This is xnu-8019. See this file in:
/*
 * Copyright (c) 2000-2021 Apple Inc. All rights reserved.
 *
 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
 *
 * This file contains Original Code and/or Modifications of Original Code
 * as defined in and that are subject to the Apple Public Source License
 * Version 2.0 (the 'License'). You may not use this file except in
 * compliance with the License. The rights granted to you under the License
 * may not be used to create, or enable the creation or redistribution of,
 * unlawful or unlicensed copies of an Apple operating system, or to
 * circumvent, violate, or enable the circumvention or violation of, any
 * terms of an Apple operating system software license agreement.
 *
 * Please obtain a copy of the License at
 * http://www.opensource.apple.com/apsl/ and read it before using this file.
 *
 * The Original Code and all software distributed under the License are
 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
 * Please see the License for the specific language governing rights and
 * limitations under the License.
 *
 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
 */
/*
 * Copyright (c) 1982, 1986, 1989, 1991, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
 */
/*
 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
 * support for mandatory and extensible security protections.  This notice
 * is included in support of clause 2.2 (b) of the Apple Public License,
 * Version 2.0.
 */
#include <os/log.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/domain.h>
#include <sys/fcntl.h>
#include <sys/malloc.h>         /* XXX must be before <sys/file.h> */
#include <sys/file_internal.h>
#include <sys/guarded.h>
#include <sys/filedesc.h>
#include <sys/lock.h>
#include <sys/mbuf.h>
#include <sys/namei.h>
#include <sys/proc_internal.h>
#include <sys/kauth.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/un.h>
#include <sys/unpcb.h>
#include <sys/vnode_internal.h>
#include <sys/kdebug.h>
#include <sys/mcache.h>

#include <kern/zalloc.h>
#include <kern/locks.h>
#include <kern/task.h>

#if CONFIG_MACF
#include <security/mac_framework.h>
#endif /* CONFIG_MACF */

#include <mach/vm_param.h>

/*
 * Maximum number of FDs that can be passed in an mbuf
 */
#define UIPC_MAX_CMSG_FD        512

ZONE_DECLARE(unp_zone, "unpzone", sizeof(struct unpcb), ZC_NONE);
static  unp_gen_t unp_gencnt;
static  u_int unp_count;

static  LCK_ATTR_DECLARE(unp_mtx_attr, 0, 0);
static  LCK_GRP_DECLARE(unp_mtx_grp, "unp_list");
static  LCK_RW_DECLARE_ATTR(unp_list_mtx, &unp_mtx_grp, &unp_mtx_attr);

static  LCK_MTX_DECLARE_ATTR(unp_disconnect_lock, &unp_mtx_grp, &unp_mtx_attr);
static  LCK_MTX_DECLARE_ATTR(unp_connect_lock, &unp_mtx_grp, &unp_mtx_attr);
static  LCK_MTX_DECLARE_ATTR(uipc_lock, &unp_mtx_grp, &unp_mtx_attr);

static  u_int                   disconnect_in_progress;

static struct unp_head unp_shead, unp_dhead;
static int      unp_defer;
static thread_call_t unp_gc_tcall;
static LIST_HEAD(, fileglob) unp_msghead = LIST_HEAD_INITIALIZER(unp_msghead);


/*
 * mDNSResponder tracing.  When enabled, endpoints connected to
 * /var/run/mDNSResponder will be traced; during each send on
 * the traced socket, we log the PID and process name of the
 * sending process.  We also print out a bit of info related
 * to the data itself; this assumes ipc_msg_hdr in dnssd_ipc.h
 * of mDNSResponder stays the same.
 */
#define MDNSRESPONDER_PATH      "/var/run/mDNSResponder"

static int unpst_tracemdns;     /* enable tracing */

#define MDNS_IPC_MSG_HDR_VERSION_1      1

struct mdns_ipc_msg_hdr {
	uint32_t version;
	uint32_t datalen;
	uint32_t ipc_flags;
	uint32_t op;
	union {
		void *context;
		uint32_t u32[2];
	} __attribute__((packed));
	uint32_t reg_index;
} __attribute__((packed));

/*
 * Unix communications domain.
 *
 * TODO:
 *	SEQPACKET, RDM
 *	rethink name space problems
 *	need a proper out-of-band
 *	lock pushdown
 */
static struct   sockaddr sun_noname = { .sa_len = sizeof(sun_noname), .sa_family = AF_LOCAL, .sa_data = { 0 } };
static ino_t    unp_ino;                /* prototype for fake inode numbers */

static int      unp_attach(struct socket *);
static void     unp_detach(struct unpcb *);
static int      unp_bind(struct unpcb *, struct sockaddr *, proc_t);
static int      unp_connect(struct socket *, struct sockaddr *, proc_t);
static void     unp_disconnect(struct unpcb *);
static void     unp_shutdown(struct unpcb *);
static void     unp_drop(struct unpcb *, int);
static void     unp_gc(thread_call_param_t arg0, thread_call_param_t arg1);
static void     unp_scan(struct mbuf *, void (*)(struct fileglob *, void *arg), void *arg);
static void     unp_mark(struct fileglob *, __unused void *);
static void     unp_discard(struct fileglob *, void *);
static int      unp_internalize(struct mbuf *, proc_t);
static int      unp_listen(struct unpcb *, proc_t);
static void     unpcb_to_compat(struct unpcb *, struct unpcb_compat *);
static void     unp_get_locks_in_order(struct socket *so, struct socket *conn_so);

__startup_func
static void
unp_gc_setup(void)
{
	unp_gc_tcall = thread_call_allocate_with_options(unp_gc,
	    NULL, THREAD_CALL_PRIORITY_KERNEL,
	    THREAD_CALL_OPTIONS_ONCE);
}
STARTUP(THREAD_CALL, STARTUP_RANK_MIDDLE, unp_gc_setup);

static void
unp_get_locks_in_order(struct socket *so, struct socket *conn_so)
{
	if (so < conn_so) {
		socket_lock(conn_so, 1);
	} else {
		struct unpcb *unp = sotounpcb(so);
		unp->unp_flags |= UNP_DONTDISCONNECT;
		unp->rw_thrcount++;
		socket_unlock(so, 0);

		/* Get the locks in the correct order */
		socket_lock(conn_so, 1);
		socket_lock(so, 0);
		unp->rw_thrcount--;
		if (unp->rw_thrcount == 0) {
			unp->unp_flags &= ~UNP_DONTDISCONNECT;
			wakeup(unp);
		}
	}
}

static int
uipc_abort(struct socket *so)
{
	struct unpcb *unp = sotounpcb(so);

	if (unp == 0) {
		return EINVAL;
	}
	unp_drop(unp, ECONNABORTED);
	unp_detach(unp);
	sofree(so);
	return 0;
}

static int
uipc_accept(struct socket *so, struct sockaddr **nam)
{
	struct unpcb *unp = sotounpcb(so);

	if (unp == 0) {
		return EINVAL;
	}

	/*
	 * Pass back name of connected socket,
	 * if it was bound and we are still connected
	 * (our peer may have closed already!).
	 */
	if (unp->unp_conn && unp->unp_conn->unp_addr) {
		*nam = dup_sockaddr((struct sockaddr *)
		    unp->unp_conn->unp_addr, 1);
	} else {
		*nam = dup_sockaddr((struct sockaddr *)&sun_noname, 1);
	}
	return 0;
}

/*
 * Returns:	0			Success
 *		EISCONN
 *	unp_attach:
 */
static int
uipc_attach(struct socket *so, __unused int proto, __unused proc_t p)
{
	struct unpcb *unp = sotounpcb(so);

	if (unp != 0) {
		return EISCONN;
	}
	return unp_attach(so);
}

static int
uipc_bind(struct socket *so, struct sockaddr *nam, proc_t p)
{
	struct unpcb *unp = sotounpcb(so);

	if (unp == 0) {
		return EINVAL;
	}

	return unp_bind(unp, nam, p);
}

/*
 * Returns:	0			Success
 *		EINVAL
 *	unp_connect:???			[See elsewhere in this file]
 */
static int
uipc_connect(struct socket *so, struct sockaddr *nam, proc_t p)
{
	struct unpcb *unp = sotounpcb(so);

	if (unp == 0) {
		return EINVAL;
	}
	return unp_connect(so, nam, p);
}

/*
 * Returns:	0			Success
 *		EINVAL
 *	unp_connect2:EPROTOTYPE		Protocol wrong type for socket
 *	unp_connect2:EINVAL		Invalid argument
 */
static int
uipc_connect2(struct socket *so1, struct socket *so2)
{
	struct unpcb *unp = sotounpcb(so1);

	if (unp == 0) {
		return EINVAL;
	}

	return unp_connect2(so1, so2);
}

/* control is EOPNOTSUPP */

static int
uipc_detach(struct socket *so)
{
	struct unpcb *unp = sotounpcb(so);

	if (unp == 0) {
		return EINVAL;
	}

	LCK_MTX_ASSERT(&unp->unp_mtx, LCK_MTX_ASSERT_OWNED);
	unp_detach(unp);
	return 0;
}

static int
uipc_disconnect(struct socket *so)
{
	struct unpcb *unp = sotounpcb(so);

	if (unp == 0) {
		return EINVAL;
	}
	unp_disconnect(unp);
	return 0;
}

/*
 * Returns:	0			Success
 *		EINVAL
 */
static int
uipc_listen(struct socket *so, __unused proc_t p)
{
	struct unpcb *unp = sotounpcb(so);

	if (unp == 0 || unp->unp_vnode == 0) {
		return EINVAL;
	}
	return unp_listen(unp, p);
}

static int
uipc_peeraddr(struct socket *so, struct sockaddr **nam)
{
	struct unpcb *unp = sotounpcb(so);

	if (unp == NULL) {
		return EINVAL;
	}
	if (unp->unp_conn != NULL && unp->unp_conn->unp_addr != NULL) {
		*nam = dup_sockaddr((struct sockaddr *)
		    unp->unp_conn->unp_addr, 1);
	} else {
		*nam = dup_sockaddr((struct sockaddr *)&sun_noname, 1);
	}
	return 0;
}

static int
uipc_rcvd(struct socket *so, __unused int flags)
{
	struct unpcb *unp = sotounpcb(so);
	struct socket *so2;

	if (unp == 0) {
		return EINVAL;
	}
	switch (so->so_type) {
	case SOCK_DGRAM:
		panic("uipc_rcvd DGRAM?");
	/*NOTREACHED*/

	case SOCK_STREAM:
#define rcv (&so->so_rcv)
#define snd (&so2->so_snd)
		if (unp->unp_conn == 0) {
			break;
		}

		so2 = unp->unp_conn->unp_socket;
		unp_get_locks_in_order(so, so2);
		/*
		 * Adjust backpressure on sender
		 * and wakeup any waiting to write.
		 */
		snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
		unp->unp_mbcnt = rcv->sb_mbcnt;
		snd->sb_hiwat += unp->unp_cc - rcv->sb_cc;
		unp->unp_cc = rcv->sb_cc;
		if (sb_notify(&so2->so_snd)) {
			sowakeup(so2, &so2->so_snd, so);
		}

		socket_unlock(so2, 1);

