This is xnu-11215.1.10. See this file in:
/*
* Copyright (c) 2006-2018 Apple Inc. All rights reserved.
*
* @APPLE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this
* file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_LICENSE_HEADER_END@
*/
#include <sys/cdefs.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include <sys/errno.h>
#include <sys/msgbuf.h>
#include <sys/resource.h>
#include <sys/process_policy.h>
#include <sys/event.h>
#include <mach/message.h>
#include "libproc_internal.h"
int __proc_info(int callnum, int pid, int flavor, uint64_t arg, void * buffer, int buffersize);
int __proc_info_extended_id(int32_t callnum, int32_t pid, uint32_t flavor, uint32_t flags, uint64_t ext_id, uint64_t arg, user_addr_t buffer, int32_t buffersize);
__private_extern__ int proc_setthreadname(void * buffer, int buffersize);
int __process_policy(int scope, int action, int policy, int policy_subtype, proc_policy_attribute_t * attrp, pid_t target_pid, uint64_t target_threadid);
int proc_rlimit_control(pid_t pid, int flavor, void *arg);
int
proc_listpids(uint32_t type, uint32_t typeinfo, void *buffer, int buffersize)
{
int retval;
if ((type >= PROC_ALL_PIDS) || (type <= PROC_PPID_ONLY)) {
if ((retval = __proc_info(PROC_INFO_CALL_LISTPIDS, type, typeinfo, (uint64_t)0, buffer, buffersize)) == -1) {
return 0;
}
} else {
errno = EINVAL;
retval = 0;
}
return retval;
}
int
proc_listallpids(void * buffer, int buffersize)
{
int numpids;
numpids = proc_listpids(PROC_ALL_PIDS, (uint32_t)0, buffer, buffersize);
if (numpids == -1) {
return -1;
} else {
return numpids / sizeof(int);
}
}
int
proc_listpgrppids(pid_t pgrpid, void * buffer, int buffersize)
{
int numpids;
numpids = proc_listpids(PROC_PGRP_ONLY, (uint32_t)pgrpid, buffer, buffersize);
if (numpids == -1) {
return -1;
} else {
return numpids / sizeof(int);
}
}
int
proc_listchildpids(pid_t ppid, void * buffer, int buffersize)
{
int numpids;
numpids = proc_listpids(PROC_PPID_ONLY, (uint32_t)ppid, buffer, buffersize);
if (numpids == -1) {
return -1;
} else {
return numpids / sizeof(int);
}
}
int
proc_pidinfo(int pid, int flavor, uint64_t arg, void *buffer, int buffersize)
{
int retval;
if ((retval = __proc_info(PROC_INFO_CALL_PIDINFO, pid, flavor, arg, buffer, buffersize)) == -1) {
return 0;
}
return retval;
}
int
proc_pidoriginatorinfo(int flavor, void *buffer, int buffersize)
{
int retval;
if ((retval = __proc_info(PROC_INFO_CALL_PIDORIGINATORINFO, getpid(), flavor, 0, buffer, buffersize)) == -1) {
return 0;
}
return retval;
}
int
proc_listcoalitions(int flavor, int coaltype, void *buffer, int buffersize)
{
int retval;
if ((retval = __proc_info(PROC_INFO_CALL_LISTCOALITIONS, flavor, coaltype, 0, buffer, buffersize)) == -1) {
return 0;
}
return retval;
}
int
proc_pid_rusage(int pid, int flavor, rusage_info_t *buffer)
{
return __proc_info(PROC_INFO_CALL_PIDRUSAGE, pid, flavor, 0, buffer, 0);
}
int
proc_setthread_cpupercent(uint8_t percentage, uint32_t ms_refill)
{
uint32_t arg = 0;
/* Pack percentage and refill into a 32-bit number to match existing kernel implementation */
if ((percentage >= 100) || (ms_refill & ~0xffffffU)) {
errno = EINVAL;
return -1;
}
arg = ((ms_refill << 8) | percentage);
return proc_rlimit_control(-1, RLIMIT_THREAD_CPULIMITS, (void *)(uintptr_t)arg);
}
int
proc_pidfdinfo(int pid, int fd, int flavor, void * buffer, int buffersize)
{
int retval;
if ((retval = __proc_info(PROC_INFO_CALL_PIDFDINFO, pid, flavor, (uint64_t)fd, buffer, buffersize)) == -1) {
