This is xnu-11215.1.10. See this file in:
/*
* Copyright (c) 2007-2021 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <arm/machine_cpu.h>
#include <arm/cpu_internal.h>
#include <arm/cpuid.h>
#include <arm/cpuid_internal.h>
#include <arm/cpu_data.h>
#include <arm/cpu_data_internal.h>
#include <arm/misc_protos.h>
#include <arm/machdep_call.h>
#include <arm/machine_routines.h>
#include <arm/rtclock.h>
#include <kern/machine.h>
#include <kern/thread.h>
#include <kern/thread_group.h>
#include <kern/policy_internal.h>
#include <kern/sched_hygiene.h>
#include <kern/startup.h>
#include <kern/monotonic.h>
#include <machine/config.h>
#include <machine/atomic.h>
#include <machine/monotonic.h>
#include <pexpert/pexpert.h>
#include <pexpert/device_tree.h>
#include <pexpert/arm64/apple_arm64_cpu.h>
#include <mach/machine.h>
#include <mach/machine/sdt.h>
#if !HAS_CONTINUOUS_HWCLOCK
extern uint64_t mach_absolutetime_asleep;
#else
extern uint64_t wake_abstime;
static uint64_t wake_conttime = UINT64_MAX;
#endif
extern volatile uint32_t debug_enabled;
extern _Atomic unsigned int cluster_type_num_active_cpus[MAX_CPU_TYPES];
const char *cluster_type_names[MAX_CPU_TYPES] = {
[CLUSTER_TYPE_SMP] = "Standard",
[CLUSTER_TYPE_P] = "Performance",
[CLUSTER_TYPE_E] = "Efficiency",
};
static int max_cpus_initialized = 0;
#define MAX_CPUS_SET 0x1
#define MAX_CPUS_WAIT 0x2
LCK_GRP_DECLARE(max_cpus_grp, "max_cpus");
LCK_MTX_DECLARE(max_cpus_lock, &max_cpus_grp);
uint32_t lockdown_done = 0;
boolean_t is_clock_configured = FALSE;
static void
sched_perfcontrol_oncore_default(perfcontrol_state_t new_thread_state __unused, going_on_core_t on __unused)
{
}
static void
sched_perfcontrol_switch_default(perfcontrol_state_t old_thread_state __unused, perfcontrol_state_t new_thread_state __unused)
{
}
static void
sched_perfcontrol_offcore_default(perfcontrol_state_t old_thread_state __unused, going_off_core_t off __unused, boolean_t thread_terminating __unused)
{
}
static void
sched_perfcontrol_thread_group_default(thread_group_data_t data __unused)
{
}
static void
sched_perfcontrol_max_runnable_latency_default(perfcontrol_max_runnable_latency_t latencies __unused)
{
}
static void
sched_perfcontrol_work_interval_notify_default(perfcontrol_state_t thread_state __unused,
perfcontrol_work_interval_t work_interval __unused)
{
}
static void
sched_perfcontrol_work_interval_ctl_default(perfcontrol_state_t thread_state __unused,
perfcontrol_work_interval_instance_t instance __unused)
{
}
static void
sched_perfcontrol_deadline_passed_default(__unused uint64_t deadline)
{
}
static void
sched_perfcontrol_csw_default(
__unused perfcontrol_event event, __unused uint32_t cpu_id, __unused uint64_t timestamp,
__unused uint32_t flags, __unused struct perfcontrol_thread_data *offcore,
__unused struct perfcontrol_thread_data *oncore,
__unused struct perfcontrol_cpu_counters *cpu_counters, __unused void *unused)
{
}
static void
sched_perfcontrol_state_update_default(
__unused perfcontrol_event event, __unused uint32_t cpu_id, __unused uint64_t timestamp,
__unused uint32_t flags, __unused struct perfcontrol_thread_data *thr_data,
__unused void *unused)
{
}
static void
sched_perfcontrol_thread_group_blocked_default(
__unused thread_group_data_t blocked_tg, __unused thread_group_data_t blocking_tg,
__unused uint32_t flags, __unused perfcontrol_state_t blocked_thr_state)
{
