This is xnu-10002.1.13. See this file in:
/*
 * Copyright (c) 2011-2018 Apple Inc. All rights reserved.
 *
 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
 *
 * This file contains Original Code and/or Modifications of Original Code
 * as defined in and that are subject to the Apple Public Source License
 * Version 2.0 (the 'License'). You may not use this file except in
 * compliance with the License. The rights granted to you under the License
 * may not be used to create, or enable the creation or redistribution of,
 * unlawful or unlicensed copies of an Apple operating system, or to
 * circumvent, violate, or enable the circumvention or violation of, any
 * terms of an Apple operating system software license agreement.
 *
 * Please obtain a copy of the License at
 * http://www.opensource.apple.com/apsl/ and read it before using this file.
 *
 * The Original Code and all software distributed under the License are
 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
 * Please see the License for the specific language governing rights and
 * limitations under the License.
 *
 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
 */
/*
 * @OSF_COPYRIGHT@
 */
/*
 * Mach Operating System Copyright (c) 1991,1990,1989,1988,1987 Carnegie
 * Mellon University All Rights Reserved.
 *
 * Permission to use, copy, modify and distribute this software and its
 * documentation is hereby granted, provided that both the copyright notice
 * and this permission notice appear in all copies of the software,
 * derivative works or modified versions, and any portions thereof, and that
 * both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION.
 * CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES
 * WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 * Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 * School of Computer Science Carnegie Mellon University Pittsburgh PA
 * 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie Mellon the
 * rights to redistribute these changes.
 */

#include <mach_ldebug.h>

#define LOCK_PRIVATE 1

#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <kern/kalloc.h>
#include <kern/cpu_number.h>
#include <kern/locks.h>
#include <kern/misc_protos.h>
#include <kern/thread.h>
#include <kern/processor.h>
#include <kern/sched_prim.h>
#include <kern/debug.h>
#include <string.h>
#include <tests/xnupost.h>

#if     MACH_KDB
#include <ddb/db_command.h>
#include <ddb/db_output.h>
#include <ddb/db_sym.h>
#include <ddb/db_print.h>
#endif                          /* MACH_KDB */

#include <san/kasan.h>
#include <sys/kdebug.h>
#include <sys/munge.h>
#include <machine/cpu_capabilities.h>
#include <arm/cpu_data_internal.h>
#include <arm/pmap.h>

#if defined(KERNEL_INTEGRITY_KTRR) || defined(KERNEL_INTEGRITY_CTRR)
#include <arm64/amcc_rorgn.h>
#endif // defined(KERNEL_INTEGRITY_KTRR) || defined(KERNEL_INTEGRITY_CTRR)

kern_return_t arm64_lock_test(void);
kern_return_t arm64_munger_test(void);
kern_return_t ex_cb_test(void);
kern_return_t arm64_pan_test(void);
kern_return_t arm64_late_pan_test(void);
#if defined(HAS_APPLE_PAC)
#include <ptrauth.h>
kern_return_t arm64_ropjop_test(void);
#endif
#if defined(KERNEL_INTEGRITY_CTRR)
kern_return_t ctrr_test(void);
kern_return_t ctrr_test_cpu(void);
#endif

// exception handler ignores this fault address during PAN test
#if __ARM_PAN_AVAILABLE__
const uint64_t pan_ro_value = 0xFEEDB0B0DEADBEEF;
vm_offset_t pan_test_addr = 0;
vm_offset_t pan_ro_addr = 0;
volatile int pan_exception_level = 0;
volatile char pan_fault_value = 0;
#endif

#include <libkern/OSAtomic.h>
#define LOCK_TEST_ITERATIONS 50
static hw_lock_data_t   lt_hw_lock;
static lck_spin_t       lt_lck_spin_t;
static lck_mtx_t        lt_mtx;
static lck_rw_t         lt_rwlock;
static volatile uint32_t lt_counter = 0;
static volatile int     lt_spinvolatile;
static volatile uint32_t lt_max_holders = 0;
static volatile uint32_t lt_upgrade_holders = 0;
static volatile uint32_t lt_max_upgrade_holders = 0;
static volatile uint32_t lt_num_holders = 0;
static volatile uint32_t lt_done_threads;
static volatile uint32_t lt_target_done_threads;
static volatile uint32_t lt_cpu_bind_id = 0;

static void
lt_note_another_blocking_lock_holder()
{
	hw_lock_lock(&lt_hw_lock, LCK_GRP_NULL);
	lt_num_holders++;
	lt_max_holders = (lt_max_holders < lt_num_holders) ? lt_num_holders : lt_max_holders;
	hw_lock_unlock(&lt_hw_lock);
}

static void
lt_note_blocking_lock_release()
{
	hw_lock_lock(&lt_hw_lock, LCK_GRP_NULL);
	lt_num_holders--;
	hw_lock_unlock(&lt_hw_lock);
}

static void
lt_spin_a_little_bit()
{
	uint32_t i;

	for (i = 0; i < 10000; i++) {
		lt_spinvolatile++;
	}
}

static void
lt_sleep_a_little_bit()
{
	delay(100);
}

static void
lt_grab_mutex()
{
	lck_mtx_lock(&lt_mtx);
	lt_note_another_blocking_lock_holder();
	lt_sleep_a_little_bit();
	lt_counter++;
	lt_note_blocking_lock_release();
	lck_mtx_unlock(&lt_mtx);
}

static void
lt_grab_mutex_with_try()
{
	while (0 == lck_mtx_try_lock(&lt_mtx)) {
		;
	}
	lt_note_another_blocking_lock_holder();
	lt_sleep_a_little_bit();
	lt_counter++;
	lt_note_blocking_lock_release();
	lck_mtx_unlock(&lt_mtx);
}

static void
lt_grab_rw_exclusive()
{
	lck_rw_lock_exclusive(&lt_rwlock);
	lt_note_another_blocking_lock_holder();
	lt_sleep_a_little_bit();
	lt_counter++;
	lt_note_blocking_lock_release();
	lck_rw_done(&lt_rwlock);
}

static void
lt_grab_rw_exclusive_with_try()
{
	while (0 == lck_rw_try_lock_exclusive(&lt_rwlock)) {
		lt_sleep_a_little_bit();
	}

	lt_note_another_blocking_lock_holder();
	lt_sleep_a_little_bit();
	lt_counter++;
	lt_note_blocking_lock_release();
	lck_rw_done(&lt_rwlock);
}

/* Disabled until lt_grab_rw_shared() is fixed (rdar://30685840)
 *  static void
 *  lt_grab_rw_shared()
 *  {
 *       lck_rw_lock_shared(&lt_rwlock);
 *       lt_counter++;
 *
 *       lt_note_another_blocking_lock_holder();
 *       lt_sleep_a_little_bit();
 *       lt_note_blocking_lock_release();
 *
 *       lck_rw_done(&lt_rwlock);
 *  }
 */

/* Disabled until lt_grab_rw_shared_with_try() is fixed (rdar://30685840)
 *  static void
 *  lt_grab_rw_shared_with_try()
 *  {
 *       while(0 == lck_rw_try_lock_shared(&lt_rwlock));
 *       lt_counter++;
 *
 *       lt_note_another_blocking_lock_holder();
 *       lt_sleep_a_little_bit();
 *       lt_note_blocking_lock_release();
 *
 *       lck_rw_done(&lt_rwlock);
 *  }
 */

static void
lt_upgrade_downgrade_rw()
{
	boolean_t upgraded, success;

	success = lck_rw_try_lock_shared(&lt_rwlock);
	if (!success) {
		lck_rw_lock_shared(&lt_rwlock);
	}

	lt_note_another_blocking_lock_holder();
	lt_sleep_a_little_bit();
	lt_note_blocking_lock_release();

	upgraded = lck_rw_lock_shared_to_exclusive(&lt_rwlock);
	if (!upgraded) {
		success = lck_rw_try_lock_exclusive(&lt_rwlock);

		if (!success) {
			lck_rw_lock_exclusive(&lt_rwlock);
		}
	}

	lt_upgrade_holders++;
	if (lt_upgrade_holders > lt_max_upgrade_holders) {
		lt_max_upgrade_holders = lt_upgrade_holders;
	}

	lt_counter++;
	lt_sleep_a_little_bit();

	lt_upgrade_holders--;

	lck_rw_lock_exclusive_to_shared(&lt_rwlock);

	lt_spin_a_little_bit();
	lck_rw_done(&lt_rwlock);
}

#if __AMP__
const int limit = 1000000;
static int lt_stress_local_counters[MAX_CPUS];