return 0;
}
return retval;
}
int
proc_pidfileportinfo(int pid, uint32_t fileport, int flavor, void *buffer, int buffersize)
{
int retval;
if ((retval = __proc_info(PROC_INFO_CALL_PIDFILEPORTINFO, pid, flavor, (uint64_t)fileport, buffer, buffersize)) == -1) {
return 0;
}
return retval;
}
int
proc_piddynkqueueinfo(int pid, int flavor, kqueue_id_t kq_id, void *buffer, int buffersize)
{
int ret;
if ((ret = __proc_info(PROC_INFO_CALL_PIDDYNKQUEUEINFO, pid, flavor, (uint64_t)kq_id, buffer, buffersize)) == -1) {
return 0;
}
return ret;
}
int
proc_udata_info(int pid, int flavor, void *buffer, int buffersize)
{
return __proc_info(PROC_INFO_CALL_UDATA_INFO, pid, flavor, 0, buffer, buffersize);
}
/* only used by dyld which links with libsystem_kernel.a */
__private_extern__ int
proc_set_dyld_all_image_info(void *buffer, int buffersize)
{
return __proc_info(PROC_INFO_CALL_SET_DYLD_IMAGES, getpid(), 0, 0, buffer, buffersize);
}
int
proc_name(int pid, void * buffer, uint32_t buffersize)
{
int retval = 0, len;
struct proc_bsdinfo pbsd;
if (buffersize < sizeof(pbsd.pbi_name)) {
errno = ENOMEM;
return 0;
}
retval = proc_pidinfo(pid, PROC_PIDTBSDINFO, (uint64_t)0, &pbsd, sizeof(struct proc_bsdinfo));
if (retval != 0) {
if (pbsd.pbi_name[0]) {
bcopy(&pbsd.pbi_name, buffer, sizeof(pbsd.pbi_name));
} else {
bcopy(&pbsd.pbi_comm, buffer, sizeof(pbsd.pbi_comm));
}
len = (int)strlen(buffer);
return len;
}
return 0;
}
int
proc_regionfilename(int pid, uint64_t address, void * buffer, uint32_t buffersize)
{
int retval;
struct proc_regionpath path;
if (buffersize < MAXPATHLEN) {
errno = ENOMEM;
return 0;
}
retval = proc_pidinfo(pid, PROC_PIDREGIONPATH, (uint64_t)address, &path, sizeof(struct proc_regionpath));
if (retval != 0) {
return (int)(strlcpy(buffer, path.prpo_path, buffersize));
}
return 0;
}
int
proc_kmsgbuf(void * buffer, uint32_t buffersize)
{
int retval;
if ((retval = __proc_info(PROC_INFO_CALL_KERNMSGBUF, 0, 0, (uint64_t)0, buffer, buffersize)) == -1) {
return 0;
}
return retval;
}
int
proc_pidpath(int pid, void * buffer, uint32_t buffersize)
{
int retval, len;
if (buffersize < PROC_PIDPATHINFO_SIZE) {
errno = ENOMEM;
return 0;
}
if (buffersize > PROC_PIDPATHINFO_MAXSIZE) {
errno = EOVERFLOW;
return 0;
}
retval = __proc_info(PROC_INFO_CALL_PIDINFO, pid, PROC_PIDPATHINFO, (uint64_t)0, buffer, buffersize);
if (retval != -1) {
len = (int)strlen(buffer);
return len;
}
return 0;
}
int
proc_pidpath_audittoken(audit_token_t *audittoken, void * buffer, uint32_t buffersize)
{
int retval, len;
if (buffersize < PROC_PIDPATHINFO_SIZE) {
errno = ENOMEM;
return 0;
}
if (buffersize > PROC_PIDPATHINFO_MAXSIZE) {
errno = EOVERFLOW;
return 0;
}
int pid = audittoken->val[5];
int idversion = audittoken->val[7];
retval = __proc_info_extended_id(PROC_INFO_CALL_PIDINFO, pid, PROC_PIDPATHINFO, PIF_COMPARE_IDVERSION, (uint64_t)idversion,
(uint64_t)0, buffer, buffersize);
if (retval != -1) {
len = (int)strlen(buffer);
return len;
}
return 0;
}
int
proc_current_thread_schedinfo(void *buffer, size_t buffersize)
{
extern uint64_t __thread_selfid(void);
int retval;
if (buffersize < PROC_PIDTHREADSCHEDINFO_SIZE) {
errno = ENOMEM;
return errno;
}
if (buffersize > PROC_PIDTHREADSCHEDINFO_SIZE) {
errno = EOVERFLOW;
return errno;
}
pid_t pid = getpid();
uint64_t threadid = __thread_selfid();
retval = __proc_info(PROC_INFO_CALL_PIDINFO, pid, PROC_PIDTHREADSCHEDINFO, threadid, buffer, buffersize);
if (retval == -1) {
return errno;
}
return 0;
}
int