}
static void
sched_perfcontrol_thread_group_unblocked_default(
__unused thread_group_data_t unblocked_tg, __unused thread_group_data_t unblocking_tg,
__unused uint32_t flags, __unused perfcontrol_state_t unblocked_thr_state)
{
}
sched_perfcontrol_offcore_t sched_perfcontrol_offcore = sched_perfcontrol_offcore_default;
sched_perfcontrol_context_switch_t sched_perfcontrol_switch = sched_perfcontrol_switch_default;
sched_perfcontrol_oncore_t sched_perfcontrol_oncore = sched_perfcontrol_oncore_default;
sched_perfcontrol_thread_group_init_t sched_perfcontrol_thread_group_init = sched_perfcontrol_thread_group_default;
sched_perfcontrol_thread_group_deinit_t sched_perfcontrol_thread_group_deinit = sched_perfcontrol_thread_group_default;
sched_perfcontrol_thread_group_flags_update_t sched_perfcontrol_thread_group_flags_update = sched_perfcontrol_thread_group_default;
sched_perfcontrol_max_runnable_latency_t sched_perfcontrol_max_runnable_latency = sched_perfcontrol_max_runnable_latency_default;
sched_perfcontrol_work_interval_notify_t sched_perfcontrol_work_interval_notify = sched_perfcontrol_work_interval_notify_default;
sched_perfcontrol_work_interval_ctl_t sched_perfcontrol_work_interval_ctl = sched_perfcontrol_work_interval_ctl_default;
sched_perfcontrol_deadline_passed_t sched_perfcontrol_deadline_passed = sched_perfcontrol_deadline_passed_default;
sched_perfcontrol_csw_t sched_perfcontrol_csw = sched_perfcontrol_csw_default;
sched_perfcontrol_state_update_t sched_perfcontrol_state_update = sched_perfcontrol_state_update_default;
sched_perfcontrol_thread_group_blocked_t sched_perfcontrol_thread_group_blocked = sched_perfcontrol_thread_group_blocked_default;
sched_perfcontrol_thread_group_unblocked_t sched_perfcontrol_thread_group_unblocked = sched_perfcontrol_thread_group_unblocked_default;
boolean_t sched_perfcontrol_thread_shared_rsrc_flags_enabled = false;
void
sched_perfcontrol_register_callbacks(sched_perfcontrol_callbacks_t callbacks, unsigned long size_of_state)
{
assert(callbacks == NULL || callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_2);
if (size_of_state > sizeof(struct perfcontrol_state)) {
panic("%s: Invalid required state size %lu", __FUNCTION__, size_of_state);
}
if (callbacks) {
#if CONFIG_THREAD_GROUPS
if (callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_3) {
if (callbacks->thread_group_init != NULL) {
sched_perfcontrol_thread_group_init = callbacks->thread_group_init;
} else {
sched_perfcontrol_thread_group_init = sched_perfcontrol_thread_group_default;
}
if (callbacks->thread_group_deinit != NULL) {
sched_perfcontrol_thread_group_deinit = callbacks->thread_group_deinit;
} else {
sched_perfcontrol_thread_group_deinit = sched_perfcontrol_thread_group_default;
}
// tell CLPC about existing thread groups
thread_group_resync(TRUE);
}
if (callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_6) {
if (callbacks->thread_group_flags_update != NULL) {
sched_perfcontrol_thread_group_flags_update = callbacks->thread_group_flags_update;
} else {
sched_perfcontrol_thread_group_flags_update = sched_perfcontrol_thread_group_default;
}
}
if (callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_8) {
if (callbacks->thread_group_blocked != NULL) {
sched_perfcontrol_thread_group_blocked = callbacks->thread_group_blocked;
} else {