lck_ticket_t lt_ticket_lock;
lck_grp_t lt_ticket_grp;

static void
lt_stress_ticket_lock()
{
	int local_counter = 0;

	uint cpuid = cpu_number();

	kprintf("%s>cpu %d starting\n", __FUNCTION__, cpuid);

	lck_ticket_lock(&lt_ticket_lock, &lt_ticket_grp);
	lt_counter++;
	local_counter++;
	lck_ticket_unlock(&lt_ticket_lock);

	while (lt_counter < lt_target_done_threads) {
		;
	}

	kprintf("%s>cpu %d started\n", __FUNCTION__, cpuid);

	while (lt_counter < limit) {
		lck_ticket_lock(&lt_ticket_lock, &lt_ticket_grp);
		if (lt_counter < limit) {
			lt_counter++;
			local_counter++;
		}
		lck_ticket_unlock(&lt_ticket_lock);
	}

	lt_stress_local_counters[cpuid] = local_counter;

	kprintf("%s>final counter %d cpu %d incremented the counter %d times\n", __FUNCTION__, lt_counter, cpuid, local_counter);
}
#endif

static void
lt_grab_hw_lock()
{
	hw_lock_lock(&lt_hw_lock, LCK_GRP_NULL);
	lt_counter++;
	lt_spin_a_little_bit();
	hw_lock_unlock(&lt_hw_lock);
}

static void
lt_grab_hw_lock_with_try()
{
	while (0 == hw_lock_try(&lt_hw_lock, LCK_GRP_NULL)) {
		;
	}
	lt_counter++;
	lt_spin_a_little_bit();
	hw_lock_unlock(&lt_hw_lock);
}

static void
lt_grab_hw_lock_with_to()
{
	(void)hw_lock_to(&lt_hw_lock, &hw_lock_spin_policy, LCK_GRP_NULL);
	lt_counter++;
	lt_spin_a_little_bit();
	hw_lock_unlock(&lt_hw_lock);
}

static void
lt_grab_spin_lock()
{
	lck_spin_lock(&lt_lck_spin_t);
	lt_counter++;
	lt_spin_a_little_bit();
	lck_spin_unlock(&lt_lck_spin_t);
}

static void
lt_grab_spin_lock_with_try()
{
	while (0 == lck_spin_try_lock(&lt_lck_spin_t)) {
		;
	}
	lt_counter++;
	lt_spin_a_little_bit();
	lck_spin_unlock(&lt_lck_spin_t);
}

static volatile boolean_t lt_thread_lock_grabbed;
static volatile boolean_t lt_thread_lock_success;

static void
lt_reset()
{
	lt_counter = 0;
	lt_max_holders = 0;
	lt_num_holders = 0;
	lt_max_upgrade_holders = 0;
	lt_upgrade_holders = 0;
	lt_done_threads = 0;
	lt_target_done_threads = 0;
	lt_cpu_bind_id = 0;

	OSMemoryBarrier();
}

static void
lt_trylock_hw_lock_with_to()
{
	OSMemoryBarrier();
	while (!lt_thread_lock_grabbed) {
		lt_sleep_a_little_bit();
		OSMemoryBarrier();
	}
	lt_thread_lock_success = hw_lock_to(&lt_hw_lock,
	    &hw_lock_test_give_up_policy, LCK_GRP_NULL);
	OSMemoryBarrier();
	mp_enable_preemption();
}

static void
lt_trylock_spin_try_lock()
{
	OSMemoryBarrier();
	while (!lt_thread_lock_grabbed) {
		lt_sleep_a_little_bit();
		OSMemoryBarrier();
	}
	lt_thread_lock_success = lck_spin_try_lock(&lt_lck_spin_t);
	OSMemoryBarrier();
}

static void
lt_trylock_thread(void *arg, wait_result_t wres __unused)
{
	void (*func)(void) = (void (*)(void))arg;

	func();

	OSIncrementAtomic((volatile SInt32*) &lt_done_threads);
}

static void
lt_start_trylock_thread(thread_continue_t func)
{
	thread_t thread;
	kern_return_t kr;

	kr = kernel_thread_start(lt_trylock_thread, func, &thread);
	assert(kr == KERN_SUCCESS);

	thread_deallocate(thread);
}

static void
lt_wait_for_lock_test_threads()
{
	OSMemoryBarrier();
	/* Spin to reduce dependencies */
	while (lt_done_threads < lt_target_done_threads) {
		lt_sleep_a_little_bit();
		OSMemoryBarrier();
	}
	OSMemoryBarrier();
}

static kern_return_t
lt_test_trylocks()
{
	boolean_t success;
	extern unsigned int real_ncpus;

	/*
	 * First mtx try lock succeeds, second fails.
	 */
	success = lck_mtx_try_lock(&lt_mtx);
	T_ASSERT_NOTNULL(success, "First mtx try lock");
	success = lck_mtx_try_lock(&lt_mtx);
	T_ASSERT_NULL(success, "Second mtx try lock for a locked mtx");
	lck_mtx_unlock(&lt_mtx);

	/*
	 * After regular grab, can't try lock.
	 */
	lck_mtx_lock(&lt_mtx);
	success = lck_mtx_try_lock(&lt_mtx);
	T_ASSERT_NULL(success, "try lock should fail after regular lck_mtx_lock");
	lck_mtx_unlock(&lt_mtx);

	/*
	 * Two shared try locks on a previously unheld rwlock suceed, and a
	 * subsequent exclusive attempt fails.
	 */
	success = lck_rw_try_lock_shared(&lt_rwlock);
	T_ASSERT_NOTNULL(success, "Two shared try locks on a previously unheld rwlock should succeed");
	success = lck_rw_try_lock_shared(&lt_rwlock);
	T_ASSERT_NOTNULL(success, "Two shared try locks on a previously unheld rwlock should succeed");
	success = lck_rw_try_lock_exclusive(&lt_rwlock);
	T_ASSERT_NULL(success, "exclusive lock attempt on previously held lock should fail");
	lck_rw_done(&lt_rwlock);
	lck_rw_done(&lt_rwlock);

	/*
	 * After regular shared grab, can trylock
	 * for shared but not for exclusive.
	 */
	lck_rw_lock_shared(&lt_rwlock);
	success = lck_rw_try_lock_shared(&lt_rwlock);
	T_ASSERT_NOTNULL(success, "After regular shared grab another shared try lock should succeed.");
	success = lck_rw_try_lock_exclusive(&lt_rwlock);
	T_ASSERT_NULL(success, "After regular shared grab an exclusive lock attempt should fail.");
	lck_rw_done(&lt_rwlock);
	lck_rw_done(&lt_rwlock);

	/*
	 * An exclusive try lock succeeds, subsequent shared and exclusive
	 * attempts fail.
	 */
	success = lck_rw_try_lock_exclusive(&lt_rwlock);
	T_ASSERT_NOTNULL(success, "An exclusive try lock should succeed");
	success = lck_rw_try_lock_shared(&lt_rwlock);
	T_ASSERT_NULL(success, "try lock in shared mode attempt after an exclusive grab should fail");
	success = lck_rw_try_lock_exclusive(&lt_rwlock);
	T_ASSERT_NULL(success, "try lock in exclusive mode attempt after an exclusive grab should fail");
	lck_rw_done(&lt_rwlock);

	/*
	 * After regular exclusive grab, neither kind of trylock succeeds.
	 */
	lck_rw_lock_exclusive(&lt_rwlock);
	success = lck_rw_try_lock_shared(&lt_rwlock);
	T_ASSERT_NULL(success, "After regular exclusive grab, shared trylock should not succeed");
	success = lck_rw_try_lock_exclusive(&lt_rwlock);
	T_ASSERT_NULL(success, "After regular exclusive grab, exclusive trylock should not succeed");
	lck_rw_done(&lt_rwlock);