#undef snd
#undef rcv
		break;

	default:
		panic("uipc_rcvd unknown socktype");
	}
	return 0;
}

/* pru_rcvoob is EOPNOTSUPP */

/*
 * Returns:	0			Success
 *		EINVAL
 *		EOPNOTSUPP
 *		EPIPE
 *		ENOTCONN
 *		EISCONN
 *	unp_internalize:EINVAL
 *	unp_internalize:EBADF
 *	unp_connect:EAFNOSUPPORT	Address family not supported
 *	unp_connect:EINVAL		Invalid argument
 *	unp_connect:ENOTSOCK		Not a socket
 *	unp_connect:ECONNREFUSED	Connection refused
 *	unp_connect:EISCONN		Socket is connected
 *	unp_connect:EPROTOTYPE		Protocol wrong type for socket
 *	unp_connect:???
 *	sbappendaddr:ENOBUFS		[5th argument, contents modified]
 *	sbappendaddr:???		[whatever a filter author chooses]
 */
static int
uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
    struct mbuf *control, proc_t p)
{
	int error = 0;
	struct unpcb *unp = sotounpcb(so);
	struct socket *so2;

	if (unp == 0) {
		error = EINVAL;
		goto release;
	}
	if (flags & PRUS_OOB) {
		error = EOPNOTSUPP;
		goto release;
	}

	if (control) {
		/* release lock to avoid deadlock (4436174) */
		socket_unlock(so, 0);
		error = unp_internalize(control, p);
		socket_lock(so, 0);
		if (error) {
			goto release;
		}
	}

	switch (so->so_type) {
	case SOCK_DGRAM:
	{
		struct sockaddr *from;

		if (nam) {
			if (unp->unp_conn) {
				error = EISCONN;
				break;
			}
			error = unp_connect(so, nam, p);
			if (error) {
				so->so_state &= ~SS_ISCONNECTING;
				break;
			}
		} else {
			if (unp->unp_conn == 0) {
				error = ENOTCONN;
				break;
			}
		}

		so2 = unp->unp_conn->unp_socket;
		if (so != so2) {
			unp_get_locks_in_order(so, so2);
		}

		if (unp->unp_addr) {
			from = (struct sockaddr *)unp->unp_addr;
		} else {
			from = &sun_noname;
		}
		/*
		 * sbappendaddr() will fail when the receiver runs out of
		 * space; in contrast to SOCK_STREAM, we will lose messages
		 * for the SOCK_DGRAM case when the receiver's queue overflows.
		 * SB_UNIX on the socket buffer implies that the callee will
		 * not free the control message, if any, because we would need
		 * to call unp_dispose() on it.
		 */
		if (sbappendaddr(&so2->so_rcv, from, m, control, &error)) {
			control = NULL;
			if (sb_notify(&so2->so_rcv)) {
				sowakeup(so2, &so2->so_rcv, so);
			}
		} else if (control != NULL && error == 0) {
			/* A socket filter took control; don't touch it */
			control = NULL;
		}

		if (so != so2) {
			socket_unlock(so2, 1);
		}

		m = NULL;
		if (nam) {
			unp_disconnect(unp);
		}
		break;
	}

	case SOCK_STREAM: {
		int didreceive = 0;
#define rcv (&so2->so_rcv)
#define snd (&so->so_snd)
		/* Connect if not connected yet. */
		/*
		 * Note: A better implementation would complain
		 * if not equal to the peer's address.
		 */
		if ((so->so_state & SS_ISCONNECTED) == 0) {
			if (nam) {
				error = unp_connect(so, nam, p);
				if (error) {
					so->so_state &= ~SS_ISCONNECTING;
					break;  /* XXX */
				}
			} else {
				error = ENOTCONN;
				break;
			}
		}

		if (so->so_state & SS_CANTSENDMORE) {
			error = EPIPE;
			break;
		}
		if (unp->unp_conn == 0) {
			panic("uipc_send connected but no connection? "
			    "socket state: %x socket flags: %x socket flags1: %x.",
			    so->so_state, so->so_flags, so->so_flags1);
		}

		so2 = unp->unp_conn->unp_socket;
		unp_get_locks_in_order(so, so2);

		/* Check socket state again as we might have unlocked the socket
		 * while trying to get the locks in order
		 */

		if ((so->so_state & SS_CANTSENDMORE)) {
			error = EPIPE;
			socket_unlock(so2, 1);
			break;
		}

		if (unp->unp_flags & UNP_TRACE_MDNS) {
			struct mdns_ipc_msg_hdr hdr;

			if (mbuf_copydata(m, 0, sizeof(hdr), &hdr) == 0 &&
			    hdr.version == ntohl(MDNS_IPC_MSG_HDR_VERSION_1)) {
				os_log(OS_LOG_DEFAULT,
				    "%s[mDNSResponder] pid=%d (%s): op=0x%x",
				    __func__, proc_getpid(p), p->p_comm, ntohl(hdr.op));
			}
		}

		/*
		 * Send to paired receive port, and then reduce send buffer
		 * hiwater marks to maintain backpressure.  Wake up readers.
		 * SB_UNIX flag will allow new record to be appended to the
		 * receiver's queue even when it is already full.  It is
		 * possible, however, that append might fail.  In that case,
		 * we will need to call unp_dispose() on the control message;
		 * the callee will not free it since SB_UNIX is set.
		 */
		didreceive = control ?
		    sbappendcontrol(rcv, m, control, &error) : sbappend(rcv, m);

		snd->sb_mbmax -= rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
		unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
		if ((int32_t)snd->sb_hiwat >=
		    (int32_t)(rcv->sb_cc - unp->unp_conn->unp_cc)) {
			snd->sb_hiwat -= rcv->sb_cc - unp->unp_conn->unp_cc;
		} else {
			snd->sb_hiwat = 0;
		}
		unp->unp_conn->unp_cc = rcv->sb_cc;
		if (didreceive) {
			control = NULL;
			if (sb_notify(&so2->so_rcv)) {
				sowakeup(so2, &so2->so_rcv, so);
			}
		} else if (control != NULL && error == 0) {
			/* A socket filter took control; don't touch it */
			control = NULL;
		}

		socket_unlock(so2, 1);
		m = NULL;
#undef snd
#undef rcv
	}
	break;

	default:
		panic("uipc_send unknown socktype");
	}

	/*
	 * SEND_EOF is equivalent to a SEND followed by
	 * a SHUTDOWN.
	 */
	if (flags & PRUS_EOF) {
		socantsendmore(so);
		unp_shutdown(unp);
	}

	if (control && error != 0) {
		socket_unlock(so, 0);
		unp_dispose(control);
		socket_lock(so, 0);
	}

release:
	if (control) {
		m_freem(control);
	}
	if (m) {
		m_freem(m);
	}
	return error;
}

static int
uipc_sense(struct socket *so, void *ub, int isstat64)
{
	struct unpcb *unp = sotounpcb(so);
	struct socket *so2;
	blksize_t blksize;

	if (unp == 0) {
		return EINVAL;
	}

	blksize = so->so_snd.sb_hiwat;
	if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
		so2 = unp->unp_conn->unp_socket;
		blksize += so2->so_rcv.sb_cc;
	}
	if (unp->unp_ino == 0) {
		unp->unp_ino = unp_ino++;
	}

	if (isstat64 != 0) {
		struct stat64  *sb64;

		sb64 = (struct stat64 *)ub;
		sb64->st_blksize = blksize;
		sb64->st_dev = NODEV;
		sb64->st_ino = (ino64_t)unp->unp_ino;
	} else {
		struct stat *sb;

		sb = (struct stat *)ub;
		sb->st_blksize = blksize;
		sb->st_dev = NODEV;
		sb->st_ino = (ino_t)(uintptr_t)unp->unp_ino;
	}

	return 0;
}

/*
 * Returns:	0		Success
 *		EINVAL
 *
 * Notes:	This is not strictly correct, as unp_shutdown() also calls
 *		socantrcvmore().  These should maybe both be conditionalized
 *		on the 'how' argument in soshutdown() as called from the
 *		shutdown() system call.
 */
static int
uipc_shutdown(struct socket *so)
{
	struct unpcb *unp = sotounpcb(so);

	if (unp == 0) {
		return EINVAL;
	}
	socantsendmore(so);
	unp_shutdown(unp);
	return 0;
}