proc_libversion(int *major, int * minor)
{
if (major != NULL) {
*major = 1;
}
if (minor != NULL) {
*minor = 1;
}
return 0;
}
int
proc_setpcontrol(const int control)
{
int retval;
if (control < PROC_SETPC_NONE || control > PROC_SETPC_TERMINATE) {
return EINVAL;
}
if ((retval = __proc_info(PROC_INFO_CALL_SETCONTROL, getpid(), PROC_SELFSET_PCONTROL, (uint64_t)control, NULL, 0)) == -1) {
return errno;
}
return 0;
}
__private_extern__ int
proc_setthreadname(void * buffer, int buffersize)
{
int retval;
retval = __proc_info(PROC_INFO_CALL_SETCONTROL, getpid(), PROC_SELFSET_THREADNAME, (uint64_t)0, buffer, buffersize);
if (retval == -1) {
return errno;
} else {
return 0;
}
}
int
proc_track_dirty(pid_t pid, uint32_t flags)
{
if (__proc_info(PROC_INFO_CALL_DIRTYCONTROL, pid, PROC_DIRTYCONTROL_TRACK, flags, NULL, 0) == -1) {
return errno;
}
return 0;
}
int
proc_set_dirty(pid_t pid, bool dirty)
{
if (__proc_info(PROC_INFO_CALL_DIRTYCONTROL, pid, PROC_DIRTYCONTROL_SET, dirty, NULL, 0) == -1) {
return errno;
}
return 0;
}
int
proc_get_dirty(pid_t pid, uint32_t *flags)
{
int retval;
if (!flags) {
return EINVAL;
}
retval = __proc_info(PROC_INFO_CALL_DIRTYCONTROL, pid, PROC_DIRTYCONTROL_GET, 0, NULL, 0);
if (retval == -1) {
return errno;
}
*flags = retval;
return 0;
}
int
proc_clear_dirty(pid_t pid, uint32_t flags)
{
if (__proc_info(PROC_INFO_CALL_DIRTYCONTROL, pid, PROC_DIRTYCONTROL_CLEAR, flags, NULL, 0) == -1) {
return errno;
}
return 0;
}
int
proc_terminate(pid_t pid, int *sig)
{
int retval;
if (!sig) {
return EINVAL;
}
retval = __proc_info(PROC_INFO_CALL_TERMINATE, pid, 0, 0, NULL, 0);
if (retval == -1) {
return errno;
}
*sig = retval;
return 0;
}
int
proc_signal_delegate(audit_token_t instigator, audit_token_t target, int sig)
{
struct proc_delegated_signal_info args = {
.instigator = instigator,
.target = target,
};
int retval = __proc_info(PROC_INFO_CALL_DELEGATE_SIGNAL, 0, sig, 0, &args, sizeof(struct proc_delegated_signal_info));
if (retval == -1) {
return errno;
}
return 0;
}
int
proc_terminate_delegate(audit_token_t instigator, audit_token_t target, int *sig)
{
struct proc_delegated_signal_info args = {
.instigator = instigator,
.target = target,
};
if (!sig) {
return EINVAL;
}
int retval = __proc_info(PROC_INFO_CALL_DELEGATE_TERMINATE, 0, 0, 0, &args, sizeof(struct proc_delegated_signal_info));
if (retval == -1) {
return errno;
}
// Retval contains the type of signal that was sent, either SIGKILL or SIGTERM
*sig = retval;
return 0;
}
int
proc_signal_with_audittoken(audit_token_t *audittoken, int sig)
{
int retval = __proc_info(PROC_INFO_CALL_SIGNAL_AUDITTOKEN, 0, sig, 0, audittoken, sizeof(audit_token_t));
if (retval == -1) {
return errno;
}
return 0;
}
int
proc_terminate_with_audittoken(audit_token_t *audittoken, int *sig)
{
int retval;
if (!sig) {
return EINVAL;
}
retval = __proc_info(PROC_INFO_CALL_TERMINATE_AUDITTOKEN, 0, 0, 0, audittoken, sizeof(audit_token_t));
if (retval == -1) {
return errno;
}
*sig = retval;
return 0;
}
int
proc_terminate_all_rsr(int sig)
{
int retval = 0;
if (sig != SIGKILL && sig != SIGTERM) {
return EINVAL;
}
retval = __proc_info(PROC_INFO_CALL_TERMINATE_RSR, 0, 0, sig, NULL, 0);
if (retval == -1) {
return errno;
}
return 0;
}
/*
* XXX the _fatal() variant both checks for an existing monitor
* (with important policy effects on first party background apps)
* and validates inputs.
*/
int
proc_set_cpumon_params(pid_t pid, int percentage, int interval)
{
proc_policy_cpuusage_attr_t attr;
/* no argument validation ...