sched_perfcontrol_thread_group_blocked = sched_perfcontrol_thread_group_blocked_default;
}
if (callbacks->thread_group_unblocked != NULL) {
sched_perfcontrol_thread_group_unblocked = callbacks->thread_group_unblocked;
} else {
sched_perfcontrol_thread_group_unblocked = sched_perfcontrol_thread_group_unblocked_default;
}
}
#endif
if (callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_9) {
sched_perfcontrol_thread_shared_rsrc_flags_enabled = true;
}
if (callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_7) {
if (callbacks->work_interval_ctl != NULL) {
sched_perfcontrol_work_interval_ctl = callbacks->work_interval_ctl;
} else {
sched_perfcontrol_work_interval_ctl = sched_perfcontrol_work_interval_ctl_default;
}
}
if (callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_5) {
if (callbacks->csw != NULL) {
sched_perfcontrol_csw = callbacks->csw;
} else {
sched_perfcontrol_csw = sched_perfcontrol_csw_default;
}
if (callbacks->state_update != NULL) {
sched_perfcontrol_state_update = callbacks->state_update;
} else {
sched_perfcontrol_state_update = sched_perfcontrol_state_update_default;
}
}
if (callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_4) {
if (callbacks->deadline_passed != NULL) {
sched_perfcontrol_deadline_passed = callbacks->deadline_passed;
} else {
sched_perfcontrol_deadline_passed = sched_perfcontrol_deadline_passed_default;
}
}
if (callbacks->offcore != NULL) {
sched_perfcontrol_offcore = callbacks->offcore;
} else {
sched_perfcontrol_offcore = sched_perfcontrol_offcore_default;
}
if (callbacks->context_switch != NULL) {
sched_perfcontrol_switch = callbacks->context_switch;
} else {
sched_perfcontrol_switch = sched_perfcontrol_switch_default;
}
if (callbacks->oncore != NULL) {
sched_perfcontrol_oncore = callbacks->oncore;
} else {
sched_perfcontrol_oncore = sched_perfcontrol_oncore_default;
}
if (callbacks->max_runnable_latency != NULL) {
sched_perfcontrol_max_runnable_latency = callbacks->max_runnable_latency;
} else {
sched_perfcontrol_max_runnable_latency = sched_perfcontrol_max_runnable_latency_default;
}
if (callbacks->work_interval_notify != NULL) {
sched_perfcontrol_work_interval_notify = callbacks->work_interval_notify;
} else {
sched_perfcontrol_work_interval_notify = sched_perfcontrol_work_interval_notify_default;
}
} else {
/* reset to defaults */
#if CONFIG_THREAD_GROUPS
thread_group_resync(FALSE);
#endif
sched_perfcontrol_offcore = sched_perfcontrol_offcore_default;
sched_perfcontrol_switch = sched_perfcontrol_switch_default;
sched_perfcontrol_oncore = sched_perfcontrol_oncore_default;
sched_perfcontrol_thread_group_init = sched_perfcontrol_thread_group_default;
sched_perfcontrol_thread_group_deinit = sched_perfcontrol_thread_group_default;
sched_perfcontrol_thread_group_flags_update = sched_perfcontrol_thread_group_default;
sched_perfcontrol_max_runnable_latency = sched_perfcontrol_max_runnable_latency_default;
sched_perfcontrol_work_interval_notify = sched_perfcontrol_work_interval_notify_default;
sched_perfcontrol_work_interval_ctl = sched_perfcontrol_work_interval_ctl_default;
sched_perfcontrol_csw = sched_perfcontrol_csw_default;
sched_perfcontrol_state_update = sched_perfcontrol_state_update_default;
sched_perfcontrol_thread_group_blocked = sched_perfcontrol_thread_group_blocked_default;
sched_perfcontrol_thread_group_unblocked = sched_perfcontrol_thread_group_unblocked_default;
}
}
static void