/*
 * Returns:	0			Success
 *		EINVAL			Invalid argument
 */
static int
uipc_sockaddr(struct socket *so, struct sockaddr **nam)
{
	struct unpcb *unp = sotounpcb(so);

	if (unp == NULL) {
		return EINVAL;
	}
	if (unp->unp_addr != NULL) {
		*nam = dup_sockaddr((struct sockaddr *)unp->unp_addr, 1);
	} else {
		*nam = dup_sockaddr((struct sockaddr *)&sun_noname, 1);
	}
	return 0;
}

struct pr_usrreqs uipc_usrreqs = {
	.pru_abort =            uipc_abort,
	.pru_accept =           uipc_accept,
	.pru_attach =           uipc_attach,
	.pru_bind =             uipc_bind,
	.pru_connect =          uipc_connect,
	.pru_connect2 =         uipc_connect2,
	.pru_detach =           uipc_detach,
	.pru_disconnect =       uipc_disconnect,
	.pru_listen =           uipc_listen,
	.pru_peeraddr =         uipc_peeraddr,
	.pru_rcvd =             uipc_rcvd,
	.pru_send =             uipc_send,
	.pru_sense =            uipc_sense,
	.pru_shutdown =         uipc_shutdown,
	.pru_sockaddr =         uipc_sockaddr,
	.pru_sosend =           sosend,
	.pru_soreceive =        soreceive,
};

int
uipc_ctloutput(struct socket *so, struct sockopt *sopt)
{
	struct unpcb *unp = sotounpcb(so);
	int error = 0;
	pid_t peerpid;
	proc_t p;
	task_t t;
	struct socket *peerso;

	switch (sopt->sopt_dir) {
	case SOPT_GET:
		switch (sopt->sopt_name) {
		case LOCAL_PEERCRED:
			if (unp->unp_flags & UNP_HAVEPC) {
				error = sooptcopyout(sopt, &unp->unp_peercred,
				    sizeof(unp->unp_peercred));
			} else {
				if (so->so_type == SOCK_STREAM) {
					error = ENOTCONN;
				} else {
					error = EINVAL;
				}
			}
			break;
		case LOCAL_PEERPID:
		case LOCAL_PEEREPID:
			if (unp->unp_conn == NULL) {
				error = ENOTCONN;
				break;
			}
			peerso = unp->unp_conn->unp_socket;
			if (peerso == NULL) {
				panic("peer is connected but has no socket?");
			}
			unp_get_locks_in_order(so, peerso);
			if (sopt->sopt_name == LOCAL_PEEREPID &&
			    peerso->so_flags & SOF_DELEGATED) {
				peerpid = peerso->e_pid;
			} else {
				peerpid = peerso->last_pid;
			}
			socket_unlock(peerso, 1);
			error = sooptcopyout(sopt, &peerpid, sizeof(peerpid));
			break;
		case LOCAL_PEERUUID:
		case LOCAL_PEEREUUID:
			if (unp->unp_conn == NULL) {
				error = ENOTCONN;
				break;
			}
			peerso = unp->unp_conn->unp_socket;
			if (peerso == NULL) {
				panic("peer is connected but has no socket?");
			}
			unp_get_locks_in_order(so, peerso);
			if (sopt->sopt_name == LOCAL_PEEREUUID &&
			    peerso->so_flags & SOF_DELEGATED) {
				error = sooptcopyout(sopt, &peerso->e_uuid,
				    sizeof(peerso->e_uuid));
			} else {
				error = sooptcopyout(sopt, &peerso->last_uuid,
				    sizeof(peerso->last_uuid));
			}
			socket_unlock(peerso, 1);
			break;
		case LOCAL_PEERTOKEN:
			if (unp->unp_conn == NULL) {
				error = ENOTCONN;
				break;
			}
			peerso = unp->unp_conn->unp_socket;
			if (peerso == NULL) {
				panic("peer is connected but has no socket?");
			}
			unp_get_locks_in_order(so, peerso);
			peerpid = peerso->last_pid;
			p = proc_find(peerpid);
			if (p != PROC_NULL) {
				t = proc_task(p);
				if (t != TASK_NULL) {
					audit_token_t peertoken;
					mach_msg_type_number_t count = TASK_AUDIT_TOKEN_COUNT;
					if (task_info(t, TASK_AUDIT_TOKEN, (task_info_t)&peertoken, &count) == KERN_SUCCESS) {
						error = sooptcopyout(sopt, &peertoken, sizeof(peertoken));
					} else {
						error = EINVAL;
					}
				} else {
					error = EINVAL;
				}
				proc_rele(p);
			} else {
				error = EINVAL;
			}
			socket_unlock(peerso, 1);
			break;
		default:
			error = EOPNOTSUPP;
			break;
		}
		break;
	case SOPT_SET:
	default:
		error = EOPNOTSUPP;
		break;
	}

	return error;
}

/*
 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
 * for stream sockets, although the total for sender and receiver is
 * actually only PIPSIZ.
 * Datagram sockets really use the sendspace as the maximum datagram size,
 * and don't really want to reserve the sendspace.  Their recvspace should
 * be large enough for at least one max-size datagram plus address.
 */
#ifndef PIPSIZ
#define PIPSIZ  8192
#endif
static u_int32_t        unpst_sendspace = PIPSIZ;
static u_int32_t        unpst_recvspace = PIPSIZ;
static u_int32_t        unpdg_sendspace = 2 * 1024;       /* really max datagram size */
static u_int32_t        unpdg_recvspace = 4 * 1024;

static int      unp_rights;                     /* file descriptors in flight */
static int      unp_disposed;                   /* discarded file descriptors */

SYSCTL_DECL(_net_local_stream);
SYSCTL_INT(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW | CTLFLAG_LOCKED,
    &unpst_sendspace, 0, "");
SYSCTL_INT(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW | CTLFLAG_LOCKED,
    &unpst_recvspace, 0, "");
SYSCTL_INT(_net_local_stream, OID_AUTO, tracemdns, CTLFLAG_RW | CTLFLAG_LOCKED,
    &unpst_tracemdns, 0, "");
SYSCTL_DECL(_net_local_dgram);
SYSCTL_INT(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW | CTLFLAG_LOCKED,
    &unpdg_sendspace, 0, "");
SYSCTL_INT(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW | CTLFLAG_LOCKED,
    &unpdg_recvspace, 0, "");
SYSCTL_DECL(_net_local);
SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD | CTLFLAG_LOCKED, &unp_rights, 0, "");

/*
 * Returns:	0			Success
 *		ENOBUFS
 *	soreserve:ENOBUFS
 */
static int
unp_attach(struct socket *so)
{
	struct unpcb *unp;
	int error = 0;

	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
		switch (so->so_type) {
		case SOCK_STREAM:
			error = soreserve(so, unpst_sendspace, unpst_recvspace);
			break;

		case SOCK_DGRAM:
			error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
			break;

		default:
			panic("unp_attach");
		}
		if (error) {
			return error;
		}
	}
	unp = zalloc_flags(unp_zone, Z_WAITOK | Z_ZERO | Z_NOFAIL);

	lck_mtx_init(&unp->unp_mtx, &unp_mtx_grp, &unp_mtx_attr);

	lck_rw_lock_exclusive(&unp_list_mtx);
	LIST_INIT(&unp->unp_refs);
	unp->unp_socket = so;
	unp->unp_gencnt = ++unp_gencnt;
	unp_count++;
	LIST_INSERT_HEAD(so->so_type == SOCK_DGRAM ?
	    &unp_dhead : &unp_shead, unp, unp_link);
	lck_rw_done(&unp_list_mtx);
	so->so_pcb = (caddr_t)unp;
	/*
	 * Mark AF_UNIX socket buffers accordingly so that:
	 *
	 * a. In the SOCK_STREAM case, socket buffer append won't fail due to
	 *    the lack of space; this essentially loosens the sbspace() check,
	 *    since there is disconnect between sosend() and uipc_send() with
	 *    respect to flow control that might result in our dropping the
	 *    data in uipc_send().  By setting this, we allow for slightly
	 *    more records to be appended to the receiving socket to avoid
	 *    losing data (which we can't afford in the SOCK_STREAM case).
	 *    Flow control still takes place since we adjust the sender's
	 *    hiwat during each send.  This doesn't affect the SOCK_DGRAM
	 *    case and append would still fail when the queue overflows.
	 *
	 * b. In the presence of control messages containing internalized
	 *    file descriptors, the append routines will not free them since
	 *    we'd need to undo the work first via unp_dispose().
	 */
	so->so_rcv.sb_flags |= SB_UNIX;
	so->so_snd.sb_flags |= SB_UNIX;
	return 0;
}

static void
unp_detach(struct unpcb *unp)
{
	int so_locked = 1;

	lck_rw_lock_exclusive(&unp_list_mtx);
	LIST_REMOVE(unp, unp_link);
	--unp_count;
	++unp_gencnt;
	lck_rw_done(&unp_list_mtx);
	if (unp->unp_vnode) {
		struct vnode *tvp = NULL;
		socket_unlock(unp->unp_socket, 0);

		/* Holding unp_connect_lock will avoid a race between
		 * a thread closing the listening socket and a thread
		 * connecting to it.
		 */
		lck_mtx_lock(&unp_connect_lock);
		socket_lock(unp->unp_socket, 0);
		if (unp->unp_vnode) {
			tvp = unp->unp_vnode;
			unp->unp_vnode->v_socket = NULL;
			unp->unp_vnode = NULL;
		}
		lck_mtx_unlock(&unp_connect_lock);
		if (tvp != NULL) {
			vnode_rele(tvp);                /* drop the usecount */
		}
	}
	if (unp->unp_conn) {
		unp_disconnect(unp);
	}
	while (unp->unp_refs.lh_first) {
		struct unpcb *unp2 = NULL;

		/* This datagram socket is connected to one or more
		 * sockets. In order to avoid a race condition between removing
		 * this reference and closing the connected socket, we need
		 * to check disconnect_in_progress
		 */
		if (so_locked == 1) {
			socket_unlock(unp->unp_socket, 0);
			so_locked = 0;
		}
		lck_mtx_lock(&unp_disconnect_lock);
		while (disconnect_in_progress != 0) {
			(void)msleep((caddr_t)&disconnect_in_progress, &unp_disconnect_lock,
			    PSOCK, "disconnect", NULL);
		}
		disconnect_in_progress = 1;
		lck_mtx_unlock(&unp_disconnect_lock);

		/* Now we are sure that any unpcb socket disconnect is not happening */
		if (unp->unp_refs.lh_first != NULL) {
			unp2 = unp->unp_refs.lh_first;
			socket_lock(unp2->unp_socket, 1);
		}

		lck_mtx_lock(&unp_disconnect_lock);
		disconnect_in_progress = 0;
		wakeup(&disconnect_in_progress);
		lck_mtx_unlock(&unp_disconnect_lock);

		if (unp2 != NULL) {
			/* We already locked this socket and have a reference on it */
			unp_drop(unp2, ECONNRESET);
			socket_unlock(unp2->unp_socket, 1);
		}
	}

	if (so_locked == 0) {
		socket_lock(unp->unp_socket, 0);
		so_locked = 1;
	}
	soisdisconnected(unp->unp_socket);
	/* makes sure we're getting dealloced */
	unp->unp_socket->so_flags |= SOF_PCBCLEARING;
}