* task_set_cpuusage() ignores 0 values and squashes negative
* values into uint32_t.
*/
attr.ppattr_cpu_attr = PROC_POLICY_RSRCACT_NOTIFY_EXC;
attr.ppattr_cpu_percentage = percentage;
attr.ppattr_cpu_attr_interval = (uint64_t)interval;
attr.ppattr_cpu_attr_deadline = 0;
return __process_policy(PROC_POLICY_SCOPE_PROCESS, PROC_POLICY_ACTION_SET, PROC_POLICY_RESOURCE_USAGE,
PROC_POLICY_RUSAGE_CPU, (proc_policy_attribute_t*)&attr, pid, 0);
}
int
proc_get_cpumon_params(pid_t pid, int *percentage, int *interval)
{
proc_policy_cpuusage_attr_t attr;
int ret;
ret = __process_policy(PROC_POLICY_SCOPE_PROCESS, PROC_POLICY_ACTION_GET, PROC_POLICY_RESOURCE_USAGE,
PROC_POLICY_RUSAGE_CPU, (proc_policy_attribute_t*)&attr, pid, 0);
if ((ret == 0) && (attr.ppattr_cpu_attr == PROC_POLICY_RSRCACT_NOTIFY_EXC)) {
*percentage = attr.ppattr_cpu_percentage;
*interval = (int)attr.ppattr_cpu_attr_interval;
} else {
*percentage = 0;
*interval = 0;
}
return ret;
}
int
proc_set_cpumon_defaults(pid_t pid)
{
proc_policy_cpuusage_attr_t attr;
attr.ppattr_cpu_attr = PROC_POLICY_RSRCACT_NOTIFY_EXC;
attr.ppattr_cpu_percentage = PROC_POLICY_CPUMON_DEFAULTS;
attr.ppattr_cpu_attr_interval = 0;
attr.ppattr_cpu_attr_deadline = 0;
return __process_policy(PROC_POLICY_SCOPE_PROCESS, PROC_POLICY_ACTION_SET, PROC_POLICY_RESOURCE_USAGE,
PROC_POLICY_RUSAGE_CPU, (proc_policy_attribute_t*)&attr, pid, 0);
}
int
proc_resume_cpumon(pid_t pid)
{
return __process_policy(PROC_POLICY_SCOPE_PROCESS,
PROC_POLICY_ACTION_ENABLE,
PROC_POLICY_RESOURCE_USAGE,
PROC_POLICY_RUSAGE_CPU,
NULL, pid, 0);
}
int
proc_disable_cpumon(pid_t pid)
{
proc_policy_cpuusage_attr_t attr;
attr.ppattr_cpu_attr = PROC_POLICY_RSRCACT_NOTIFY_EXC;
attr.ppattr_cpu_percentage = PROC_POLICY_CPUMON_DISABLE;
attr.ppattr_cpu_attr_interval = 0;
attr.ppattr_cpu_attr_deadline = 0;
return __process_policy(PROC_POLICY_SCOPE_PROCESS, PROC_POLICY_ACTION_SET, PROC_POLICY_RESOURCE_USAGE,
PROC_POLICY_RUSAGE_CPU, (proc_policy_attribute_t*)&attr, pid, 0);
}
/*
* Turn on the CPU usage monitor using the supplied parameters, and make
* violations of the monitor fatal.
*
* Returns: 0 on success;
* -1 on failure and sets errno
*/
int
proc_set_cpumon_params_fatal(pid_t pid, int percentage, int interval)
{
int current_percentage = 0;
int current_interval = 0; /* intervals are in seconds */
int ret = 0;
if ((percentage <= 0) || (interval <= 0)) {
errno = EINVAL;
return -1;
}
/*
* Do a simple query to see if CPU monitoring is
* already active. If either the percentage or the
* interval is nonzero, then CPU monitoring is
* already in use for this process.
*
* XXX: need set...() and set..fatal() to behave similarly.
* Currently, this check prevents 1st party apps (which get a
* default non-fatal monitor) not to get a fatal monitor.
*/
(void)proc_get_cpumon_params(pid, ¤t_percentage, ¤t_interval);
if (current_percentage || current_interval) {
/*
* The CPU monitor appears to be active.
* We choose not to disturb those settings.