	/*
	 * First spin lock attempts succeed, second attempts fail.
	 */
	success = hw_lock_try(&lt_hw_lock, LCK_GRP_NULL);
	T_ASSERT_NOTNULL(success, "First spin lock attempts should succeed");
	success = hw_lock_try(&lt_hw_lock, LCK_GRP_NULL);
	T_ASSERT_NULL(success, "Second attempt to spin lock should fail");
	hw_lock_unlock(&lt_hw_lock);

	hw_lock_lock(&lt_hw_lock, LCK_GRP_NULL);
	success = hw_lock_try(&lt_hw_lock, LCK_GRP_NULL);
	T_ASSERT_NULL(success, "After taking spin lock, trylock attempt should fail");
	hw_lock_unlock(&lt_hw_lock);

	lt_reset();
	lt_thread_lock_grabbed = false;
	lt_thread_lock_success = true;
	lt_target_done_threads = 1;
	OSMemoryBarrier();
	lt_start_trylock_thread(lt_trylock_hw_lock_with_to);
	success = hw_lock_to(&lt_hw_lock, &hw_lock_test_give_up_policy, LCK_GRP_NULL);
	T_ASSERT_NOTNULL(success, "First spin lock with timeout should succeed");
	if (real_ncpus == 1) {
		mp_enable_preemption(); /* if we re-enable preemption, the other thread can timeout and exit */
	}
	OSIncrementAtomic((volatile SInt32*)&lt_thread_lock_grabbed);
	lt_wait_for_lock_test_threads();
	T_ASSERT_NULL(lt_thread_lock_success, "Second spin lock with timeout should fail and timeout");
	if (real_ncpus == 1) {
		mp_disable_preemption(); /* don't double-enable when we unlock */
	}
	hw_lock_unlock(&lt_hw_lock);

	lt_reset();
	lt_thread_lock_grabbed = false;
	lt_thread_lock_success = true;
	lt_target_done_threads = 1;
	OSMemoryBarrier();
	lt_start_trylock_thread(lt_trylock_hw_lock_with_to);
	hw_lock_lock(&lt_hw_lock, LCK_GRP_NULL);
	if (real_ncpus == 1) {
		mp_enable_preemption(); /* if we re-enable preemption, the other thread can timeout and exit */
	}
	OSIncrementAtomic((volatile SInt32*)&lt_thread_lock_grabbed);
	lt_wait_for_lock_test_threads();
	T_ASSERT_NULL(lt_thread_lock_success, "after taking a spin lock, lock attempt with timeout should fail");
	if (real_ncpus == 1) {
		mp_disable_preemption(); /* don't double-enable when we unlock */
	}
	hw_lock_unlock(&lt_hw_lock);

	success = lck_spin_try_lock(&lt_lck_spin_t);
	T_ASSERT_NOTNULL(success, "spin trylock of previously unheld lock should succeed");
	success = lck_spin_try_lock(&lt_lck_spin_t);
	T_ASSERT_NULL(success, "spin trylock attempt of previously held lock (with trylock) should fail");
	lck_spin_unlock(&lt_lck_spin_t);

	lt_reset();
	lt_thread_lock_grabbed = false;
	lt_thread_lock_success = true;
	lt_target_done_threads = 1;
	lt_start_trylock_thread(lt_trylock_spin_try_lock);
	lck_spin_lock(&lt_lck_spin_t);
	if (real_ncpus == 1) {
		mp_enable_preemption(); /* if we re-enable preemption, the other thread can timeout and exit */
	}
	OSIncrementAtomic((volatile SInt32*)&lt_thread_lock_grabbed);
	lt_wait_for_lock_test_threads();
	T_ASSERT_NULL(lt_thread_lock_success, "spin trylock attempt of previously held lock should fail");
	if (real_ncpus == 1) {
		mp_disable_preemption(); /* don't double-enable when we unlock */
	}
	lck_spin_unlock(&lt_lck_spin_t);

	return KERN_SUCCESS;
}

static void
lt_thread(void *arg, wait_result_t wres __unused)
{
	void (*func)(void) = (void (*)(void))arg;
	uint32_t i;

	for (i = 0; i < LOCK_TEST_ITERATIONS; i++) {
		func();
	}

	OSIncrementAtomic((volatile SInt32*) &lt_done_threads);
}

static void
lt_start_lock_thread(thread_continue_t func)
{
	thread_t thread;
	kern_return_t kr;

	kr = kernel_thread_start(lt_thread, func, &thread);
	assert(kr == KERN_SUCCESS);

	thread_deallocate(thread);
}

#if __AMP__
static void
lt_bound_thread(void *arg, wait_result_t wres __unused)
{
	void (*func)(void) = (void (*)(void))arg;

	int cpuid = OSIncrementAtomic((volatile SInt32 *)&lt_cpu_bind_id);

	processor_t processor = processor_list;
	while ((processor != NULL) && (processor->cpu_id != cpuid)) {
		processor = processor->processor_list;
	}

	if (processor != NULL) {
		thread_bind(processor);
	}

	thread_block(THREAD_CONTINUE_NULL);

	func();

	OSIncrementAtomic((volatile SInt32*) &lt_done_threads);
}

static void
lt_e_thread(void *arg, wait_result_t wres __unused)
{
	void (*func)(void) = (void (*)(void))arg;

	thread_t thread = current_thread();

	thread_bind_cluster_type(thread, 'e', false);

	func();

	OSIncrementAtomic((volatile SInt32*) &lt_done_threads);
}

static void
lt_p_thread(void *arg, wait_result_t wres __unused)
{
	void (*func)(void) = (void (*)(void))arg;

	thread_t thread = current_thread();

	thread_bind_cluster_type(thread, 'p', false);

	func();

	OSIncrementAtomic((volatile SInt32*) &lt_done_threads);
}

static void
lt_start_lock_thread_e(thread_continue_t func)
{
	thread_t thread;
	kern_return_t kr;

	kr = kernel_thread_start(lt_e_thread, func, &thread);
	assert(kr == KERN_SUCCESS);

	thread_deallocate(thread);
}

static void
lt_start_lock_thread_p(thread_continue_t func)
{
	thread_t thread;
	kern_return_t kr;

	kr = kernel_thread_start(lt_p_thread, func, &thread);
	assert(kr == KERN_SUCCESS);

	thread_deallocate(thread);
}

static void
lt_start_lock_thread_bound(thread_continue_t func)
{
	thread_t thread;
	kern_return_t kr;

	kr = kernel_thread_start(lt_bound_thread, func, &thread);
	assert(kr == KERN_SUCCESS);

	thread_deallocate(thread);
}
#endif

static kern_return_t
lt_test_locks()
{
#if SCHED_HYGIENE_DEBUG
	/*
	 * When testing, the preemption disable threshold may be hit (for
	 * example when testing a lock timeout). To avoid this, the preemption
	 * disable measurement is temporarily disabled during lock testing.
	 */
	int old_mode = sched_preemption_disable_debug_mode;
	if (old_mode == SCHED_HYGIENE_MODE_PANIC) {
		sched_preemption_disable_debug_mode = SCHED_HYGIENE_MODE_OFF;
	}
#endif /* SCHED_HYGIENE_DEBUG */

	kern_return_t kr = KERN_SUCCESS;
	lck_grp_attr_t *lga = lck_grp_attr_alloc_init();
	lck_grp_t *lg = lck_grp_alloc_init("lock test", lga);

	lck_mtx_init(&lt_mtx, lg, LCK_ATTR_NULL);
	lck_rw_init(&lt_rwlock, lg, LCK_ATTR_NULL);
	lck_spin_init(&lt_lck_spin_t, lg, LCK_ATTR_NULL);
	hw_lock_init(&lt_hw_lock);

	T_LOG("Testing locks.");

	/* Try locks (custom) */
	lt_reset();

	T_LOG("Running try lock test.");
	kr = lt_test_trylocks();
	T_EXPECT_NULL(kr, "try lock test failed.");

	/* Uncontended mutex */
	T_LOG("Running uncontended mutex test.");
	lt_reset();
	lt_target_done_threads = 1;
	lt_start_lock_thread(lt_grab_mutex);
	lt_wait_for_lock_test_threads();
	T_EXPECT_EQ_UINT(lt_counter, LOCK_TEST_ITERATIONS * lt_target_done_threads, NULL);
	T_EXPECT_EQ_UINT(lt_max_holders, 1, NULL);

	/* Contended mutex:try locks*/
	T_LOG("Running contended mutex test.");
	lt_reset();
	lt_target_done_threads = 3;
	lt_start_lock_thread(lt_grab_mutex);
	lt_start_lock_thread(lt_grab_mutex);
	lt_start_lock_thread(lt_grab_mutex);
	lt_wait_for_lock_test_threads();
	T_EXPECT_EQ_UINT(lt_counter, LOCK_TEST_ITERATIONS * lt_target_done_threads, NULL);
	T_EXPECT_EQ_UINT(lt_max_holders, 1, NULL);