/*
 * Returns:	0			Success
 *		EAFNOSUPPORT
 *		EINVAL
 *		EADDRINUSE
 *		namei:???		[anything namei can return]
 *		vnode_authorize:???	[anything vnode_authorize can return]
 *
 * Notes:	p at this point is the current process, as this function is
 *		only called by sobind().
 */
static int
unp_bind(
	struct unpcb *unp,
	struct sockaddr *nam,
	proc_t p)
{
	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
	struct vnode *vp, *dvp;
	struct vnode_attr va;
	vfs_context_t ctx = vfs_context_current();
	int error, namelen;
	struct nameidata nd;
	struct socket *so = unp->unp_socket;
	char buf[SOCK_MAXADDRLEN];

	if (nam->sa_family != 0 && nam->sa_family != AF_UNIX) {
		return EAFNOSUPPORT;
	}

	/*
	 * Check if the socket is already bound to an address
	 */
	if (unp->unp_vnode != NULL) {
		return EINVAL;
	}
	/*
	 * Check if the socket may have been shut down
	 */
	if ((so->so_state & (SS_CANTRCVMORE | SS_CANTSENDMORE)) ==
	    (SS_CANTRCVMORE | SS_CANTSENDMORE)) {
		return EINVAL;
	}

	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
	if (namelen <= 0) {
		return EINVAL;
	}
	/*
	 * Note: sun_path is not a zero terminated "C" string
	 */
	if (namelen >= SOCK_MAXADDRLEN) {
		return EINVAL;
	}
	bcopy(soun->sun_path, buf, namelen);
	buf[namelen] = 0;

	socket_unlock(so, 0);

	NDINIT(&nd, CREATE, OP_MKFIFO, FOLLOW | LOCKPARENT, UIO_SYSSPACE,
	    CAST_USER_ADDR_T(buf), ctx);
	/* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
	error = namei(&nd);
	if (error) {
		socket_lock(so, 0);
		return error;
	}
	dvp = nd.ni_dvp;
	vp = nd.ni_vp;

	if (vp != NULL) {
		/*
		 * need to do this before the vnode_put of dvp
		 * since we may have to release an fs_nodelock
		 */
		nameidone(&nd);

		vnode_put(dvp);
		vnode_put(vp);

		socket_lock(so, 0);
		return EADDRINUSE;
	}

	VATTR_INIT(&va);
	VATTR_SET(&va, va_type, VSOCK);
	VATTR_SET(&va, va_mode, (ACCESSPERMS & ~p->p_fd.fd_cmask));

#if CONFIG_MACF
	error = mac_vnode_check_create(ctx,
	    nd.ni_dvp, &nd.ni_cnd, &va);

	if (error == 0)
#endif /* CONFIG_MACF */
#if CONFIG_MACF_SOCKET_SUBSET
	error = mac_vnode_check_uipc_bind(ctx,
	    nd.ni_dvp, &nd.ni_cnd, &va);

	if (error == 0)
#endif /* MAC_SOCKET_SUBSET */
	/* authorize before creating */
	error = vnode_authorize(dvp, NULL, KAUTH_VNODE_ADD_FILE, ctx);

	if (!error) {
		/* create the socket */
		error = vn_create(dvp, &vp, &nd, &va, 0, 0, NULL, ctx);
	}

	nameidone(&nd);
	vnode_put(dvp);

	if (error) {
		socket_lock(so, 0);
		return error;
	}

	socket_lock(so, 0);

	if (unp->unp_vnode != NULL) {
		vnode_put(vp); /* drop the iocount */
		return EINVAL;
	}

	error = vnode_ref(vp);  /* gain a longterm reference */
	if (error) {
		vnode_put(vp); /* drop the iocount */
		return error;
	}

	vp->v_socket = unp->unp_socket;
	unp->unp_vnode = vp;
	unp->unp_addr = (struct sockaddr_un *)dup_sockaddr(nam, 1);
	vnode_put(vp);          /* drop the iocount */

	return 0;
}


/*
 * Returns:	0			Success
 *		EAFNOSUPPORT		Address family not supported
 *		EINVAL			Invalid argument
 *		ENOTSOCK		Not a socket
 *		ECONNREFUSED		Connection refused
 *		EPROTOTYPE		Protocol wrong type for socket
 *		EISCONN			Socket is connected
 *	unp_connect2:EPROTOTYPE		Protocol wrong type for socket
 *	unp_connect2:EINVAL		Invalid argument
 *	namei:???			[anything namei can return]
 *	vnode_authorize:????		[anything vnode_authorize can return]
 *
 * Notes:	p at this point is the current process, as this function is
 *		only called by sosend(), sendfile(), and soconnectlock().
 */
static int
unp_connect(struct socket *so, struct sockaddr *nam, __unused proc_t p)
{
	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
	struct vnode *vp;
	struct socket *so2, *so3, *list_so = NULL;
	struct unpcb *unp, *unp2, *unp3;
	vfs_context_t ctx = vfs_context_current();
	int error, len;
	struct nameidata nd;
	char buf[SOCK_MAXADDRLEN];

	if (nam->sa_family != 0 && nam->sa_family != AF_UNIX) {
		return EAFNOSUPPORT;
	}

	unp = sotounpcb(so);
	so2 = so3 = NULL;

	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
	if (len <= 0) {
		return EINVAL;
	}
	/*
	 * Note: sun_path is not a zero terminated "C" string
	 */
	if (len >= SOCK_MAXADDRLEN) {
		return EINVAL;
	}

	soisconnecting(so);

	bcopy(soun->sun_path, buf, len);
	buf[len] = 0;

	socket_unlock(so, 0);

	NDINIT(&nd, LOOKUP, OP_LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE,
	    CAST_USER_ADDR_T(buf), ctx);
	error = namei(&nd);
	if (error) {
		socket_lock(so, 0);
		return error;
	}
	nameidone(&nd);
	vp = nd.ni_vp;
	if (vp->v_type != VSOCK) {
		error = ENOTSOCK;
		socket_lock(so, 0);
		goto out;
	}

#if CONFIG_MACF_SOCKET_SUBSET
	error = mac_vnode_check_uipc_connect(ctx, vp, so);
	if (error) {
		socket_lock(so, 0);
		goto out;
	}
#endif /* MAC_SOCKET_SUBSET */

	error = vnode_authorize(vp, NULL, KAUTH_VNODE_WRITE_DATA, ctx);
	if (error) {
		socket_lock(so, 0);
		goto out;
	}

	lck_mtx_lock(&unp_connect_lock);

	if (vp->v_socket == 0) {
		lck_mtx_unlock(&unp_connect_lock);
		error = ECONNREFUSED;
		socket_lock(so, 0);
		goto out;
	}

	socket_lock(vp->v_socket, 1); /* Get a reference on the listening socket */
	so2 = vp->v_socket;
	lck_mtx_unlock(&unp_connect_lock);


	if (so2->so_pcb == NULL) {
		error = ECONNREFUSED;
		if (so != so2) {
			socket_unlock(so2, 1);
			socket_lock(so, 0);
		} else {
			/* Release the reference held for the listen socket */
			VERIFY(so2->so_usecount > 0);
			so2->so_usecount--;
		}
		goto out;
	}

	if (so < so2) {
		socket_unlock(so2, 0);
		socket_lock(so, 0);
		socket_lock(so2, 0);
	} else if (so > so2) {
		socket_lock(so, 0);
	}
	/*
	 * Check if socket was connected while we were trying to
	 * get the socket locks in order.
	 * XXX - probably shouldn't return an error for SOCK_DGRAM
	 */
	if ((so->so_state & SS_ISCONNECTED) != 0) {
		error = EISCONN;
		goto decref_out;
	}

	if (so->so_type != so2->so_type) {
		error = EPROTOTYPE;
		goto decref_out;
	}

	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
		/* Release the incoming socket but keep a reference */
		socket_unlock(so, 0);

		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
		    (so3 = sonewconn(so2, 0, nam)) == 0) {
			error = ECONNREFUSED;
			if (so != so2) {
				socket_unlock(so2, 1);
				socket_lock(so, 0);
			} else {
				socket_lock(so, 0);
				/* Release the reference held for
				 * listen socket.
				 */
				VERIFY(so2->so_usecount > 0);
				so2->so_usecount--;
			}
			goto out;
		}
		unp2 = sotounpcb(so2);
		unp3 = sotounpcb(so3);
		if (unp2->unp_addr) {
			unp3->unp_addr = (struct sockaddr_un *)
			    dup_sockaddr((struct sockaddr *)unp2->unp_addr, 1);
		}

		/*
		 * unp_peercred management:
		 *
		 * The connecter's (client's) credentials are copied
		 * from its process structure at the time of connect()
		 * (which is now).
		 */
		cru2x(vfs_context_ucred(ctx), &unp3->unp_peercred);
		unp3->unp_flags |= UNP_HAVEPC;
		/*
		 * The receiver's (server's) credentials are copied
		 * from the unp_peercred member of socket on which the
		 * former called listen(); unp_listen() cached that
		 * process's credentials at that time so we can use
		 * them now.
		 */
		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
		    ("unp_connect: listener without cached peercred"));

		/* Here we need to have both so and so2 locks and so2
		 * is already locked. Lock ordering is required.
		 */
		if (so < so2) {
			socket_unlock(so2, 0);
			socket_lock(so, 0);
			socket_lock(so2, 0);
		} else {
			socket_lock(so, 0);
		}

		/* Check again if the socket state changed when its lock was released */
		if ((so->so_state & SS_ISCONNECTED) != 0) {
			error = EISCONN;
			socket_unlock(so2, 1);
			socket_lock(so3, 0);
			sofreelastref(so3, 1);
			goto out;
		}
		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
		    sizeof(unp->unp_peercred));
		unp->unp_flags |= UNP_HAVEPC;

		/* Hold the reference on listening socket until the end */
		socket_unlock(so2, 0);
		list_so = so2;

		/* Lock ordering doesn't matter because so3 was just created */
		socket_lock(so3, 1);
		so2 = so3;

		/*
		 * Enable tracing for mDNSResponder endpoints.  (The use
		 * of sizeof instead of strlen below takes the null
		 * terminating character into account.)
		 */
		if (unpst_tracemdns &&
		    !strncmp(soun->sun_path, MDNSRESPONDER_PATH,
		    sizeof(MDNSRESPONDER_PATH))) {
			unp->unp_flags |= UNP_TRACE_MDNS;
			unp2->unp_flags |= UNP_TRACE_MDNS;
		}
	}

	error = unp_connect2(so, so2);

decref_out:
	if (so2 != NULL) {
		if (so != so2) {
			socket_unlock(so2, 1);
		} else {
			/* Release the extra reference held for the listen socket.
			 * This is possible only for SOCK_DGRAM sockets. We refuse
			 * connecting to the same socket for SOCK_STREAM sockets.
			 */
			VERIFY(so2->so_usecount > 0);
			so2->so_usecount--;
		}
	}

	if (list_so != NULL) {
		socket_lock(list_so, 0);
		socket_unlock(list_so, 1);
	}

out:
	LCK_MTX_ASSERT(&unp->unp_mtx, LCK_MTX_ASSERT_OWNED);
	vnode_put(vp);
	return error;
}