*/
errno = EBUSY;
return -1;
}
if ((ret = proc_set_cpumon_params(pid, percentage, interval)) != 0) {
/* Failed to activate the CPU monitor */
return ret;
}
if ((ret = proc_rlimit_control(pid, RLIMIT_CPU_USAGE_MONITOR, (void *)(uintptr_t)CPUMON_MAKE_FATAL)) != 0) {
/* Failed to set termination, back out the CPU monitor settings. */
(void)proc_disable_cpumon(pid);
}
return ret;
}
int
proc_set_wakemon_params(pid_t pid, int rate_hz, int flags __unused)
{
struct proc_rlimit_control_wakeupmon params;
params.wm_flags = WAKEMON_ENABLE;
params.wm_rate = rate_hz;
return proc_rlimit_control(pid, RLIMIT_WAKEUPS_MONITOR, ¶ms);
}
#ifndef WAKEMON_GET_PARAMS
#define WAKEMON_GET_PARAMS 0x4
#define WAKEMON_SET_DEFAULTS 0x8
#endif
int
proc_get_wakemon_params(pid_t pid, int *rate_hz, int *flags)
{
struct proc_rlimit_control_wakeupmon params;
int error;
params.wm_flags = WAKEMON_GET_PARAMS;
if ((error = proc_rlimit_control(pid, RLIMIT_WAKEUPS_MONITOR, ¶ms)) != 0) {
return error;
}
*rate_hz = params.wm_rate;
*flags = params.wm_flags;
return 0;
}
int
proc_set_wakemon_defaults(pid_t pid)
{
struct proc_rlimit_control_wakeupmon params;
params.wm_flags = WAKEMON_ENABLE | WAKEMON_SET_DEFAULTS;
params.wm_rate = -1;
return proc_rlimit_control(pid, RLIMIT_WAKEUPS_MONITOR, ¶ms);
}
int
proc_disable_wakemon(pid_t pid)
{
struct proc_rlimit_control_wakeupmon params;
params.wm_flags = WAKEMON_DISABLE;
params.wm_rate = -1;
return proc_rlimit_control(pid, RLIMIT_WAKEUPS_MONITOR, ¶ms);
}
int
proc_list_uptrs(int pid, uint64_t *buf, uint32_t bufsz)
{
return __proc_info(PROC_INFO_CALL_PIDINFO, pid, PROC_PIDLISTUPTRS, 0,
buf, bufsz);
}
int
proc_list_dynkqueueids(int pid, kqueue_id_t *buf, uint32_t bufsz)
{
return __proc_info(PROC_INFO_CALL_PIDINFO, pid, PROC_PIDLISTDYNKQUEUES, 0,
buf, bufsz);
}
int
proc_setcpu_percentage(pid_t pid, int action, int percentage)
{
proc_policy_cpuusage_attr_t attr;
bzero(&attr, sizeof(proc_policy_cpuusage_attr_t));
attr.ppattr_cpu_attr = action;
attr.ppattr_cpu_percentage = percentage;
if (__process_policy(PROC_POLICY_SCOPE_PROCESS, PROC_POLICY_ACTION_APPLY, PROC_POLICY_RESOURCE_USAGE, PROC_POLICY_RUSAGE_CPU, (proc_policy_attribute_t*)&attr, pid, (uint64_t)0) != -1) {
return 0;
} else {
return errno;
}
}
int
proc_reset_footprint_interval(pid_t pid)
{
return proc_rlimit_control(pid, RLIMIT_FOOTPRINT_INTERVAL, (void *)(uintptr_t)FOOTPRINT_INTERVAL_RESET);
}
int
proc_clear_cpulimits(pid_t pid)
{
if (__process_policy(PROC_POLICY_SCOPE_PROCESS, PROC_POLICY_ACTION_RESTORE, PROC_POLICY_RESOURCE_USAGE, PROC_POLICY_RUSAGE_CPU, NULL, pid, (uint64_t)0) != -1) {
return 0;
} else {
return errno;
}
}
#if (TARGET_OS_IPHONE && !TARGET_OS_SIMULATOR)
int
proc_setcpu_deadline(pid_t pid, int action, uint64_t deadline)
{
proc_policy_cpuusage_attr_t attr;
bzero(&attr, sizeof(proc_policy_cpuusage_attr_t));
attr.ppattr_cpu_attr = action;
attr.ppattr_cpu_attr_deadline = deadline;
if (__process_policy(PROC_POLICY_SCOPE_PROCESS, PROC_POLICY_ACTION_APPLY, PROC_POLICY_RESOURCE_USAGE, PROC_POLICY_RUSAGE_CPU, (proc_policy_attribute_t*)&attr, pid, (uint64_t)0) != -1) {
return 0;
} else {
return errno;
}
}
int
proc_setcpu_percentage_withdeadline(pid_t pid, int action, int percentage, uint64_t deadline)
{
proc_policy_cpuusage_attr_t attr;
bzero(&attr, sizeof(proc_policy_cpuusage_attr_t));
attr.ppattr_cpu_attr = action;
attr.ppattr_cpu_percentage = percentage;