	/* Contended mutex: try locks*/
	T_LOG("Running contended mutex trylock test.");
	lt_reset();
	lt_target_done_threads = 3;
	lt_start_lock_thread(lt_grab_mutex_with_try);
	lt_start_lock_thread(lt_grab_mutex_with_try);
	lt_start_lock_thread(lt_grab_mutex_with_try);
	lt_wait_for_lock_test_threads();
	T_EXPECT_EQ_UINT(lt_counter, LOCK_TEST_ITERATIONS * lt_target_done_threads, NULL);
	T_EXPECT_EQ_UINT(lt_max_holders, 1, NULL);

	/* Uncontended exclusive rwlock */
	T_LOG("Running uncontended exclusive rwlock test.");
	lt_reset();
	lt_target_done_threads = 1;
	lt_start_lock_thread(lt_grab_rw_exclusive);
	lt_wait_for_lock_test_threads();
	T_EXPECT_EQ_UINT(lt_counter, LOCK_TEST_ITERATIONS * lt_target_done_threads, NULL);
	T_EXPECT_EQ_UINT(lt_max_holders, 1, NULL);

	/* Uncontended shared rwlock */

	/* Disabled until lt_grab_rw_shared() is fixed (rdar://30685840)
	 *  T_LOG("Running uncontended shared rwlock test.");
	 *  lt_reset();
	 *  lt_target_done_threads = 1;
	 *  lt_start_lock_thread(lt_grab_rw_shared);
	 *  lt_wait_for_lock_test_threads();
	 *  T_EXPECT_EQ_UINT(lt_counter, LOCK_TEST_ITERATIONS * lt_target_done_threads, NULL);
	 *  T_EXPECT_EQ_UINT(lt_max_holders, 1, NULL);
	 */

	/* Contended exclusive rwlock */
	T_LOG("Running contended exclusive rwlock test.");
	lt_reset();
	lt_target_done_threads = 3;
	lt_start_lock_thread(lt_grab_rw_exclusive);
	lt_start_lock_thread(lt_grab_rw_exclusive);
	lt_start_lock_thread(lt_grab_rw_exclusive);
	lt_wait_for_lock_test_threads();
	T_EXPECT_EQ_UINT(lt_counter, LOCK_TEST_ITERATIONS * lt_target_done_threads, NULL);
	T_EXPECT_EQ_UINT(lt_max_holders, 1, NULL);

	/* One shared, two exclusive */
	/* Disabled until lt_grab_rw_shared() is fixed (rdar://30685840)
	 *  T_LOG("Running test with one shared and two exclusive rw lock threads.");
	 *  lt_reset();
	 *  lt_target_done_threads = 3;
	 *  lt_start_lock_thread(lt_grab_rw_shared);
	 *  lt_start_lock_thread(lt_grab_rw_exclusive);
	 *  lt_start_lock_thread(lt_grab_rw_exclusive);
	 *  lt_wait_for_lock_test_threads();
	 *  T_EXPECT_EQ_UINT(lt_counter, LOCK_TEST_ITERATIONS * lt_target_done_threads, NULL);
	 *  T_EXPECT_EQ_UINT(lt_max_holders, 1, NULL);
	 */

	/* Four shared */
	/* Disabled until lt_grab_rw_shared() is fixed (rdar://30685840)
	 *  T_LOG("Running test with four shared holders.");
	 *  lt_reset();
	 *  lt_target_done_threads = 4;
	 *  lt_start_lock_thread(lt_grab_rw_shared);
	 *  lt_start_lock_thread(lt_grab_rw_shared);
	 *  lt_start_lock_thread(lt_grab_rw_shared);
	 *  lt_start_lock_thread(lt_grab_rw_shared);
	 *  lt_wait_for_lock_test_threads();
	 *  T_EXPECT_LE_UINT(lt_max_holders, 4, NULL);
	 */

	/* Three doing upgrades and downgrades */
	T_LOG("Running test with threads upgrading and downgrading.");
	lt_reset();
	lt_target_done_threads = 3;
	lt_start_lock_thread(lt_upgrade_downgrade_rw);
	lt_start_lock_thread(lt_upgrade_downgrade_rw);
	lt_start_lock_thread(lt_upgrade_downgrade_rw);
	lt_wait_for_lock_test_threads();
	T_EXPECT_EQ_UINT(lt_counter, LOCK_TEST_ITERATIONS * lt_target_done_threads, NULL);
	T_EXPECT_LE_UINT(lt_max_holders, 3, NULL);
	T_EXPECT_EQ_UINT(lt_max_upgrade_holders, 1, NULL);

	/* Uncontended - exclusive trylocks */
	T_LOG("Running test with single thread doing exclusive rwlock trylocks.");
	lt_reset();
	lt_target_done_threads = 1;
	lt_start_lock_thread(lt_grab_rw_exclusive_with_try);
	lt_wait_for_lock_test_threads();
	T_EXPECT_EQ_UINT(lt_counter, LOCK_TEST_ITERATIONS * lt_target_done_threads, NULL);
	T_EXPECT_EQ_UINT(lt_max_holders, 1, NULL);

	/* Uncontended - shared trylocks */
	/* Disabled until lt_grab_rw_shared_with_try() is fixed (rdar://30685840)
	 *  T_LOG("Running test with single thread doing shared rwlock trylocks.");
	 *  lt_reset();
	 *  lt_target_done_threads = 1;
	 *  lt_start_lock_thread(lt_grab_rw_shared_with_try);
	 *  lt_wait_for_lock_test_threads();
	 *  T_EXPECT_EQ_UINT(lt_counter, LOCK_TEST_ITERATIONS * lt_target_done_threads, NULL);
	 *  T_EXPECT_EQ_UINT(lt_max_holders, 1, NULL);
	 */

	/* Three doing exclusive trylocks */
	T_LOG("Running test with threads doing exclusive rwlock trylocks.");
	lt_reset();
	lt_target_done_threads = 3;
	lt_start_lock_thread(lt_grab_rw_exclusive_with_try);
	lt_start_lock_thread(lt_grab_rw_exclusive_with_try);
	lt_start_lock_thread(lt_grab_rw_exclusive_with_try);
	lt_wait_for_lock_test_threads();
	T_EXPECT_EQ_UINT(lt_counter, LOCK_TEST_ITERATIONS * lt_target_done_threads, NULL);
	T_EXPECT_EQ_UINT(lt_max_holders, 1, NULL);

	/* Three doing shared trylocks */
	/* Disabled until lt_grab_rw_shared_with_try() is fixed (rdar://30685840)
	 *  T_LOG("Running test with threads doing shared rwlock trylocks.");
	 *  lt_reset();
	 *  lt_target_done_threads = 3;
	 *  lt_start_lock_thread(lt_grab_rw_shared_with_try);
	 *  lt_start_lock_thread(lt_grab_rw_shared_with_try);
	 *  lt_start_lock_thread(lt_grab_rw_shared_with_try);
	 *  lt_wait_for_lock_test_threads();
	 *  T_EXPECT_LE_UINT(lt_counter, LOCK_TEST_ITERATIONS * lt_target_done_threads, NULL);
	 *  T_EXPECT_LE_UINT(lt_max_holders, 3, NULL);
	 */

	/* Three doing various trylocks */
	/* Disabled until lt_grab_rw_shared_with_try() is fixed (rdar://30685840)
	 *  T_LOG("Running test with threads doing mixed rwlock trylocks.");
	 *  lt_reset();
	 *  lt_target_done_threads = 4;
	 *  lt_start_lock_thread(lt_grab_rw_shared_with_try);
	 *  lt_start_lock_thread(lt_grab_rw_shared_with_try);
	 *  lt_start_lock_thread(lt_grab_rw_exclusive_with_try);
	 *  lt_start_lock_thread(lt_grab_rw_exclusive_with_try);
	 *  lt_wait_for_lock_test_threads();
	 *  T_EXPECT_LE_UINT(lt_counter, LOCK_TEST_ITERATIONS * lt_target_done_threads, NULL);
	 *  T_EXPECT_LE_UINT(lt_max_holders, 2, NULL);
	 */

	/* HW locks */
	T_LOG("Running test with hw_lock_lock()");
	lt_reset();
	lt_target_done_threads = 3;
	lt_start_lock_thread(lt_grab_hw_lock);
	lt_start_lock_thread(lt_grab_hw_lock);
	lt_start_lock_thread(lt_grab_hw_lock);
	lt_wait_for_lock_test_threads();
	T_EXPECT_EQ_UINT(lt_counter, LOCK_TEST_ITERATIONS * lt_target_done_threads, NULL);