/*
 * Returns:	0			Success
 *		EPROTOTYPE		Protocol wrong type for socket
 *		EINVAL			Invalid argument
 */
int
unp_connect2(struct socket *so, struct socket *so2)
{
	struct unpcb *unp = sotounpcb(so);
	struct unpcb *unp2;

	if (so2->so_type != so->so_type) {
		return EPROTOTYPE;
	}

	unp2 = sotounpcb(so2);

	LCK_MTX_ASSERT(&unp->unp_mtx, LCK_MTX_ASSERT_OWNED);
	LCK_MTX_ASSERT(&unp2->unp_mtx, LCK_MTX_ASSERT_OWNED);

	/* Verify both sockets are still opened */
	if (unp == 0 || unp2 == 0) {
		return EINVAL;
	}

	unp->unp_conn = unp2;
	so2->so_usecount++;

	switch (so->so_type) {
	case SOCK_DGRAM:
		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);

		if (so != so2) {
			/* Avoid lock order reversals due to drop/acquire in soisconnected. */
			/* Keep an extra reference on so2 that will be dropped
			 * soon after getting the locks in order
			 */
			socket_unlock(so2, 0);
			soisconnected(so);
			unp_get_locks_in_order(so, so2);
			VERIFY(so2->so_usecount > 0);
			so2->so_usecount--;
		} else {
			soisconnected(so);
		}

		break;

	case SOCK_STREAM:
		/* This takes care of socketpair */
		if (!(unp->unp_flags & UNP_HAVEPC) &&
		    !(unp2->unp_flags & UNP_HAVEPC)) {
			cru2x(kauth_cred_get(), &unp->unp_peercred);
			unp->unp_flags |= UNP_HAVEPC;

			cru2x(kauth_cred_get(), &unp2->unp_peercred);
			unp2->unp_flags |= UNP_HAVEPC;
		}
		unp2->unp_conn = unp;
		so->so_usecount++;

		/* Avoid lock order reversals due to drop/acquire in soisconnected. */
		socket_unlock(so, 0);
		soisconnected(so2);

		/* Keep an extra reference on so2, that will be dropped soon after
		 * getting the locks in order again.
		 */
		socket_unlock(so2, 0);

		socket_lock(so, 0);
		soisconnected(so);

		unp_get_locks_in_order(so, so2);
		/* Decrement the extra reference left before */
		VERIFY(so2->so_usecount > 0);
		so2->so_usecount--;
		break;

	default:
		panic("unknown socket type %d in unp_connect2", so->so_type);
	}
	LCK_MTX_ASSERT(&unp->unp_mtx, LCK_MTX_ASSERT_OWNED);
	LCK_MTX_ASSERT(&unp2->unp_mtx, LCK_MTX_ASSERT_OWNED);
	return 0;
}

static void
unp_disconnect(struct unpcb *unp)
{
	struct unpcb *unp2 = NULL;
	struct socket *so2 = NULL, *so;
	struct socket *waitso;
	int so_locked = 1, strdisconn = 0;

	so = unp->unp_socket;
	if (unp->unp_conn == NULL) {
		return;
	}
	lck_mtx_lock(&unp_disconnect_lock);
	while (disconnect_in_progress != 0) {
		if (so_locked == 1) {
			socket_unlock(so, 0);
			so_locked = 0;
		}
		(void)msleep((caddr_t)&disconnect_in_progress, &unp_disconnect_lock,
		    PSOCK, "disconnect", NULL);
	}
	disconnect_in_progress = 1;
	lck_mtx_unlock(&unp_disconnect_lock);

	if (so_locked == 0) {
		socket_lock(so, 0);
		so_locked = 1;
	}

	unp2 = unp->unp_conn;

	if (unp2 == 0 || unp2->unp_socket == NULL) {
		goto out;
	}
	so2 = unp2->unp_socket;

try_again:
	if (so == so2) {
		if (so_locked == 0) {
			socket_lock(so, 0);
		}
		waitso = so;
	} else if (so < so2) {
		if (so_locked == 0) {
			socket_lock(so, 0);
		}
		socket_lock(so2, 1);
		waitso = so2;
	} else {
		if (so_locked == 1) {
			socket_unlock(so, 0);
		}
		socket_lock(so2, 1);
		socket_lock(so, 0);
		waitso = so;
	}
	so_locked = 1;

	LCK_MTX_ASSERT(&unp->unp_mtx, LCK_MTX_ASSERT_OWNED);
	LCK_MTX_ASSERT(&unp2->unp_mtx, LCK_MTX_ASSERT_OWNED);

	/* Check for the UNP_DONTDISCONNECT flag, if it
	 * is set, release both sockets and go to sleep
	 */

	if ((((struct unpcb *)waitso->so_pcb)->unp_flags & UNP_DONTDISCONNECT) != 0) {
		if (so != so2) {
			socket_unlock(so2, 1);
		}
		so_locked = 0;

		(void)msleep(waitso->so_pcb, &unp->unp_mtx,
		    PSOCK | PDROP, "unpdisconnect", NULL);
		goto try_again;
	}

	if (unp->unp_conn == NULL) {
		panic("unp_conn became NULL after sleep");
	}

	unp->unp_conn = NULL;
	VERIFY(so2->so_usecount > 0);
	so2->so_usecount--;

	if (unp->unp_flags & UNP_TRACE_MDNS) {
		unp->unp_flags &= ~UNP_TRACE_MDNS;
	}

	switch (unp->unp_socket->so_type) {
	case SOCK_DGRAM:
		LIST_REMOVE(unp, unp_reflink);
		unp->unp_socket->so_state &= ~SS_ISCONNECTED;
		if (so != so2) {
			socket_unlock(so2, 1);
		}
		break;

	case SOCK_STREAM:
		unp2->unp_conn = NULL;
		VERIFY(so->so_usecount > 0);
		so->so_usecount--;

		/*
		 * Set the socket state correctly but do a wakeup later when
		 * we release all locks except the socket lock, this will avoid
		 * a deadlock.
		 */
		unp->unp_socket->so_state &= ~(SS_ISCONNECTING | SS_ISCONNECTED | SS_ISDISCONNECTING);
		unp->unp_socket->so_state |= (SS_CANTRCVMORE | SS_CANTSENDMORE | SS_ISDISCONNECTED);

		unp2->unp_socket->so_state &= ~(SS_ISCONNECTING | SS_ISCONNECTED | SS_ISDISCONNECTING);
		unp2->unp_socket->so_state |= (SS_CANTRCVMORE | SS_CANTSENDMORE | SS_ISDISCONNECTED);

		if (unp2->unp_flags & UNP_TRACE_MDNS) {
			unp2->unp_flags &= ~UNP_TRACE_MDNS;
		}

		strdisconn = 1;
		break;
	default:
		panic("unknown socket type %d", so->so_type);
	}
out:
	lck_mtx_lock(&unp_disconnect_lock);
	disconnect_in_progress = 0;
	wakeup(&disconnect_in_progress);
	lck_mtx_unlock(&unp_disconnect_lock);

	if (strdisconn) {
		socket_unlock(so, 0);
		soisdisconnected(so2);
		socket_unlock(so2, 1);

		socket_lock(so, 0);
		soisdisconnected(so);
	}
	LCK_MTX_ASSERT(&unp->unp_mtx, LCK_MTX_ASSERT_OWNED);
	return;
}

/*
 * unpcb_to_compat copies specific bits of a unpcb to a unpcb_compat format.
 * The unpcb_compat data structure is passed to user space and must not change.
 */
static void
unpcb_to_compat(struct unpcb *up, struct unpcb_compat *cp)
{
#if defined(__LP64__)
	cp->unp_link.le_next = (u_int32_t)
	    VM_KERNEL_ADDRPERM(up->unp_link.le_next);
	cp->unp_link.le_prev = (u_int32_t)
	    VM_KERNEL_ADDRPERM(up->unp_link.le_prev);
#else
	cp->unp_link.le_next = (struct unpcb_compat *)
	    VM_KERNEL_ADDRPERM(up->unp_link.le_next);
	cp->unp_link.le_prev = (struct unpcb_compat **)
	    VM_KERNEL_ADDRPERM(up->unp_link.le_prev);
#endif
	cp->unp_socket = (_UNPCB_PTR(struct socket *))
	    VM_KERNEL_ADDRPERM(up->unp_socket);
	cp->unp_vnode = (_UNPCB_PTR(struct vnode *))
	    VM_KERNEL_ADDRPERM(up->unp_vnode);
	cp->unp_ino = up->unp_ino;
	cp->unp_conn = (_UNPCB_PTR(struct unpcb_compat *))
	    VM_KERNEL_ADDRPERM(up->unp_conn);
	cp->unp_refs = (u_int32_t)VM_KERNEL_ADDRPERM(up->unp_refs.lh_first);
#if defined(__LP64__)
	cp->unp_reflink.le_next =
	    (u_int32_t)VM_KERNEL_ADDRPERM(up->unp_reflink.le_next);
	cp->unp_reflink.le_prev =
	    (u_int32_t)VM_KERNEL_ADDRPERM(up->unp_reflink.le_prev);
#else
	cp->unp_reflink.le_next =
	    (struct unpcb_compat *)VM_KERNEL_ADDRPERM(up->unp_reflink.le_next);
	cp->unp_reflink.le_prev =
	    (struct unpcb_compat **)VM_KERNEL_ADDRPERM(up->unp_reflink.le_prev);
#endif
	cp->unp_addr = (_UNPCB_PTR(struct sockaddr_un *))
	    VM_KERNEL_ADDRPERM(up->unp_addr);
	cp->unp_cc = up->unp_cc;
	cp->unp_mbcnt = up->unp_mbcnt;
	cp->unp_gencnt = up->unp_gencnt;
}

static int
unp_pcblist SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp,arg2)
	int error, i, n;
	struct unpcb *unp, **unp_list;
	unp_gen_t gencnt;
	struct xunpgen xug;
	struct unp_head *head;

	lck_rw_lock_shared(&unp_list_mtx);
	head = ((intptr_t)arg1 == SOCK_DGRAM ? &unp_dhead : &unp_shead);