attr.ppattr_cpu_attr_deadline = deadline;
if (__process_policy(PROC_POLICY_SCOPE_PROCESS, PROC_POLICY_ACTION_APPLY, PROC_POLICY_RESOURCE_USAGE, PROC_POLICY_RUSAGE_CPU, (proc_policy_attribute_t*)&attr, pid, (uint64_t)0) != -1) {
return 0;
} else {
return errno;
}
}
int
proc_appstate(int pid, int * appstatep)
{
int state;
if (__process_policy(PROC_POLICY_SCOPE_PROCESS, PROC_POLICY_ACTION_GET, PROC_POLICY_APP_LIFECYCLE, PROC_POLICY_APPLIFE_STATE, (proc_policy_attribute_t*)&state, pid, (uint64_t)0) != -1) {
if (appstatep != NULL) {
*appstatep = state;
}
return 0;
} else {
return errno;
}
}
int
proc_setappstate(int pid, int appstate)
{
int state = appstate;
switch (state) {
case PROC_APPSTATE_NONE:
case PROC_APPSTATE_ACTIVE:
case PROC_APPSTATE_INACTIVE:
case PROC_APPSTATE_BACKGROUND:
case PROC_APPSTATE_NONUI:
break;
default:
return EINVAL;
}
if (__process_policy(PROC_POLICY_SCOPE_PROCESS, PROC_POLICY_ACTION_APPLY, PROC_POLICY_APP_LIFECYCLE, PROC_POLICY_APPLIFE_STATE, (proc_policy_attribute_t*)&state, pid, (uint64_t)0) != -1) {
return 0;
} else {
return errno;
}
}
int
proc_devstatusnotify(int devicestatus)
{
int state = devicestatus;
switch (devicestatus) {
case PROC_DEVSTATUS_SHORTTERM:
case PROC_DEVSTATUS_LONGTERM:
break;
default:
return EINVAL;
}
if (__process_policy(PROC_POLICY_SCOPE_PROCESS, PROC_POLICY_ACTION_APPLY, PROC_POLICY_APP_LIFECYCLE, PROC_POLICY_APPLIFE_DEVSTATUS, (proc_policy_attribute_t*)&state, getpid(), (uint64_t)0) != -1) {
return 0;
} else {
return errno;
}
}
int
proc_pidbind(int pid, uint64_t threadid, int bind)
{
int state = bind;
pid_t passpid = pid;
switch (bind) {
case PROC_PIDBIND_CLEAR:
passpid = getpid(); /* ignore pid on clear */
break;
case PROC_PIDBIND_SET:
break;
default:
return EINVAL;
}
if (__process_policy(PROC_POLICY_SCOPE_PROCESS, PROC_POLICY_ACTION_APPLY, PROC_POLICY_APP_LIFECYCLE, PROC_POLICY_APPLIFE_PIDBIND, (proc_policy_attribute_t*)&state, passpid, threadid) != -1) {
return 0;
} else {
return errno;
}
}
int
proc_can_use_foreground_hw(int pid, uint32_t *reason)
{
return __proc_info(PROC_INFO_CALL_CANUSEFGHW, pid, 0, 0, reason, sizeof(*reason));
}
#endif /* (TARGET_OS_IPHONE && !TARGET_OS_SIMULATOR) */
/* Donate importance to adaptive processes from this process */
int
proc_donate_importance_boost(void)
{
int rval;
#if (TARGET_OS_IPHONE && !TARGET_OS_SIMULATOR)
rval = __process_policy(PROC_POLICY_SCOPE_PROCESS,
PROC_POLICY_ACTION_ENABLE,
PROC_POLICY_APPTYPE,
PROC_POLICY_IOS_DONATEIMP,
NULL, getpid(), (uint64_t)0);
#else /* (TARGET_OS_IPHONE && !TARGET_OS_SIMULATOR) */
rval = __process_policy(PROC_POLICY_SCOPE_PROCESS,
PROC_POLICY_ACTION_SET,
PROC_POLICY_BOOST,
PROC_POLICY_IMP_DONATION,
NULL, getpid(), 0);
#endif /* (TARGET_OS_IPHONE && !TARGET_OS_SIMULATOR) */
if (rval == 0) {
return 0;
} else {
return errno;
}
}
static __attribute__((noinline)) void
proc_importance_bad_assertion(char *reason)
{
(void)reason;
}
/*
* Use the address of these variables as the token. This way, they can be
* printed in the debugger as useful names.
*/
uint64_t important_boost_assertion_token = 0xfafafafafafafafa;
uint64_t normal_boost_assertion_token = 0xfbfbfbfbfbfbfbfb;
uint64_t non_boost_assertion_token = 0xfcfcfcfcfcfcfcfc;
uint64_t denap_boost_assertion_token = 0xfdfdfdfdfdfdfdfd;
/*
* Accept the boost on a message, or request another boost assertion
* if we have already accepted the implicit boost for this message.
