
Contents at a glance

Part I: Defensive Techniques and Technologies

The missing documentation for Apple's proprietary security mechanisms

1. Authentication

2. Auditing (MacOS)

3. Authorization - KAuth

4. MACF - The Mandatory Access Control Framework

5. Code Signing

6. Software Restrictions (MacOS)

7. AppleMobileFileIntegrity (MacOS 10.10+, iOS)

8. Sandboxing

9. System Integrity Protection (MacOS 10.11+)

10. Privacy

11. Data Protection

Part II: E pur si rompe

A detailed exploration of vulnerabilities and their exploits

12. MacOS: Classic vulnerabilities in 10.10.x and 10.11.x

13. iOS: Jailbreaking

14. evasi0n (6.x)

15. evasi0n 7 (7.0.x)

16. Pangu Axe (7.1.x)

17. XuanYuan Sword (8.0-8.1)

18. TaiG (8.0-8.1.2)

19. TaiG (8.1.3-8.4)

20. Pangu 9 (9.0.x)

21. Pangu 9.3 (9.2-9.3.3)

22. Pegasus (9.0-9.3.4)

22ò. Phœnix (9.0-9.3.5)

23. mach_portal (10.1.1)

24. Yalu (10.0-10.2)

25. async_wake (11.0-11.1.2) and the QiLin Toolkit

Appendix A: MacOS Hardening Guide

Appendix B: Darwin 18 (beta) Changes

B
Darwin 18 (Beta) Changes

v1.6 of this work is being updated to reflect the numerous security changes introduced by
Apple in Darwin 18 (MacOS 14/[iOS/TvOS] 12/WatchOS 5). These changes, primarily in code
signing and its enforcement, are still in beta at this point (June 2018) and therefore subject to
change. From initial examination, however, it is quite clear where Apple is going with them. This
appendix seeks to provide a list of the changes visible from analyzing the binaries. This list is by
no means comprehensive, and cannot be made so until the sources of XNU 49xx and higher are
published by Apple, in or after September 2018.

Mandatory Access Control (MACF)

A new MACF Policy, AppleSystemPolicy (com.apple.SystemPolicy), is now in use in
MacOS. The policy (identified as 'ASP') hooks mac_proc_notify_exec_complete (new in
this version), and the mmap(2) hook. It makes upcalls to /usr/libexec/syspolicyd over
HOST_SYSPOLICYD_PORT (i.e. host special port #29). The daemon (discussed in Chapter 6),
now also provides MIG subsystem 18600, with two messages. The messages are used for
notify_32bit_exec and notify_32bit_mmap. The daemon is likely responsible for
popping up an alert, as Apple has indicated that MacOS 14 is the last version to support 32-bit
binaries. Its database (/var/db/SystemPolicy) is still surprisingly unrestricted by SIP as of beta 2.

MACF Hooks

In addition to mac_proc_notify_exec_complete discussed above,
mac_vnode_check_trigger_resolve is also defined, and is greedily claimed by the
Sandbox.kext. Triggers are discussed in Volume II (in the chapter dealing with VFS).

Code Signing

Version 0x20500

One of Apple's touted enhancements is the extension of SIP to third-party applications in
MacOS. This feature (discussed in WWDC's sessions). This is presently opt-in, and requires
signing with two new features: Specifying a runtime version of 10.14.0 or greater (which XCode
manages automatically with -mmacosx-version-min) and using the new version 0x20500
(i.e. v2.5) signatures. This adds a new flag to the signature (runtime, or 0x10000).

511

GateKeeper (MacOS)

Application Notary

XCode 10 offers a new "App Notary" feature. As explained in WWDC 2018 session 702
(which also highlights most of the other MacOS 14 changes), the feature submits Developer-ID
signed apps, dmgs or .pkgs to Apple, and subjects them to an automated testing process which
is meant to detect malware and (possibly later) ensure other forms of policy compliance. The
result of this process is a "ticket", which may be left standalone or "stapled" to its item.

When launched from the UI, GateKeeper detects notarized bundles and - at present - allows
their opening through a GUI notice. Apple has made it clear that its future plans are to allow
only notarized applications, though this might not happen until MacOS 16.

AMFI

Code signing enforcement can now be controlled on two levels: process and system. This
applies to the kernel variables and their corresponding vm.* sysctl(2) MIBs.
cs_enforcement_enable thus now becomes cs[_process/system]
_enforcement_enable. There is also a new call cs_executable_wire.