	/*
	 * The process of preparing the PCB list is too time-consuming and
	 * resource-intensive to repeat twice on every request.
	 */
	if (req->oldptr == USER_ADDR_NULL) {
		n = unp_count;
		req->oldidx = 2 * sizeof(xug) + (n + n / 8) *
		    sizeof(struct xunpcb);
		lck_rw_done(&unp_list_mtx);
		return 0;
	}

	if (req->newptr != USER_ADDR_NULL) {
		lck_rw_done(&unp_list_mtx);
		return EPERM;
	}

	/*
	 * OK, now we're committed to doing something.
	 */
	gencnt = unp_gencnt;
	n = unp_count;

	bzero(&xug, sizeof(xug));
	xug.xug_len = sizeof(xug);
	xug.xug_count = n;
	xug.xug_gen = gencnt;
	xug.xug_sogen = so_gencnt;
	error = SYSCTL_OUT(req, &xug, sizeof(xug));
	if (error) {
		lck_rw_done(&unp_list_mtx);
		return error;
	}

	/*
	 * We are done if there is no pcb
	 */
	if (n == 0) {
		lck_rw_done(&unp_list_mtx);
		return 0;
	}

	size_t unp_list_len = n;
	unp_list = kalloc_type(struct unpcb *, unp_list_len, Z_WAITOK);
	if (unp_list == 0) {
		lck_rw_done(&unp_list_mtx);
		return ENOMEM;
	}

	for (unp = head->lh_first, i = 0; unp && i < n;
	    unp = unp->unp_link.le_next) {
		if (unp->unp_gencnt <= gencnt) {
			unp_list[i++] = unp;
		}
	}
	n = i;                  /* in case we lost some during malloc */

	error = 0;
	for (i = 0; i < n; i++) {
		unp = unp_list[i];
		if (unp->unp_gencnt <= gencnt) {
			struct xunpcb xu;

			bzero(&xu, sizeof(xu));
			xu.xu_len = sizeof(xu);
			xu.xu_unpp = (_UNPCB_PTR(struct unpcb_compat *))
			    VM_KERNEL_ADDRPERM(unp);
			/*
			 * XXX - need more locking here to protect against
			 * connect/disconnect races for SMP.
			 */
			if (unp->unp_addr) {
				bcopy(unp->unp_addr, &xu.xu_au,
				    unp->unp_addr->sun_len);
			}
			if (unp->unp_conn && unp->unp_conn->unp_addr) {
				bcopy(unp->unp_conn->unp_addr,
				    &xu.xu_cau,
				    unp->unp_conn->unp_addr->sun_len);
			}
			unpcb_to_compat(unp, &xu.xu_unp);
			sotoxsocket(unp->unp_socket, &xu.xu_socket);
			error = SYSCTL_OUT(req, &xu, sizeof(xu));
		}
	}
	if (!error) {
		/*
		 * Give the user an updated idea of our state.
		 * If the generation differs from what we told
		 * her before, she knows that something happened
		 * while we were processing this request, and it
		 * might be necessary to retry.
		 */
		bzero(&xug, sizeof(xug));
		xug.xug_len = sizeof(xug);
		xug.xug_gen = unp_gencnt;
		xug.xug_sogen = so_gencnt;
		xug.xug_count = unp_count;
		error = SYSCTL_OUT(req, &xug, sizeof(xug));
	}
	kfree_type(struct unpcb *, unp_list_len, unp_list);
	lck_rw_done(&unp_list_mtx);
	return error;
}

SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist,
    CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
    (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
    "List of active local datagram sockets");
SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist,
    CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
    (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
    "List of active local stream sockets");

#if XNU_TARGET_OS_OSX

static int
unp_pcblist64 SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp,arg2)
	int error, i, n;
	struct unpcb *unp, **unp_list;
	unp_gen_t gencnt;
	struct xunpgen xug;
	struct unp_head *head;

	lck_rw_lock_shared(&unp_list_mtx);
	head = ((intptr_t)arg1 == SOCK_DGRAM ? &unp_dhead : &unp_shead);

	/*
	 * The process of preparing the PCB list is too time-consuming and
	 * resource-intensive to repeat twice on every request.
	 */
	if (req->oldptr == USER_ADDR_NULL) {
		n = unp_count;
		req->oldidx = 2 * sizeof(xug) + (n + n / 8) *
		    (sizeof(struct xunpcb64));
		lck_rw_done(&unp_list_mtx);
		return 0;
	}

	if (req->newptr != USER_ADDR_NULL) {
		lck_rw_done(&unp_list_mtx);
		return EPERM;
	}

	/*
	 * OK, now we're committed to doing something.
	 */
	gencnt = unp_gencnt;
	n = unp_count;

	bzero(&xug, sizeof(xug));
	xug.xug_len = sizeof(xug);
	xug.xug_count = n;
	xug.xug_gen = gencnt;
	xug.xug_sogen = so_gencnt;
	error = SYSCTL_OUT(req, &xug, sizeof(xug));
	if (error) {
		lck_rw_done(&unp_list_mtx);
		return error;
	}

	/*
	 * We are done if there is no pcb
	 */
	if (n == 0) {
		lck_rw_done(&unp_list_mtx);
		return 0;
	}

	size_t unp_list_len = n;
	unp_list = kalloc_type(struct unpcb *, unp_list_len, Z_WAITOK);
	if (unp_list == 0) {
		lck_rw_done(&unp_list_mtx);
		return ENOMEM;
	}

	for (unp = head->lh_first, i = 0; unp && i < n;
	    unp = unp->unp_link.le_next) {
		if (unp->unp_gencnt <= gencnt) {
			unp_list[i++] = unp;
		}
	}
	n = i;                  /* in case we lost some during malloc */

	error = 0;
	for (i = 0; i < n; i++) {
		unp = unp_list[i];
		if (unp->unp_gencnt <= gencnt) {
			struct xunpcb64 xu;
			size_t          xu_len = sizeof(struct xunpcb64);

			bzero(&xu, xu_len);
			xu.xu_len = (u_int32_t)xu_len;
			xu.xu_unpp = (u_int64_t)VM_KERNEL_ADDRPERM(unp);
			xu.xunp_link.le_next = (u_int64_t)
			    VM_KERNEL_ADDRPERM(unp->unp_link.le_next);
			xu.xunp_link.le_prev = (u_int64_t)
			    VM_KERNEL_ADDRPERM(unp->unp_link.le_prev);
			xu.xunp_socket = (u_int64_t)
			    VM_KERNEL_ADDRPERM(unp->unp_socket);
			xu.xunp_vnode = (u_int64_t)
			    VM_KERNEL_ADDRPERM(unp->unp_vnode);
			xu.xunp_ino = unp->unp_ino;
			xu.xunp_conn = (u_int64_t)
			    VM_KERNEL_ADDRPERM(unp->unp_conn);
			xu.xunp_refs = (u_int64_t)
			    VM_KERNEL_ADDRPERM(unp->unp_refs.lh_first);
			xu.xunp_reflink.le_next = (u_int64_t)
			    VM_KERNEL_ADDRPERM(unp->unp_reflink.le_next);
			xu.xunp_reflink.le_prev = (u_int64_t)
			    VM_KERNEL_ADDRPERM(unp->unp_reflink.le_prev);
			xu.xunp_cc = unp->unp_cc;
			xu.xunp_mbcnt = unp->unp_mbcnt;
			xu.xunp_gencnt = unp->unp_gencnt;

			if (unp->unp_socket) {
				sotoxsocket64(unp->unp_socket, &xu.xu_socket);
			}

			/*
			 * XXX - need more locking here to protect against
			 * connect/disconnect races for SMP.
			 */
			if (unp->unp_addr) {
				bcopy(unp->unp_addr, &xu.xu_au,
				    unp->unp_addr->sun_len);
			}
			if (unp->unp_conn && unp->unp_conn->unp_addr) {
				bcopy(unp->unp_conn->unp_addr,
				    &xu.xu_cau,
				    unp->unp_conn->unp_addr->sun_len);
			}

			error = SYSCTL_OUT(req, &xu, xu_len);
		}
	}
	if (!error) {
		/*
		 * Give the user an updated idea of our state.
		 * If the generation differs from what we told
		 * her before, she knows that something happened
		 * while we were processing this request, and it
		 * might be necessary to retry.
		 */
		bzero(&xug, sizeof(xug));
		xug.xug_len = sizeof(xug);
		xug.xug_gen = unp_gencnt;
		xug.xug_sogen = so_gencnt;
		xug.xug_count = unp_count;
		error = SYSCTL_OUT(req, &xug, sizeof(xug));
	}
	kfree_type(struct unpcb *, unp_list_len, unp_list);
	lck_rw_done(&unp_list_mtx);
	return error;
}

SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist64,
    CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
    (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist64, "S,xunpcb64",
    "List of active local datagram sockets 64 bit");
SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist64,
    CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
    (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist64, "S,xunpcb64",
    "List of active local stream sockets 64 bit");

#endif /* XNU_TARGET_OS_OSX */

static void
unp_shutdown(struct unpcb *unp)
{
	struct socket *so = unp->unp_socket;
	struct socket *so2;
	if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn) {
		so2 = unp->unp_conn->unp_socket;
		unp_get_locks_in_order(so, so2);
		socantrcvmore(so2);
		socket_unlock(so2, 1);
	}
}

static void
unp_drop(struct unpcb *unp, int errno)
{
	struct socket *so = unp->unp_socket;

	so->so_error = (u_short)errno;
	unp_disconnect(unp);
}

/*
 * fg_insertuipc_mark
 *
 * Description:	Mark fileglob for insertion onto message queue if needed
 *		Also takes fileglob reference
 *
 * Parameters:	fg	Fileglob pointer to insert
 *
 * Returns:	true, if the fileglob needs to be inserted onto msg queue
 *
 * Locks:	Takes and drops fg_lock, potentially many times
 */
static boolean_t
fg_insertuipc_mark(struct fileglob * fg)
{
	boolean_t insert = FALSE;

	lck_mtx_lock_spin(&fg->fg_lock);
	while (fg->fg_lflags & FG_RMMSGQ) {
		lck_mtx_convert_spin(&fg->fg_lock);

		fg->fg_lflags |= FG_WRMMSGQ;
		msleep(&fg->fg_lflags, &fg->fg_lock, 0, "fg_insertuipc", NULL);
	}

	os_ref_retain_raw(&fg->fg_count, &f_refgrp);
	fg->fg_msgcount++;
	if (fg->fg_msgcount == 1) {
		fg->fg_lflags |= FG_INSMSGQ;
		insert = TRUE;
	}
	lck_mtx_unlock(&fg->fg_lock);
	return insert;
}