*
* Returns EOVERFLOW if an attempt is made to take an extra assertion when not boosted.
*
* Returns EIO if the message was not a boosting message.
* TODO: Return a 'non-boost' token instead.
*/
int
proc_importance_assertion_begin_with_msg(mach_msg_header_t *msg,
__unused mach_msg_trailer_t *trailer,
uint64_t *assertion_token)
{
int rval = 0;
if (assertion_token == NULL) {
return EINVAL;
}
#define LEGACYBOOSTMASK (MACH_MSGH_BITS_VOUCHER_MASK | MACH_MSGH_BITS_RAISEIMP)
#define LEGACYBOOSTED(m) (((m)->msgh_bits & LEGACYBOOSTMASK) == MACH_MSGH_BITS_RAISEIMP)
/* Is this a legacy boosted message? */
if (LEGACYBOOSTED(msg)) {
/*
* Have we accepted the implicit boost for this message yet?
* If we haven't accepted it yet, no need to call into kernel.
*/
if ((msg->msgh_bits & MACH_MSGH_BITS_IMPHOLDASRT) == 0) {
msg->msgh_bits |= MACH_MSGH_BITS_IMPHOLDASRT;
*assertion_token = (uint64_t) &important_boost_assertion_token;
return 0;
}
/* Request an additional boost count */
rval = __process_policy(PROC_POLICY_SCOPE_PROCESS,
PROC_POLICY_ACTION_HOLD,
PROC_POLICY_BOOST,
PROC_POLICY_IMP_IMPORTANT,
NULL, getpid(), 0);
if (rval == 0) {
*assertion_token = (uint64_t) &important_boost_assertion_token;
return 0;
} else if (errno == EOVERFLOW) {
proc_importance_bad_assertion("Attempted to take assertion while not boosted");
return errno;
} else {
return errno;
}
}
return EIO;
}
/*
* Drop a boost assertion.
* Returns EOVERFLOW on boost assertion underflow.
*/
int
proc_importance_assertion_complete(uint64_t assertion_token)
{
int rval = 0;
if (assertion_token == 0) {
return 0;
}
if (assertion_token == (uint64_t) &important_boost_assertion_token) {
rval = __process_policy(PROC_POLICY_SCOPE_PROCESS,
PROC_POLICY_ACTION_DROP,
PROC_POLICY_BOOST,
PROC_POLICY_IMP_IMPORTANT,
NULL, getpid(), 0);
if (rval == 0) {
return 0;
} else if (errno == EOVERFLOW) {
proc_importance_bad_assertion("Attempted to drop too many assertions");
return errno;
} else {
return errno;
}
} else {
proc_importance_bad_assertion("Attempted to drop assertion with invalid token");
return EIO;
}
}
/*
* Accept the De-Nap boost on a message, or request another boost assertion
* if we have already accepted the implicit boost for this message.
*
* Interface is deprecated before it really got started - just as synonym
* for proc_importance_assertion_begin_with_msg() now.
*/
int
proc_denap_assertion_begin_with_msg(mach_msg_header_t *msg,
uint64_t *assertion_token)
{
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
return proc_importance_assertion_begin_with_msg(msg, NULL, assertion_token);
#pragma clang diagnostic pop
}
/*
* Drop a denap boost assertion.
*
* Interface is deprecated before it really got started - just a synonym
* for proc_importance_assertion_complete() now.