#if __AMP__
	/* Ticket locks stress test */
	T_LOG("Running Ticket locks stress test with lck_ticket_lock()");
	extern unsigned int real_ncpus;
	lck_grp_init(&lt_ticket_grp, "ticket lock stress", LCK_GRP_ATTR_NULL);
	lck_ticket_init(&lt_ticket_lock, &lt_ticket_grp);
	lt_reset();
	lt_target_done_threads = real_ncpus;
	for (processor_t processor = processor_list; processor != NULL; processor = processor->processor_list) {
		lt_start_lock_thread_bound(lt_stress_ticket_lock);
	}
	lt_wait_for_lock_test_threads();
	bool starvation = false;
	uint total_local_count = 0;
	for (processor_t processor = processor_list; processor != NULL; processor = processor->processor_list) {
		starvation = starvation || (lt_stress_local_counters[processor->cpu_id] < 10);
		total_local_count += lt_stress_local_counters[processor->cpu_id];
	}
	if (total_local_count != lt_counter) {
		T_FAIL("Lock failure\n");
	} else if (starvation) {
		T_FAIL("Lock starvation found\n");
	} else {
		T_PASS("Ticket locks stress test with lck_ticket_lock()");
	}

	/* AMP ticket locks stress test */
	T_LOG("Running AMP Ticket locks stress test bound to clusters with lck_ticket_lock()");
	lt_reset();
	lt_target_done_threads = real_ncpus;
	for (processor_t processor = processor_list; processor != NULL; processor = processor->processor_list) {
		processor_set_t pset = processor->processor_set;
		if (pset->pset_cluster_type == PSET_AMP_P) {
			lt_start_lock_thread_p(lt_stress_ticket_lock);
		} else if (pset->pset_cluster_type == PSET_AMP_E) {
			lt_start_lock_thread_e(lt_stress_ticket_lock);
		} else {
			lt_start_lock_thread(lt_stress_ticket_lock);
		}
	}
	lt_wait_for_lock_test_threads();
#endif

	/* HW locks: trylocks */
	T_LOG("Running test with hw_lock_try()");
	lt_reset();
	lt_target_done_threads = 3;
	lt_start_lock_thread(lt_grab_hw_lock_with_try);
	lt_start_lock_thread(lt_grab_hw_lock_with_try);
	lt_start_lock_thread(lt_grab_hw_lock_with_try);
	lt_wait_for_lock_test_threads();
	T_EXPECT_EQ_UINT(lt_counter, LOCK_TEST_ITERATIONS * lt_target_done_threads, NULL);

	/* HW locks: with timeout */
	T_LOG("Running test with hw_lock_to()");
	lt_reset();
	lt_target_done_threads = 3;
	lt_start_lock_thread(lt_grab_hw_lock_with_to);
	lt_start_lock_thread(lt_grab_hw_lock_with_to);
	lt_start_lock_thread(lt_grab_hw_lock_with_to);
	lt_wait_for_lock_test_threads();
	T_EXPECT_EQ_UINT(lt_counter, LOCK_TEST_ITERATIONS * lt_target_done_threads, NULL);

	/* Spin locks */
	T_LOG("Running test with lck_spin_lock()");
	lt_reset();
	lt_target_done_threads = 3;
	lt_start_lock_thread(lt_grab_spin_lock);
	lt_start_lock_thread(lt_grab_spin_lock);
	lt_start_lock_thread(lt_grab_spin_lock);
	lt_wait_for_lock_test_threads();
	T_EXPECT_EQ_UINT(lt_counter, LOCK_TEST_ITERATIONS * lt_target_done_threads, NULL);

	/* Spin locks: trylocks */
	T_LOG("Running test with lck_spin_try_lock()");
	lt_reset();
	lt_target_done_threads = 3;
	lt_start_lock_thread(lt_grab_spin_lock_with_try);
	lt_start_lock_thread(lt_grab_spin_lock_with_try);
	lt_start_lock_thread(lt_grab_spin_lock_with_try);
	lt_wait_for_lock_test_threads();
	T_EXPECT_EQ_UINT(lt_counter, LOCK_TEST_ITERATIONS * lt_target_done_threads, NULL);

#if SCHED_HYGIENE_DEBUG
	sched_preemption_disable_debug_mode = old_mode;
#endif /* SCHED_HYGIENE_DEBUG */

	return KERN_SUCCESS;
}

#define MT_MAX_ARGS             8
#define MT_INITIAL_VALUE        0xfeedbeef
#define MT_W_VAL                (0x00000000feedbeefULL) /* Drop in zeros */
#define MT_S_VAL                (0xfffffffffeedbeefULL) /* High bit is 1, so sign-extends as negative */
#define MT_L_VAL                (((uint64_t)MT_INITIAL_VALUE) | (((uint64_t)MT_INITIAL_VALUE) << 32)) /* Two back-to-back */

typedef void (*sy_munge_t)(void*);

#define MT_FUNC(x) #x, x
struct munger_test {
	const char      *mt_name;
	sy_munge_t      mt_func;
	uint32_t        mt_in_words;
	uint32_t        mt_nout;
	uint64_t        mt_expected[MT_MAX_ARGS];
} munger_tests[] = {
	{MT_FUNC(munge_w), 1, 1, {MT_W_VAL}},
	{MT_FUNC(munge_ww), 2, 2, {MT_W_VAL, MT_W_VAL}},
	{MT_FUNC(munge_www), 3, 3, {MT_W_VAL, MT_W_VAL, MT_W_VAL}},
	{MT_FUNC(munge_wwww), 4, 4, {MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL}},
	{MT_FUNC(munge_wwwww), 5, 5, {MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL}},
	{MT_FUNC(munge_wwwwww), 6, 6, {MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL}},
	{MT_FUNC(munge_wwwwwww), 7, 7, {MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL}},
	{MT_FUNC(munge_wwwwwwww), 8, 8, {MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL}},
	{MT_FUNC(munge_wl), 3, 2, {MT_W_VAL, MT_L_VAL}},
	{MT_FUNC(munge_wwl), 4, 3, {MT_W_VAL, MT_W_VAL, MT_L_VAL}},
	{MT_FUNC(munge_wwlll), 8, 5, {MT_W_VAL, MT_W_VAL, MT_L_VAL, MT_L_VAL, MT_L_VAL}},
	{MT_FUNC(munge_wlw), 4, 3, {MT_W_VAL, MT_L_VAL, MT_W_VAL}},
	{MT_FUNC(munge_wlwwwll), 10, 7, {MT_W_VAL, MT_L_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_L_VAL, MT_L_VAL}},
	{MT_FUNC(munge_wlwwwllw), 11, 8, {MT_W_VAL, MT_L_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_L_VAL, MT_L_VAL, MT_W_VAL}},
	{MT_FUNC(munge_wlwwlwlw), 11, 8, {MT_W_VAL, MT_L_VAL, MT_W_VAL, MT_W_VAL, MT_L_VAL, MT_W_VAL, MT_L_VAL, MT_W_VAL}},
	{MT_FUNC(munge_wll), 5, 3, {MT_W_VAL, MT_L_VAL, MT_L_VAL}},
	{MT_FUNC(munge_wlll), 7, 4, {MT_W_VAL, MT_L_VAL, MT_L_VAL, MT_L_VAL}},
	{MT_FUNC(munge_wllwwll), 11, 7, {MT_W_VAL, MT_L_VAL, MT_L_VAL, MT_W_VAL, MT_W_VAL, MT_L_VAL, MT_L_VAL}},
	{MT_FUNC(munge_wwwlw), 6, 5, {MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_L_VAL, MT_W_VAL}},
	{MT_FUNC(munge_wwwlww), 7, 6, {MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_L_VAL, MT_W_VAL, MT_W_VAL}},
	{MT_FUNC(munge_wwwlwww), 8, 7, {MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_L_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL}},
	{MT_FUNC(munge_wwwl), 5, 4, {MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_L_VAL}},
	{MT_FUNC(munge_wwwwlw), 7, 6, {MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_L_VAL, MT_W_VAL}},
	{MT_FUNC(munge_wwwwllww), 10, 8, {MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_L_VAL, MT_L_VAL, MT_W_VAL, MT_W_VAL}},
	{MT_FUNC(munge_wwwwl), 6, 5, {MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_L_VAL}},
	{MT_FUNC(munge_wwwwwl), 7, 6, {MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_L_VAL}},
	{MT_FUNC(munge_wwwwwlww), 9, 8, {MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_L_VAL, MT_W_VAL, MT_W_VAL}},
	{MT_FUNC(munge_wwwwwllw), 10, 8, {MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_L_VAL, MT_L_VAL, MT_W_VAL}},
	{MT_FUNC(munge_wwwwwlll), 11, 8, {MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_L_VAL, MT_L_VAL, MT_L_VAL}},
	{MT_FUNC(munge_wwwwwwl), 8, 7, {MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_L_VAL}},
	{MT_FUNC(munge_wwwwwwlw), 9, 8, {MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_L_VAL, MT_W_VAL}},
	{MT_FUNC(munge_wwwwwwll), 10, 8, {MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_L_VAL, MT_L_VAL}},
	{MT_FUNC(munge_wsw), 3, 3, {MT_W_VAL, MT_S_VAL, MT_W_VAL}},
	{MT_FUNC(munge_wws), 3, 3, {MT_W_VAL, MT_W_VAL, MT_S_VAL}},
	{MT_FUNC(munge_wwwsw), 5, 5, {MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_S_VAL, MT_W_VAL}},
	{MT_FUNC(munge_llllll), 12, 6, {MT_L_VAL, MT_L_VAL, MT_L_VAL, MT_L_VAL, MT_L_VAL, MT_L_VAL}},
	{MT_FUNC(munge_llll), 8, 4, {MT_L_VAL, MT_L_VAL, MT_L_VAL, MT_L_VAL}},
	{MT_FUNC(munge_l), 2, 1, {MT_L_VAL}},
	{MT_FUNC(munge_lw), 3, 2, {MT_L_VAL, MT_W_VAL}},
	{MT_FUNC(munge_lwww), 5, 4, {MT_L_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL}},
	{MT_FUNC(munge_lwwwwwww), 9, 8, {MT_L_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL}},
	{MT_FUNC(munge_wlwwwl), 8, 6, {MT_W_VAL, MT_L_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_L_VAL}},
	{MT_FUNC(munge_wwlwwwl), 9, 7, {MT_W_VAL, MT_W_VAL, MT_L_VAL, MT_W_VAL, MT_W_VAL, MT_W_VAL, MT_L_VAL}}
};