/*
 * fg_insertuipc
 *
 * Description:	Insert marked fileglob onto message queue
 *
 * Parameters:	fg	Fileglob pointer to insert
 *
 * Returns:	void
 *
 * Locks:	Takes and drops fg_lock & uipc_lock
 *		DO NOT call this function with proc_fdlock held as unp_gc()
 *		can potentially try to acquire proc_fdlock, which can result
 *		in a deadlock.
 */
static void
fg_insertuipc(struct fileglob * fg)
{
	if (fg->fg_lflags & FG_INSMSGQ) {
		lck_mtx_lock(&uipc_lock);
		LIST_INSERT_HEAD(&unp_msghead, fg, f_msglist);
		lck_mtx_unlock(&uipc_lock);
		lck_mtx_lock(&fg->fg_lock);
		fg->fg_lflags &= ~FG_INSMSGQ;
		if (fg->fg_lflags & FG_WINSMSGQ) {
			fg->fg_lflags &= ~FG_WINSMSGQ;
			wakeup(&fg->fg_lflags);
		}
		lck_mtx_unlock(&fg->fg_lock);
	}
}

/*
 * fg_removeuipc_mark
 *
 * Description:	Mark the fileglob for removal from message queue if needed
 *		Also releases fileglob message queue reference
 *
 * Parameters:	fg	Fileglob pointer to remove
 *
 * Returns:	true, if the fileglob needs to be removed from msg queue
 *
 * Locks:	Takes and drops fg_lock, potentially many times
 */
static boolean_t
fg_removeuipc_mark(struct fileglob * fg)
{
	boolean_t remove = FALSE;

	lck_mtx_lock_spin(&fg->fg_lock);
	while (fg->fg_lflags & FG_INSMSGQ) {
		lck_mtx_convert_spin(&fg->fg_lock);

		fg->fg_lflags |= FG_WINSMSGQ;
		msleep(&fg->fg_lflags, &fg->fg_lock, 0, "fg_removeuipc", NULL);
	}
	fg->fg_msgcount--;
	if (fg->fg_msgcount == 0) {
		fg->fg_lflags |= FG_RMMSGQ;
		remove = TRUE;
	}
	lck_mtx_unlock(&fg->fg_lock);
	return remove;
}

/*
 * fg_removeuipc
 *
 * Description:	Remove marked fileglob from message queue
 *
 * Parameters:	fg	Fileglob pointer to remove
 *
 * Returns:	void
 *
 * Locks:	Takes and drops fg_lock & uipc_lock
 *		DO NOT call this function with proc_fdlock held as unp_gc()
 *		can potentially try to acquire proc_fdlock, which can result
 *		in a deadlock.
 */
static void
fg_removeuipc(struct fileglob * fg)
{
	if (fg->fg_lflags & FG_RMMSGQ) {
		lck_mtx_lock(&uipc_lock);
		LIST_REMOVE(fg, f_msglist);
		lck_mtx_unlock(&uipc_lock);
		lck_mtx_lock(&fg->fg_lock);
		fg->fg_lflags &= ~FG_RMMSGQ;
		if (fg->fg_lflags & FG_WRMMSGQ) {
			fg->fg_lflags &= ~FG_WRMMSGQ;
			wakeup(&fg->fg_lflags);
		}
		lck_mtx_unlock(&fg->fg_lock);
	}
}

/*
 * Returns:	0			Success
 *		EMSGSIZE		The new fd's will not fit
 *		ENOBUFS			Cannot alloc struct fileproc
 */
int
unp_externalize(struct mbuf *rights)
{
	proc_t p = current_proc();
	struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
	struct fileglob **rp = (struct fileglob **)(cm + 1);
	const int newfds = (cm->cmsg_len - sizeof(*cm)) / sizeof(int);
	int *fds;
	int error = 0;

	fds = kalloc_data(newfds * sizeof(int), Z_WAITOK);
	if (fds == NULL) {
		error = ENOMEM;
		goto out;
	}

	/*
	 * Step 1:
	 *	Allocate all the fds, and if it doesn't fit,
	 *	then fail and discard everything.
	 */
	proc_fdlock(p);

	if (fdt_available_locked(p, newfds)) {
		for (int i = 0; i < newfds; i++) {
			error = fdalloc(p, 0, &fds[i]);
			if (error) {
				while (i-- > 0) {
					fdrelse(p, fds[i]);
				}
				break;
			}
		}
	} else {
		error = EMSGSIZE;
	}

	proc_fdunlock(p);

	if (error) {
		goto out;
	}

	/*
	 * Step 2:
	 *	At this point we are commited, and can't fail anymore.
	 *	Allocate all the fileprocs, and remove the files
	 *	from the queue.
	 *
	 *	Until we call procfdtbl_releasefd(), fds are in flux
	 *	and can't be closed.
	 */
	for (int i = 0; i < newfds; i++) {
		struct fileproc *fp = NULL;

		fp = fileproc_alloc_init();
		fp->fp_glob = rp[i];
		if (fg_removeuipc_mark(rp[i])) {
			fg_removeuipc(rp[i]);
		}

		proc_fdlock(p);
		procfdtbl_releasefd(p, fds[i], fp);
		proc_fdunlock(p);
	}

	/*
	 * Step 3:
	 *	Return the fds into `cm`.
	 *	Handle the fact ints and pointers do not have the same size.
	 */
	int *fds_out = (int *)(cm + 1);
	memcpy(fds_out, fds, newfds * sizeof(int));
	if (sizeof(struct fileglob *) != sizeof(int)) {
		bzero(fds_out + newfds,
		    newfds * (sizeof(struct fileglob *) - sizeof(int)));
	}
	OSAddAtomic(-newfds, &unp_rights);

out:
	if (error) {
		for (int i = 0; i < newfds; i++) {
			unp_discard(rp[i], p);
		}
		bzero(rp, newfds * sizeof(struct fileglob *));
	}

	kfree_data(fds, newfds * sizeof(int));
	return error;
}

void
unp_init(void)
{
	_CASSERT(UIPC_MAX_CMSG_FD >= (MCLBYTES / sizeof(int)));
	LIST_INIT(&unp_dhead);
	LIST_INIT(&unp_shead);
}

#ifndef MIN
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#endif

/*
 * Returns:	0			Success
 *		EINVAL
 *		EBADF
 */
static int
unp_internalize(struct mbuf *control, proc_t p)
{
	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
	int *fds;
	struct fileglob **rp;
	struct fileproc *fp;
	int i, error;
	int oldfds;
	uint8_t fg_ins[UIPC_MAX_CMSG_FD / 8];

	/* 64bit: cmsg_len is 'uint32_t', m_len is 'long' */
	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
	    (socklen_t)cm->cmsg_len != (socklen_t)control->m_len) {
		return EINVAL;
	}
	oldfds = (cm->cmsg_len - sizeof(*cm)) / sizeof(int);
	bzero(fg_ins, sizeof(fg_ins));

	proc_fdlock(p);
	fds = (int *)(cm + 1);

	for (i = 0; i < oldfds; i++) {
		struct fileproc *tmpfp;
		if ((tmpfp = fp_get_noref_locked(p, fds[i])) == NULL) {
			proc_fdunlock(p);
			return EBADF;
		} else if (!fg_sendable(tmpfp->fp_glob)) {
			proc_fdunlock(p);
			return EINVAL;
		} else if (fp_isguarded(tmpfp, GUARD_SOCKET_IPC)) {
			error = fp_guard_exception(p,
			    fds[i], tmpfp, kGUARD_EXC_SOCKET_IPC);
			proc_fdunlock(p);
			return error;
		}
	}
	rp = (struct fileglob **)(cm + 1);

	/* On K64 we need to walk backwards because a fileglob * is twice the size of an fd
	 * and doing them in-order would result in stomping over unprocessed fd's
	 */
	for (i = (oldfds - 1); i >= 0; i--) {
		fp = fp_get_noref_locked(p, fds[i]);
		if (fg_insertuipc_mark(fp->fp_glob)) {
			fg_ins[i / 8] |= 0x80 >> (i % 8);
		}
		rp[i] = fp->fp_glob;
	}
	proc_fdunlock(p);

	for (i = 0; i < oldfds; i++) {
		if (fg_ins[i / 8] & (0x80 >> (i % 8))) {
			VERIFY(rp[i]->fg_lflags & FG_INSMSGQ);
			fg_insertuipc(rp[i]);
		}
		(void) OSAddAtomic(1, &unp_rights);
	}

	return 0;
}

static void
unp_gc(thread_call_param_t arg0, thread_call_param_t arg1)
{
#pragma unused(arg0, arg1)
	struct fileglob *fg;
	struct socket *so;
	static struct fileglob **extra_ref;
	struct fileglob **fpp;
	int nunref, i;