The iOS rwx restrictions are introduced into MacOS, with specific checks to prevent write
and execute permissions from being possible concurrently, unless the process is entitled.
Library validation (restricting loaded objects to Apple's own or same team identifier) is
also hardened. Several entitlements are introduced for this purpose:

com.apple.security.cs.. Used for
allow-jit Enable JIT code genertion

allow-unsigned-executable-memory Enable executable mapping sans signature

disable-executable-page-protection Neuter code signing checks for process

disable-library-validation Allow dylibs with different team IDs

Debugging protection, which was limited to Apple's processes, is now extended to the
masses. In order to enable debugging features, once again entitlements are used:

com.apple.security.cs.. Used for
get-task-allow Willingly give up own task port (debugee)

debugger Marks own process as debugger

allow-dyld-environment-variables Force dyld to pass variables to signed process

CoreTrust (iOS12)

iOS 12 (beta 2, at the time of writing) introduces another kext, with the bundle identifier
com.apple.kext.CoreTrust, to support AMFI's kernel operations. CoreTrust's purpose is to
thwart the common technique of "fake-signing" (known to jailbreakers as "ldid -S" or "jtool�
--sign"), which is often used to deploy arbitrary binaries to a jailbroken device. In this method
(shown in the experiment on page 71), a code signature with an empty CMS blob is generated.
Because it is not an ad-hoc signature, AMFI passes the blob to amfid, but the latter at this point
has been compromised by the jailbreak.

512

*OS Internals::Security & Insecurity

https://developer.apple.com/videos/play/wwdc2018/702/

iOS 12's AMFI therefore validates a non-empty CMS blob, and then subjects the signature to
CoreTrust's evaluation. CT runs several checks against hardcoded certificates, whose strings can
be spotted with jtool --str, and contents with -d __TEXT.__const (looking for the "30
82" DER marker). Stuffing these certificates in __TEXT.__const ensures that they benefit from
KPP/AMCC protection and cannot be tampered with. CT may further validate the signature policy
(in certificate extension fields), and only if the evaluation is successful, does the normal flow (i.e.
passing to amfid) ensue. This means that, although the daemon might still be compromised, the
attack vector is lessened, as binaries would still be required to possess a signature from an Apple
CA (root and/or iPhone Certification), with the daemon only relying to online-auth-agent.

CoreTrust will likely prove a pain to jailbreakers, but its impact on APTs is dubious, at best.
Such targeted malware operates in process, using a privilege escalation and/or sandbox escape
to obtain unfettered code execution. Because it already possesses (or exploits an app with) a
valid code signature, CoreTrust will play no role in preventing its payload from running and
compromising the device data.

SandBox

The iOS ContainerManager (see Chapter 8) makes its MacOS debut. At the time of writing
(beta 2), it is unclear how it will be used.

Privacy

TCC is extended to protect not just XPC APIs, but all access to resources - including directly.
A new set of entitlements is defined:

com.apple.security. Used for
device.[audio-input|camera] Video/Audio device access

personal-information.* Access location, addressbook, calendars and photos-library

automation.apple-events Allow sending of Apple Events

513

Appendix B: Darwin 18 (Beta) Changes

APFS Snapshot mount (iOS 11.3)

In an effort to harden the root filesystem protections against remounting, Apple has started
to use a snapshot mount for the root filesystem, rather than a standard mount. Using mount(1)
reveals that / is mounted over com.apple.os.update-GUID@/dev/disk0s1s1. A snapshot
mount is a very clever idea for a read-write mount (as it allows reverting to the base snapshot in
case of corruption), but in this case the reasoning is likely different. As the snapshot is mounted
read-only, the driver does not permit new writes to it, and panics the kernel (complaining "you
must have an extent covering the alloced size"). As discussed in Volume II, an extent is a
grouping of logical blocks (or parts thereof) where file data is kept.

Nonetheless, this has been bypassed by Xiaolong Bai and Min (Spark) Zheng. In a Weibo
blog post they detail their method, which specifically overcomes two hurdles:

XNU checks for attempts to remount an already mounted block device: Bai and
Zheng seek to create another mount - this time directly on the block device - but the root
vnode's v_specinfo->si_flags (as discussed in Volume II) include SI_MOUNTEDON,
so that the mount(2) system call would return -EBUSY. This, in itself, is an integrity
rather than security precaution. The duo bypasses it by neutering the flags altogether,
which enables the mount.

APFS.kext is coerced into believing this new mount is not a snapshot: by copying
the the APFS private mount data pointer over from the secondary mount. This pointer
(the mnt_data field of the struct mount in the vnode's v_mount field, incidentally at
offset 0x8f8) holds filesystem driver private data. When copied from the secondary
mount's vnode over the root vnode, it successfully enables new extents to be created and
avoids the panic.