#define MT_TEST_COUNT (sizeof(munger_tests) / sizeof(struct munger_test))

static void
mt_reset(uint32_t in_words, size_t total_size, uint32_t *data)
{
	uint32_t i;

	for (i = 0; i < in_words; i++) {
		data[i] = MT_INITIAL_VALUE;
	}

	if (in_words * sizeof(uint32_t) < total_size) {
		bzero(&data[in_words], total_size - in_words * sizeof(uint32_t));
	}
}

static void
mt_test_mungers()
{
	uint64_t data[MT_MAX_ARGS];
	uint32_t i, j;

	for (i = 0; i < MT_TEST_COUNT; i++) {
		struct munger_test *test = &munger_tests[i];
		int pass = 1;

		T_LOG("Testing %s", test->mt_name);

		mt_reset(test->mt_in_words, sizeof(data), (uint32_t*)data);
		test->mt_func(data);

		for (j = 0; j < test->mt_nout; j++) {
			if (data[j] != test->mt_expected[j]) {
				T_FAIL("Index %d: expected %llx, got %llx.", j, test->mt_expected[j], data[j]);
				pass = 0;
			}
		}
		if (pass) {
			T_PASS(test->mt_name);
		}
	}
}

/* Exception Callback Test */
static ex_cb_action_t
excb_test_action(
	ex_cb_class_t           cb_class,
	void                            *refcon,
	const ex_cb_state_t     *state
	)
{
	ex_cb_state_t *context = (ex_cb_state_t *)refcon;

	if ((NULL == refcon) || (NULL == state)) {
		return EXCB_ACTION_TEST_FAIL;
	}

	context->far = state->far;

	switch (cb_class) {
	case EXCB_CLASS_TEST1:
		return EXCB_ACTION_RERUN;
	case EXCB_CLASS_TEST2:
		return EXCB_ACTION_NONE;
	default:
		return EXCB_ACTION_TEST_FAIL;
	}
}


kern_return_t
ex_cb_test()
{
	const vm_offset_t far1 = 0xdead0001;
	const vm_offset_t far2 = 0xdead0002;
	kern_return_t kr;
	ex_cb_state_t test_context_1 = {0xdeadbeef};
	ex_cb_state_t test_context_2 = {0xdeadbeef};
	ex_cb_action_t action;

	T_LOG("Testing Exception Callback.");

	T_LOG("Running registration test.");

	kr = ex_cb_register(EXCB_CLASS_TEST1, &excb_test_action, &test_context_1);
	T_ASSERT(KERN_SUCCESS == kr, "First registration of TEST1 exception callback");
	kr = ex_cb_register(EXCB_CLASS_TEST2, &excb_test_action, &test_context_2);
	T_ASSERT(KERN_SUCCESS == kr, "First registration of TEST2 exception callback");

	kr = ex_cb_register(EXCB_CLASS_TEST2, &excb_test_action, &test_context_2);
	T_ASSERT(KERN_SUCCESS != kr, "Second registration of TEST2 exception callback");
	kr = ex_cb_register(EXCB_CLASS_TEST1, &excb_test_action, &test_context_1);
	T_ASSERT(KERN_SUCCESS != kr, "Second registration of TEST1 exception callback");

	T_LOG("Running invocation test.");

	action = ex_cb_invoke(EXCB_CLASS_TEST1, far1);
	T_ASSERT(EXCB_ACTION_RERUN == action, NULL);
	T_ASSERT(far1 == test_context_1.far, NULL);

	action = ex_cb_invoke(EXCB_CLASS_TEST2, far2);
	T_ASSERT(EXCB_ACTION_NONE == action, NULL);
	T_ASSERT(far2 == test_context_2.far, NULL);

	action = ex_cb_invoke(EXCB_CLASS_TEST3, 0);
	T_ASSERT(EXCB_ACTION_NONE == action, NULL);

	return KERN_SUCCESS;
}

#if defined(HAS_APPLE_PAC)


kern_return_t
arm64_ropjop_test()
{
	T_LOG("Testing ROP/JOP");

	/* how is ROP/JOP configured */
	boolean_t config_rop_enabled = TRUE;
	boolean_t config_jop_enabled = TRUE;


	if (config_jop_enabled) {
		/* jop key */
		uint64_t apiakey_hi = __builtin_arm_rsr64("APIAKEYHI_EL1");
		uint64_t apiakey_lo = __builtin_arm_rsr64("APIAKEYLO_EL1");

		T_EXPECT(apiakey_hi != 0 && apiakey_lo != 0, NULL);
	}

	if (config_rop_enabled) {
		/* rop key */
		uint64_t apibkey_hi = __builtin_arm_rsr64("APIBKEYHI_EL1");
		uint64_t apibkey_lo = __builtin_arm_rsr64("APIBKEYLO_EL1");

		T_EXPECT(apibkey_hi != 0 && apibkey_lo != 0, NULL);

		/* sign a KVA (the address of this function) */
		uint64_t kva_signed = (uint64_t) ptrauth_sign_unauthenticated((void *)&config_rop_enabled, ptrauth_key_asib, 0);

		/* assert it was signed (changed) */
		T_EXPECT(kva_signed != (uint64_t)&config_rop_enabled, NULL);

		/* authenticate the newly signed KVA */
		uint64_t kva_authed = (uint64_t) ml_auth_ptr_unchecked((void *)kva_signed, ptrauth_key_asib, 0);

		/* assert the authed KVA is the original KVA */
		T_EXPECT(kva_authed == (uint64_t)&config_rop_enabled, NULL);

		/* corrupt a signed ptr, auth it, ensure auth failed */
		uint64_t kva_corrupted = kva_signed ^ 1;

		/* authenticate the corrupted pointer */
		kva_authed = (uint64_t) ml_auth_ptr_unchecked((void *)kva_corrupted, ptrauth_key_asib, 0);

		/* when AuthIB fails, bits 63:62 will be set to 2'b10 */
		uint64_t auth_fail_mask = 3ULL << 61;
		uint64_t authib_fail = 2ULL << 61;

		/* assert the failed authIB of corrupted pointer is tagged */
		T_EXPECT((kva_authed & auth_fail_mask) == authib_fail, NULL);
	}

	return KERN_SUCCESS;
}
#endif /* defined(HAS_APPLE_PAC) */

#if __ARM_PAN_AVAILABLE__

struct pan_test_thread_args {
	volatile bool join;
};

static void
arm64_pan_test_thread(void *arg, wait_result_t __unused wres)
{
	T_ASSERT(__builtin_arm_rsr("pan") != 0, NULL);

	struct pan_test_thread_args *args = arg;

	for (processor_t p = processor_list; p != NULL; p = p->processor_list) {
		thread_bind(p);
		thread_block(THREAD_CONTINUE_NULL);
		kprintf("Running PAN test on cpu %d\n", p->cpu_id);
		arm64_pan_test();
	}