*/
int
proc_denap_assertion_complete(uint64_t assertion_token)
{
return proc_importance_assertion_complete(assertion_token);
}
#if !(TARGET_OS_IPHONE && !TARGET_OS_SIMULATOR)
int
proc_clear_vmpressure(pid_t pid)
{
if (__process_policy(PROC_POLICY_SCOPE_PROCESS, PROC_POLICY_ACTION_RESTORE, PROC_POLICY_RESOURCE_STARVATION, PROC_POLICY_RS_VIRTUALMEM, NULL, pid, (uint64_t)0) != -1) {
return 0;
} else {
return errno;
}
}
/* set the current process as one who can resume suspended processes due to low virtual memory. Need to be root */
int
proc_set_owner_vmpressure(void)
{
int retval;
if ((retval = __proc_info(PROC_INFO_CALL_SETCONTROL, getpid(), PROC_SELFSET_VMRSRCOWNER, (uint64_t)0, NULL, 0)) == -1) {
return errno;
}
return 0;
}
/* mark yourself to delay idle sleep on disk IO */
int
proc_set_delayidlesleep(void)
{
int retval;
if ((retval = __proc_info(PROC_INFO_CALL_SETCONTROL, getpid(), PROC_SELFSET_DELAYIDLESLEEP, (uint64_t)1, NULL, 0)) == -1) {
return errno;
}
return 0;
}
/* Reset yourself to delay idle sleep on disk IO, if already set */
int
proc_clear_delayidlesleep(void)
{
int retval;
if ((retval = __proc_info(PROC_INFO_CALL_SETCONTROL, getpid(), PROC_SELFSET_DELAYIDLESLEEP, (uint64_t)0, NULL, 0)) == -1) {
return errno;
}
return 0;
}
/* disable the launch time backgroudn policy and restore the process to default group */
int
proc_disable_apptype(pid_t pid, int apptype)
{
switch (apptype) {
case PROC_POLICY_OSX_APPTYPE_TAL:
case PROC_POLICY_OSX_APPTYPE_DASHCLIENT:
break;
default:
return EINVAL;
}
if (__process_policy(PROC_POLICY_SCOPE_PROCESS, PROC_POLICY_ACTION_DISABLE, PROC_POLICY_APPTYPE, apptype, NULL, pid, (uint64_t)0) != -1) {
return 0;
} else {
return errno;
}
}
/* re-enable the launch time background policy if it had been disabled. */
int
proc_enable_apptype(pid_t pid, int apptype)
{
switch (apptype) {
case PROC_POLICY_OSX_APPTYPE_TAL:
case PROC_POLICY_OSX_APPTYPE_DASHCLIENT:
break;
default:
return EINVAL;
}
if (__process_policy(PROC_POLICY_SCOPE_PROCESS, PROC_POLICY_ACTION_ENABLE, PROC_POLICY_APPTYPE, apptype, NULL, pid, (uint64_t)0) != -1) {
return 0;
} else {
return errno;
}
}
#if !TARGET_OS_SIMULATOR
int
proc_suppress(__unused pid_t pid, __unused uint64_t *generation)
{
return 0;
}
#endif /* !TARGET_OS_SIMULATOR */
#endif /* !(TARGET_OS_IPHONE && !TARGET_OS_SIMULATOR) */
int
proc_set_no_smt(void)
{
if (__process_policy(PROC_POLICY_SCOPE_PROCESS, PROC_POLICY_ACTION_APPLY, PROC_POLICY_NO_SMT, 0, NULL, getpid(), (uint64_t)0) == -1) {
return errno;
}
return 0;
}
int
proc_setthread_no_smt(void)
{
extern uint64_t __thread_selfid(void);
if (__process_policy(PROC_POLICY_SCOPE_THREAD, PROC_POLICY_ACTION_APPLY, PROC_POLICY_NO_SMT, 0, NULL, 0, __thread_selfid()) == -1) {
return errno;
}
return 0;
}
int
proc_set_csm(uint32_t flags)
{
const uint32_t mask = PROC_CSM_ALL | PROC_CSM_TECS | PROC_CSM_NOSMT;
if ((flags & ~mask) != 0) {
return EINVAL;
}
if (flags & (PROC_CSM_NOSMT | PROC_CSM_ALL)) {
if (__process_policy(PROC_POLICY_SCOPE_PROCESS, PROC_POLICY_ACTION_APPLY, PROC_POLICY_NO_SMT, 0, NULL, getpid(), (uint64_t)0) == -1) {
return errno;
}
}
if (flags & (PROC_CSM_TECS | PROC_CSM_ALL)) {
if (__process_policy(PROC_POLICY_SCOPE_PROCESS, PROC_POLICY_ACTION_APPLY, PROC_POLICY_TECS, 0, NULL, getpid(), (uint64_t)0) == -1) {
return errno;
}
}
return 0;
}
int
proc_setthread_csm(uint32_t flags)
{
extern uint64_t __thread_selfid(void);
const uint32_t mask = PROC_CSM_ALL | PROC_CSM_TECS | PROC_CSM_NOSMT;
if ((flags & ~mask) != 0) {
return EINVAL;
}
if (flags & (PROC_CSM_NOSMT | PROC_CSM_ALL)) {
if (__process_policy(PROC_POLICY_SCOPE_THREAD, PROC_POLICY_ACTION_APPLY, PROC_POLICY_NO_SMT, 0, NULL, 0, __thread_selfid()) == -1) {
return errno;
}
}
if (flags & (PROC_CSM_TECS | PROC_CSM_ALL)) {
if (__process_policy(PROC_POLICY_SCOPE_THREAD, PROC_POLICY_ACTION_APPLY, PROC_POLICY_TECS, 0, NULL, 0, __thread_selfid()) == -1) {
return errno;
}
}
return 0;
}