While fairly detailed, Bai and Zheng's article nonetheless omits a fine point - The APFS.kext
will compare the v_mount from every vnode it processes to a field stashed in its private data.
Because those vnodes are technically on the root filesystem mount (/) and not the secondary
filesystem mount, a mismatch will be detected. This will not cause a panic, but will still fail vnode
data access. The kernel log output is inundated with "vp has different mp than fs System"
messages from apfs_jhash_getvnode_stream. Using jtool to disassemble around this
message reveals the specifics:

morpheus@Zephyr(~)$ jtool2 -d /tmp/com.apple.filesystems.apfs.kext |
grep -B13 -A10 different

Disassembling from file offset 0x24000, Address 0xfffffff00680d000
 ..4c488 BL _vnode_mount ; 0xfffffff00688f674
 ..4c490 LDR X8, [X22, #416] ; R8 = *(R22 + 416) = (private->v_mount)
 ..4c494 CMP X0, X8, ... ;
if (vnode_mount(vp) != private->v_mount) {
+----..4c498 B.EQ 0xfffffff00684c4cc ;
| ..4c49c MOV X0, X23 ; X0 = X23 (= vp)
| ..4c4a0 BL _vnode_put ; 0xfffffff00688f68c
| ..4c4a4 LDR X8, [X22, #192] ; R8 = *(R22 + 192) = (private->fsName)
| ..4c4a8 STR X8, [SP, #16] ; *(SP + 0x10) = 0x100000cfeedfacf
| ..4c4ac ADRP X8, 2093870 ; R8 = 0xfffffff005b7a000
| ..4c4b0 ADD X8, X8, #2439 ; R8 = "apfs_jhash_getvnode_internal";
| ..4c4b4 MOVZ W9, 0x143 ; R9 = 0x143
| ..4c4b8 STP X8, X9, [SP, #0] ; *(SP + 0x0) = R8, R9
| ..4c4bc ADRP X0, 2093870 ; ->R0 = 0xfffffff005b7a000
| ..4c4c0 ADD X0, X0, #2400 ; "%s:%d: vp has different mp than fs %s\r"
| ..4c4c4 BL _printf ; 0xfffffff0068218e0
_printf("apfs_jhash_getvnode_internal:1323: vp has different mp than fs %s\n",

private->fsName);
| +--..4c4c8 B 0xfffffff00684c4ec
 } else {

+-+->..4c4cc MOV X0, X23 ; X0 = X23 (= vp)
 | ..4c4d0 BL _vnode_fsnode ; 0xfffffff00688f584
 | ..4c4d4 MOV X20, X0 ; X20 = X0 = 0x0
 | ...

514

*OS Internals::Security & Insecurity

https://www.weibo.com/ttarticle/p/show?id=2309404245794218721506

Note the check (in 0xfffffff00684c498) comparing the result of vnode_mount with a value
from [X22, #416]. The former function (defined in XNU's bsd/vfs/kpi_vfs.c) merely returns vp-
>v_mount, and the latter is a value in the private data. Xnooping around reveals that it matches
the secondary mount's vnode. The value therefore needs to be overwritten to the original root
node's v_mount, to allow vnode_fsnode() to be called and retrieve the vp->v_data.

While Bai and Zheng's method works, there are two finer points still left to address:

APFS reverts to the initial filesystem snapshot on boot: Meaning that changes to
the root filesystem will still fail to persist across reboot. This can be trivially fixed by
creating a new snapshot, and renaming it to match the initial snapshot name (i.e.
com.apple.os.update-GUID@/dev/disk0s1s1). The process (detailed by Uamng
Raghuvanshi in a blog post) is straightforward using libsystem_kernel's
fs_snapshot_[create/rename](2) wrappers over the fs_snapshot (#519)
system call. Although the system call normally requires an entitlement, at this point the
jailbreak would have kernel credentials. Example source code of a fake-entitled binary to
selectively snapshot the system can be found in the QiLin download page.

The secondary mount method tends to be unstable and can lead to a panic (kernel
data abort) on the copied mount data pointer if the mount is unmounted. A rigorous
method to bypass would involve the re-creation, rather than duplication of the private
APFS mount data. With the data format being entirely undocumented, however, this is
quite challenging. Still, for developer-oriented jailbreaks, this solution proves sufficient.

The QiLin toolkit (revision 6 and later) contains an implementation of Spark's method, with
minor enhancements. These are transparently called through QiLin's remountRootFS(void).
LiberiOS and LiberTV, both using the toolkit, thus also now support this method and are
compatible with iOS 11.3.1 and earlier.

515

Appendix B: Darwin 18 (Beta) Changes

file:///Users/morpheus/Documents/OSXBook/2nd/3/xxxxx