	/* unbind thread from specific cpu */
	thread_bind(PROCESSOR_NULL);
	thread_block(THREAD_CONTINUE_NULL);

	while (!args->join) {
		;
	}

	thread_wakeup(args);
}

kern_return_t
arm64_late_pan_test()
{
	thread_t thread;
	kern_return_t kr;

	struct pan_test_thread_args args;
	args.join = false;

	kr = kernel_thread_start(arm64_pan_test_thread, &args, &thread);
	assert(kr == KERN_SUCCESS);

	thread_deallocate(thread);

	assert_wait(&args, THREAD_UNINT);
	args.join = true;
	thread_block(THREAD_CONTINUE_NULL);
	return KERN_SUCCESS;
}

// Disable KASAN checking for PAN tests as the fixed commpage address doesn't have a shadow mapping

static NOKASAN bool
arm64_pan_test_pan_enabled_fault_handler(arm_saved_state_t * state)
{
	bool retval                 = false;
	uint32_t esr                = get_saved_state_esr(state);
	esr_exception_class_t class = ESR_EC(esr);
	fault_status_t fsc          = ISS_IA_FSC(ESR_ISS(esr));
	uint32_t cpsr               = get_saved_state_cpsr(state);
	uint64_t far                = get_saved_state_far(state);

	if ((class == ESR_EC_DABORT_EL1) && (fsc == FSC_PERMISSION_FAULT_L3) &&
	    (cpsr & PSR64_PAN) &&
	    ((esr & ISS_DA_WNR) ? mmu_kvtop_wpreflight(far) : mmu_kvtop(far))) {
		++pan_exception_level;
		// read the user-accessible value to make sure
		// pan is enabled and produces a 2nd fault from
		// the exception handler
		if (pan_exception_level == 1) {
			ml_expect_fault_begin(arm64_pan_test_pan_enabled_fault_handler, far);
			pan_fault_value = *(volatile char *)far;
			ml_expect_fault_end();
			__builtin_arm_wsr("pan", 1); // turn PAN back on after the nested exception cleared it for this context
		}
		// this fault address is used for PAN test
		// disable PAN and rerun
		mask_saved_state_cpsr(state, 0, PSR64_PAN);

		retval = true;
	}

	return retval;
}

static NOKASAN bool
arm64_pan_test_pan_disabled_fault_handler(arm_saved_state_t * state)
{
	bool retval             = false;
	uint32_t esr            = get_saved_state_esr(state);
	esr_exception_class_t class = ESR_EC(esr);
	fault_status_t fsc      = ISS_IA_FSC(ESR_ISS(esr));
	uint32_t cpsr           = get_saved_state_cpsr(state);

	if ((class == ESR_EC_DABORT_EL1) && (fsc == FSC_PERMISSION_FAULT_L3) &&
	    !(cpsr & PSR64_PAN)) {
		++pan_exception_level;
		// On an exception taken from a PAN-disabled context, verify
		// that PAN is re-enabled for the exception handler and that
		// accessing the test address produces a PAN fault.
		ml_expect_fault_begin(arm64_pan_test_pan_enabled_fault_handler, pan_test_addr);
		pan_fault_value = *(volatile char *)pan_test_addr;
		ml_expect_fault_end();
		__builtin_arm_wsr("pan", 1); // turn PAN back on after the nested exception cleared it for this context
		add_saved_state_pc(state, 4);

		retval = true;
	}

	return retval;
}

NOKASAN kern_return_t
arm64_pan_test()
{
	bool values_match = false;
	vm_offset_t priv_addr = 0;

	T_LOG("Testing PAN.");


	T_ASSERT((__builtin_arm_rsr("SCTLR_EL1") & SCTLR_PAN_UNCHANGED) == 0, "SCTLR_EL1.SPAN must be cleared");

	T_ASSERT(__builtin_arm_rsr("pan") != 0, NULL);

	pan_exception_level = 0;
	pan_fault_value = 0xDE;

	// Create an empty pmap, so we can map a user-accessible page
	pmap_t pmap = pmap_create_options(NULL, 0, PMAP_CREATE_64BIT);
	T_ASSERT(pmap != NULL, NULL);

	// Get a physical page to back the mapping
	vm_page_t vm_page = vm_page_grab();
	T_ASSERT(vm_page != VM_PAGE_NULL, NULL);
	ppnum_t pn = VM_PAGE_GET_PHYS_PAGE(vm_page);
	pmap_paddr_t pa = ptoa(pn);

	// Write to the underlying physical page through the physical aperture
	// so we can test against a known value
	priv_addr = phystokv((pmap_paddr_t)pa);
	*(volatile char *)priv_addr = 0xAB;

	// Map the page in the user address space at some, non-zero address
	pan_test_addr = PAGE_SIZE;
	pmap_enter(pmap, pan_test_addr, pn, VM_PROT_READ, VM_PROT_READ, 0, true);

	// Context-switch with PAN disabled is prohibited; prevent test logging from
	// triggering a voluntary context switch.
	mp_disable_preemption();

	// Insert the user's pmap root table pointer in TTBR0
	pmap_t old_pmap = vm_map_pmap(current_thread()->map);
	pmap_switch(pmap);

	// Below should trigger a PAN exception as pan_test_addr is accessible
	// in user mode
	// The exception handler, upon recognizing the fault address is pan_test_addr,
	// will disable PAN and rerun this instruction successfully
	ml_expect_fault_begin(arm64_pan_test_pan_enabled_fault_handler, pan_test_addr);
	values_match = (*(volatile char *)pan_test_addr == *(volatile char *)priv_addr);
	ml_expect_fault_end();
	T_ASSERT(values_match, NULL);

	T_ASSERT(pan_exception_level == 2, NULL);

	T_ASSERT(__builtin_arm_rsr("pan") == 0, NULL);

	T_ASSERT(pan_fault_value == *(char *)priv_addr, NULL);

	pan_exception_level = 0;
	pan_fault_value = 0xAD;
	pan_ro_addr = (vm_offset_t) &pan_ro_value;

	// Force a permission fault while PAN is disabled to make sure PAN is
	// re-enabled during the exception handler.
	ml_expect_fault_begin(arm64_pan_test_pan_disabled_fault_handler, pan_ro_addr);
	*((volatile uint64_t*)pan_ro_addr) = 0xFEEDFACECAFECAFE;
	ml_expect_fault_end();

	T_ASSERT(pan_exception_level == 2, NULL);

	T_ASSERT(__builtin_arm_rsr("pan") == 0, NULL);

	T_ASSERT(pan_fault_value == *(char *)priv_addr, NULL);

	pmap_switch(old_pmap);

	pan_ro_addr = 0;

	__builtin_arm_wsr("pan", 1);

	mp_enable_preemption();

	pmap_remove(pmap, pan_test_addr, pan_test_addr + PAGE_SIZE);
	pan_test_addr = 0;

	vm_page_lock_queues();
	vm_page_free(vm_page);
	vm_page_unlock_queues();
	pmap_destroy(pmap);

	return KERN_SUCCESS;
}
#endif /* __ARM_PAN_AVAILABLE__ */


kern_return_t
arm64_lock_test()
{
	return lt_test_locks();
}

kern_return_t
arm64_munger_test()
{
	mt_test_mungers();
	return 0;
}

#if defined(KERNEL_INTEGRITY_CTRR) && defined(CONFIG_XNUPOST)
SECURITY_READ_ONLY_LATE(uint64_t) ctrr_ro_test;
uint64_t ctrr_nx_test = 0xd65f03c0; /* RET */
volatile uint64_t ctrr_exception_esr;
vm_offset_t ctrr_test_va;
vm_offset_t ctrr_test_page;

kern_return_t
ctrr_test(void)
{
	processor_t p;
	boolean_t ctrr_disable = FALSE;

	PE_parse_boot_argn("-unsafe_kernel_text", &ctrr_disable, sizeof(ctrr_disable));

#if CONFIG_CSR_FROM_DT
	if (csr_unsafe_kernel_text) {
		ctrr_disable = TRUE;
	}
#endif /* CONFIG_CSR_FROM_DT */

	if (ctrr_disable) {
		T_LOG("Skipping CTRR test when -unsafe_kernel_text boot-arg present");
		return KERN_SUCCESS;
	}