restart:
	lck_mtx_lock(&uipc_lock);
	unp_defer = 0;
	/*
	 * before going through all this, set all FDs to
	 * be NOT defered and NOT externally accessible
	 */
	LIST_FOREACH(fg, &unp_msghead, f_msglist) {
		os_atomic_andnot(&fg->fg_flag, FMARK | FDEFER, relaxed);
	}
	do {
		LIST_FOREACH(fg, &unp_msghead, f_msglist) {
			lck_mtx_lock(&fg->fg_lock);
			/*
			 * If the file is not open, skip it
			 */
			if (os_ref_get_count_raw(&fg->fg_count) == 0) {
				lck_mtx_unlock(&fg->fg_lock);
				continue;
			}
			/*
			 * If we already marked it as 'defer'  in a
			 * previous pass, then try process it this time
			 * and un-mark it
			 */
			if (fg->fg_flag & FDEFER) {
				os_atomic_andnot(&fg->fg_flag, FDEFER, relaxed);
				unp_defer--;
			} else {
				/*
				 * if it's not defered, then check if it's
				 * already marked.. if so skip it
				 */
				if (fg->fg_flag & FMARK) {
					lck_mtx_unlock(&fg->fg_lock);
					continue;
				}
				/*
				 * If all references are from messages
				 * in transit, then skip it. it's not
				 * externally accessible.
				 */
				if (os_ref_get_count_raw(&fg->fg_count) ==
				    fg->fg_msgcount) {
					lck_mtx_unlock(&fg->fg_lock);
					continue;
				}
				/*
				 * If it got this far then it must be
				 * externally accessible.
				 */
				os_atomic_or(&fg->fg_flag, FMARK, relaxed);
			}
			/*
			 * either it was defered, or it is externally
			 * accessible and not already marked so.
			 * Now check if it is possibly one of OUR sockets.
			 */
			if (FILEGLOB_DTYPE(fg) != DTYPE_SOCKET ||
			    (so = (struct socket *)fg_get_data(fg)) == 0) {
				lck_mtx_unlock(&fg->fg_lock);
				continue;
			}
			if (so->so_proto->pr_domain != localdomain ||
			    (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
				lck_mtx_unlock(&fg->fg_lock);
				continue;
			}
			/*
			 * So, Ok, it's one of our sockets and it IS externally
			 * accessible (or was defered). Now we look
			 * to see if we hold any file descriptors in its
			 * message buffers. Follow those links and mark them
			 * as accessible too.
			 *
			 * In case a file is passed onto itself we need to
			 * release the file lock.
			 */
			lck_mtx_unlock(&fg->fg_lock);
			/*
			 * It's safe to lock the socket after dropping fg_lock
			 * because the socket isn't going away at this point.
			 *
			 * If we couldn't lock the socket or the socket buffer,
			 * then it's because someone holding one of these
			 * locks is stuck in unp_{internalize,externalize}().
			 * Yield to that process and restart the garbage
			 * collection.
			 */
			if (!socket_try_lock(so)) {
				lck_mtx_unlock(&uipc_lock);
				goto restart;
			}
			so->so_usecount++;
			/*
			 * Lock the receive socket buffer so that we can
			 * iterate over its mbuf list.
			 */
			if (sblock(&so->so_rcv, SBL_NOINTR | SBL_IGNDEFUNCT)) {
				socket_unlock(so, 1);
				lck_mtx_unlock(&uipc_lock);
				goto restart;
			}
			VERIFY(so->so_rcv.sb_flags & SB_LOCK);
			socket_unlock(so, 0);
			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
			socket_lock(so, 0);
			sbunlock(&so->so_rcv, TRUE);
			/*
			 * Unlock and release the reference acquired above.
			 */
			socket_unlock(so, 1);
		}
	} while (unp_defer);
	/*
	 * We grab an extra reference to each of the file table entries
	 * that are not otherwise accessible and then free the rights
	 * that are stored in messages on them.
	 *
	 * Here, we first take an extra reference to each inaccessible
	 * descriptor.  Then, we call sorflush ourself, since we know
	 * it is a Unix domain socket anyhow.  After we destroy all the
	 * rights carried in messages, we do a last closef to get rid
	 * of our extra reference.  This is the last close, and the
	 * unp_detach etc will shut down the socket.
	 *
	 * 91/09/19, bsy@cs.cmu.edu
	 */
	size_t extra_ref_size = nfiles;
	extra_ref = kalloc_type(struct fileglob *, extra_ref_size, Z_WAITOK);
	if (extra_ref == NULL) {
		lck_mtx_unlock(&uipc_lock);
		return;
	}
	nunref = 0;
	fpp = extra_ref;
	LIST_FOREACH(fg, &unp_msghead, f_msglist) {
		lck_mtx_lock(&fg->fg_lock);
		/*
		 * If it's not open, skip it
		 */
		if (os_ref_get_count_raw(&fg->fg_count) == 0) {
			lck_mtx_unlock(&fg->fg_lock);
			continue;
		}
		/*
		 * If all refs are from msgs, and it's not marked accessible
		 * then it must be referenced from some unreachable cycle
		 * of (shut-down) FDs, so include it in our
		 * list of FDs to remove
		 */
		if (fg->fg_flag & FMARK) {
			lck_mtx_unlock(&fg->fg_lock);
			continue;
		}
		if (os_ref_get_count_raw(&fg->fg_count) == fg->fg_msgcount) {
			os_ref_retain_raw(&fg->fg_count, &f_refgrp);
			*fpp++ = fg;
			nunref++;
		}
		lck_mtx_unlock(&fg->fg_lock);
	}
	lck_mtx_unlock(&uipc_lock);

	/*
	 * for each FD on our hit list, do the following two things
	 */
	for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
		struct fileglob *tfg;

		tfg = *fpp;

		if (FILEGLOB_DTYPE(tfg) == DTYPE_SOCKET) {
			so = (struct socket *)fg_get_data(tfg);

			if (so) {
				socket_lock(so, 0);
				sorflush(so);
				socket_unlock(so, 0);
			}
		}
	}
	for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
		fg_drop(PROC_NULL, *fpp);
	}

	kfree_type(struct fileglob *, extra_ref_size, extra_ref);
}

void
unp_dispose(struct mbuf *m)
{
	if (m) {
		unp_scan(m, unp_discard, NULL);
	}
}

/*
 * Returns:	0			Success
 */
static int
unp_listen(struct unpcb *unp, proc_t p)
{
	kauth_cred_t safecred = kauth_cred_proc_ref(p);
	cru2x(safecred, &unp->unp_peercred);
	kauth_cred_unref(&safecred);
	unp->unp_flags |= UNP_HAVEPCCACHED;
	return 0;
}

static void
unp_scan(struct mbuf *m0, void (*op)(struct fileglob *, void *arg), void *arg)
{
	struct mbuf *m;
	struct fileglob **rp;
	struct cmsghdr *cm;
	int i;
	int qfds;

	while (m0) {
		for (m = m0; m; m = m->m_next) {
			if (m->m_type == MT_CONTROL &&
			    (size_t)m->m_len >= sizeof(*cm)) {
				cm = mtod(m, struct cmsghdr *);
				if (cm->cmsg_level != SOL_SOCKET ||
				    cm->cmsg_type != SCM_RIGHTS) {
					continue;
				}
				qfds = (cm->cmsg_len - sizeof(*cm)) /
				    sizeof(int);
				rp = (struct fileglob **)(cm + 1);
				for (i = 0; i < qfds; i++) {
					(*op)(*rp++, arg);
				}
				break;          /* XXX, but saves time */
			}
		}
		m0 = m0->m_act;
	}
}

static void
unp_mark(struct fileglob *fg, __unused void *arg)
{
	uint32_t oflags, nflags;

	os_atomic_rmw_loop(&fg->fg_flag, oflags, nflags, relaxed, {
		if (oflags & FMARK) {
		        os_atomic_rmw_loop_give_up(return );
		}
		nflags = oflags | FMARK | FDEFER;
	});

	unp_defer++;
}

static void
unp_discard(struct fileglob *fg, void *p)
{
	if (p == NULL) {
		p = current_proc();             /* XXX */
	}
	(void) OSAddAtomic(1, &unp_disposed);
	if (fg_removeuipc_mark(fg)) {
		VERIFY(fg->fg_lflags & FG_RMMSGQ);
		fg_removeuipc(fg);
	}
	(void) OSAddAtomic(-1, &unp_rights);

	(void) fg_drop(p, fg);
}

int
unp_lock(struct socket *so, int refcount, void * lr)
{
	void * lr_saved;
	if (lr == 0) {
		lr_saved = (void *)  __builtin_return_address(0);
	} else {
		lr_saved = lr;
	}

	if (so->so_pcb) {
		lck_mtx_lock(&((struct unpcb *)so->so_pcb)->unp_mtx);
	} else {
		panic("unp_lock: so=%p NO PCB! lr=%p ref=0x%x",
		    so, lr_saved, so->so_usecount);
	}

	if (so->so_usecount < 0) {
		panic("unp_lock: so=%p so_pcb=%p lr=%p ref=0x%x",
		    so, so->so_pcb, lr_saved, so->so_usecount);
	}

	if (refcount) {
		VERIFY(so->so_usecount > 0);
		so->so_usecount++;
	}
	so->lock_lr[so->next_lock_lr] = lr_saved;
	so->next_lock_lr = (so->next_lock_lr + 1) % SO_LCKDBG_MAX;
	return 0;
}

int
unp_unlock(struct socket *so, int refcount, void * lr)
{
	void * lr_saved;
	lck_mtx_t * mutex_held = NULL;
	struct unpcb *unp = sotounpcb(so);

	if (lr == 0) {
		lr_saved = (void *) __builtin_return_address(0);
	} else {
		lr_saved = lr;
	}

	if (refcount) {
		so->so_usecount--;
	}

	if (so->so_usecount < 0) {
		panic("unp_unlock: so=%p usecount=%x", so, so->so_usecount);
	}
	if (so->so_pcb == NULL) {
		panic("unp_unlock: so=%p NO PCB usecount=%x", so, so->so_usecount);
	} else {
		mutex_held = &((struct unpcb *)so->so_pcb)->unp_mtx;
	}
	LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED);
	so->unlock_lr[so->next_unlock_lr] = lr_saved;
	so->next_unlock_lr = (so->next_unlock_lr + 1) % SO_LCKDBG_MAX;

	if (so->so_usecount == 0 && (so->so_flags & SOF_PCBCLEARING)) {
		sofreelastref(so, 1);

		if (unp->unp_addr != NULL) {
			free_sockaddr(unp->unp_addr);
		}

		lck_mtx_unlock(mutex_held);

		lck_mtx_destroy(&unp->unp_mtx, &unp_mtx_grp);
		zfree(unp_zone, unp);
		thread_call_enter(unp_gc_tcall);
	} else {
		lck_mtx_unlock(mutex_held);
	}

	return 0;
}

lck_mtx_t *
unp_getlock(struct socket *so, __unused int flags)
{
	struct unpcb *unp = (struct unpcb *)so->so_pcb;


	if (so->so_pcb) {
		if (so->so_usecount < 0) {
			panic("unp_getlock: so=%p usecount=%x", so, so->so_usecount);
		}
		return &unp->unp_mtx;
	} else {
		panic("unp_getlock: so=%p NULL so_pcb", so);
		return so->so_proto->pr_domain->dom_mtx;
	}
}