional Tools" download provides a GUI front-end to these property lists in its
Utilities/CrashReporterPrefs.app, shown in Figure 15-51:

Figure 15-51: XCode's Additional Tools CrashReporterPrefs

Another daemon - SubmitDiagInfo(8) picks up crash reports and submits them to Apple (if
the user opted in to this feature. An interesting note on this daemon is that it can also
SubmitToFolder (i.e. copy report to another local folder). This was exploited by Lokihardt to
achieve an arbitrary directory modification - and an escalation of privileges (CVE-2016-1806,
detailed in III/12).

Apple documents crash reporting in TN2123[9], although the crash report log format since
that time - the technote details version 5 (from Darwin 9), but by Darwin 17 the report version is
12. Listing 15-52 shows a sample crash report:

* - Android has a similar facility is debuggerd, which generates "tombstones", but its implementation is different and
involves locally catching the fatal signal, and sending an IPC message to the daemon.

http://developer.apple.com/technotes/tn2004/tn2123.html