	T_LOG("Running CTRR test.");

	for (p = processor_list; p != NULL; p = p->processor_list) {
		thread_bind(p);
		thread_block(THREAD_CONTINUE_NULL);
		T_LOG("Running CTRR test on cpu %d\n", p->cpu_id);
		ctrr_test_cpu();
	}

	/* unbind thread from specific cpu */
	thread_bind(PROCESSOR_NULL);
	thread_block(THREAD_CONTINUE_NULL);

	return KERN_SUCCESS;
}

static bool
ctrr_test_ro_fault_handler(arm_saved_state_t * state)
{
	bool retval                 = false;
	uint32_t esr                = get_saved_state_esr(state);
	esr_exception_class_t class = ESR_EC(esr);
	fault_status_t fsc          = ISS_DA_FSC(ESR_ISS(esr));

	if ((class == ESR_EC_DABORT_EL1) && (fsc == FSC_PERMISSION_FAULT_L3)) {
		ctrr_exception_esr = esr;
		add_saved_state_pc(state, 4);
		retval = true;
	}

	return retval;
}

static bool
ctrr_test_nx_fault_handler(arm_saved_state_t * state)
{
	bool retval                 = false;
	uint32_t esr                = get_saved_state_esr(state);
	esr_exception_class_t class = ESR_EC(esr);
	fault_status_t fsc          = ISS_IA_FSC(ESR_ISS(esr));

	if ((class == ESR_EC_IABORT_EL1) && (fsc == FSC_PERMISSION_FAULT_L3)) {
		ctrr_exception_esr = esr;
		/* return to the instruction immediately after the call to NX page */
		set_saved_state_pc(state, get_saved_state_lr(state));
		retval = true;
	}

	return retval;
}

// Disable KASAN checking for CTRR tests as the test VA  doesn't have a shadow mapping

/* test CTRR on a cpu, caller to bind thread to desired cpu */
/* ctrr_test_page was reserved during bootstrap process */
NOKASAN kern_return_t
ctrr_test_cpu(void)
{
	ppnum_t ro_pn, nx_pn;
	uint64_t *ctrr_ro_test_ptr;
	void (*ctrr_nx_test_ptr)(void);
	kern_return_t kr;
	uint64_t prot = 0;
	extern vm_offset_t virtual_space_start;

	/* ctrr read only region = [rorgn_begin_va, rorgn_end_va) */

	vm_offset_t rorgn_begin_va = phystokv(__builtin_arm_rsr64("S3_4_C15_C2_3"));
	vm_offset_t rorgn_end_va = phystokv(__builtin_arm_rsr64("S3_4_C15_C2_4")) + 1;
	vm_offset_t ro_test_va = (vm_offset_t)&ctrr_ro_test;
	vm_offset_t nx_test_va = (vm_offset_t)&ctrr_nx_test;

	T_EXPECT(rorgn_begin_va <= ro_test_va && ro_test_va < rorgn_end_va, "Expect ro_test_va to be inside the CTRR region");
	T_EXPECT((nx_test_va < rorgn_begin_va) ^ (nx_test_va >= rorgn_end_va), "Expect nx_test_va to be outside the CTRR region");

	ro_pn = pmap_find_phys(kernel_pmap, ro_test_va);
	nx_pn = pmap_find_phys(kernel_pmap, nx_test_va);
	T_EXPECT(ro_pn && nx_pn, "Expect ro page number and nx page number to be non zero");

	T_LOG("test virtual page: %p, ctrr_ro_test: %p, ctrr_nx_test: %p, ro_pn: %x, nx_pn: %x ",
	    (void *)ctrr_test_page, &ctrr_ro_test, &ctrr_nx_test, ro_pn, nx_pn);

	prot = pmap_get_arm64_prot(kernel_pmap, ctrr_test_page);
	T_EXPECT(~prot & ARM_TTE_VALID, "Expect ctrr_test_page to be unmapped");

	T_LOG("Read only region test mapping virtual page %p to CTRR RO page number %d", ctrr_test_page, ro_pn);
	kr = pmap_enter(kernel_pmap, ctrr_test_page, ro_pn,
	    VM_PROT_READ | VM_PROT_WRITE, VM_PROT_NONE, VM_WIMG_USE_DEFAULT, FALSE);
	T_EXPECT(kr == KERN_SUCCESS, "Expect pmap_enter of RW mapping to succeed");

	// assert entire mmu prot path (Hierarchical protection model) is NOT RO
	// fetch effective block level protections from table/block entries
	prot = pmap_get_arm64_prot(kernel_pmap, ctrr_test_page);
	T_EXPECT(ARM_PTE_EXTRACT_AP(prot) == AP_RWNA && (prot & ARM_PTE_PNX), "Mapping is EL1 RWNX");

	ctrr_test_va = ctrr_test_page + (ro_test_va & PAGE_MASK);
	ctrr_ro_test_ptr = (void *)ctrr_test_va;

	T_LOG("Read only region test writing to %p to provoke data abort", ctrr_ro_test_ptr);

	// should cause data abort
	ml_expect_fault_begin(ctrr_test_ro_fault_handler, ctrr_test_va);
	*ctrr_ro_test_ptr = 1;
	ml_expect_fault_end();

	// ensure write permission fault at expected level
	// data abort handler will set ctrr_exception_esr when ctrr_test_va takes a permission fault

	T_EXPECT(ESR_EC(ctrr_exception_esr) == ESR_EC_DABORT_EL1, "Data Abort from EL1 expected");
	T_EXPECT(ISS_DA_FSC(ESR_ISS(ctrr_exception_esr)) == FSC_PERMISSION_FAULT_L3, "Permission Fault Expected");
	T_EXPECT(ESR_ISS(ctrr_exception_esr) & ISS_DA_WNR, "Write Fault Expected");

	ctrr_test_va = 0;
	ctrr_exception_esr = 0;
	pmap_remove(kernel_pmap, ctrr_test_page, ctrr_test_page + PAGE_SIZE);

	T_LOG("No execute test mapping virtual page %p to CTRR PXN page number %d", ctrr_test_page, nx_pn);

	kr = pmap_enter(kernel_pmap, ctrr_test_page, nx_pn,
	    VM_PROT_READ | VM_PROT_EXECUTE, VM_PROT_NONE, VM_WIMG_USE_DEFAULT, FALSE);
	T_EXPECT(kr == KERN_SUCCESS, "Expect pmap_enter of RX mapping to succeed");

	// assert entire mmu prot path (Hierarchical protection model) is NOT XN
	prot = pmap_get_arm64_prot(kernel_pmap, ctrr_test_page);
	T_EXPECT(ARM_PTE_EXTRACT_AP(prot) == AP_RONA && (~prot & ARM_PTE_PNX), "Mapping is EL1 ROX");

	ctrr_test_va = ctrr_test_page + (nx_test_va & PAGE_MASK);
#if __has_feature(ptrauth_calls)
	ctrr_nx_test_ptr = ptrauth_sign_unauthenticated((void *)ctrr_test_va, ptrauth_key_function_pointer, 0);
#else
	ctrr_nx_test_ptr = (void *)ctrr_test_va;
#endif

	T_LOG("No execute test calling ctrr_nx_test_ptr(): %p to provoke instruction abort", ctrr_nx_test_ptr);

	// should cause prefetch abort
	ml_expect_fault_begin(ctrr_test_nx_fault_handler, ctrr_test_va);
	ctrr_nx_test_ptr();
	ml_expect_fault_end();

	// TODO: ensure execute permission fault at expected level
	T_EXPECT(ESR_EC(ctrr_exception_esr) == ESR_EC_IABORT_EL1, "Instruction abort from EL1 Expected");
	T_EXPECT(ISS_DA_FSC(ESR_ISS(ctrr_exception_esr)) == FSC_PERMISSION_FAULT_L3, "Permission Fault Expected");

	ctrr_test_va = 0;
	ctrr_exception_esr = 0;

	pmap_remove(kernel_pmap, ctrr_test_page, ctrr_test_page + PAGE_SIZE);

	T_LOG("Expect no faults when reading CTRR region to verify correct programming of CTRR limits");
	for (vm_offset_t addr = rorgn_begin_va; addr < rorgn_end_va; addr += 8) {
		volatile uint64_t x = *(uint64_t *)addr;
		(void) x; /* read for side effect only */
	}

	return KERN_SUCCESS;
}
#endif /* defined(KERNEL_INTEGRITY_CTRR) && defined(CONFIG_XNUPOST) */