machine_switch_populate_perfcontrol_thread_data(struct perfcontrol_thread_data *data,
thread_t thread,
uint64_t same_pri_latency)
{
bzero(data, sizeof(struct perfcontrol_thread_data));
data->perfctl_class = thread_get_perfcontrol_class(thread);
data->energy_estimate_nj = 0;
data->thread_id = thread->thread_id;
#if CONFIG_THREAD_GROUPS
struct thread_group *tg = thread_group_get(thread);
data->thread_group_id = thread_group_get_id(tg);
data->thread_group_data = thread_group_get_machine_data(tg);
#endif
data->scheduling_latency_at_same_basepri = same_pri_latency;
data->perfctl_state = FIND_PERFCONTROL_STATE(thread);
}
static void
machine_switch_populate_perfcontrol_cpu_counters(struct perfcontrol_cpu_counters *cpu_counters)
{
#if CONFIG_CPU_COUNTERS
mt_perfcontrol(&cpu_counters->instructions, &cpu_counters->cycles);
#else /* CONFIG_CPU_COUNTERS */
cpu_counters->instructions = 0;
cpu_counters->cycles = 0;
#endif /* !CONFIG_CPU_COUNTERS */
}
int perfcontrol_callout_stats_enabled = 0;
static _Atomic uint64_t perfcontrol_callout_stats[PERFCONTROL_CALLOUT_MAX][PERFCONTROL_STAT_MAX];
static _Atomic uint64_t perfcontrol_callout_count[PERFCONTROL_CALLOUT_MAX];
#if CONFIG_CPU_COUNTERS
static inline
bool
perfcontrol_callout_counters_begin(uint64_t *counters)
{
if (!perfcontrol_callout_stats_enabled) {
return false;
}
mt_fixed_counts(counters);
return true;
}
static inline
void
perfcontrol_callout_counters_end(uint64_t *start_counters,
perfcontrol_callout_type_t type)
{
uint64_t end_counters[MT_CORE_NFIXED];
mt_fixed_counts(end_counters);
os_atomic_add(&perfcontrol_callout_stats[type][PERFCONTROL_STAT_CYCLES],
end_counters[MT_CORE_CYCLES] - start_counters[MT_CORE_CYCLES], relaxed);
os_atomic_add(&perfcontrol_callout_stats[type][PERFCONTROL_STAT_INSTRS],
end_counters[MT_CORE_INSTRS] - start_counters[MT_CORE_INSTRS], relaxed);
os_atomic_inc(&perfcontrol_callout_count[type], relaxed);
}
#endif /* CONFIG_CPU_COUNTERS */
uint64_t
perfcontrol_callout_stat_avg(perfcontrol_callout_type_t type,
perfcontrol_callout_stat_t stat)
{
if (!perfcontrol_callout_stats_enabled) {
return 0;
}
return os_atomic_load_wide(&perfcontrol_callout_stats[type][stat], relaxed) /
os_atomic_load_wide(&perfcontrol_callout_count[type], relaxed);
}
#if CONFIG_SCHED_EDGE
/*
* The Edge scheduler allows the performance controller to update properties about the
* threads as part of the callouts. These properties typically include shared cluster
* resource usage. This allows the scheduler to manage specific threads within the
* workload more optimally.
*/
static void
sched_perfcontrol_thread_flags_update(thread_t thread,
struct perfcontrol_thread_data *thread_data,
shared_rsrc_policy_agent_t agent)
{
kern_return_t kr = KERN_SUCCESS;
if (thread_data->thread_flags_mask & PERFCTL_THREAD_FLAGS_MASK_CLUSTER_SHARED_RSRC_RR) {
if (thread_data->thread_flags & PERFCTL_THREAD_FLAGS_MASK_CLUSTER_SHARED_RSRC_RR) {
kr = thread_shared_rsrc_policy_set(thread, 0, CLUSTER_SHARED_RSRC_TYPE_RR, agent);
} else {
kr = thread_shared_rsrc_policy_clear(thread, CLUSTER_SHARED_RSRC_TYPE_RR, agent);
}
}
if (thread_data->thread_flags_mask & PERFCTL_THREAD_FLAGS_MASK_CLUSTER_SHARED_RSRC_NATIVE_FIRST) {
if (thread_data->thread_flags & PERFCTL_THREAD_FLAGS_MASK_CLUSTER_SHARED_RSRC_NATIVE_FIRST) {
kr = thread_shared_rsrc_policy_set(thread, 0, CLUSTER_SHARED_RSRC_TYPE_NATIVE_FIRST, agent);
} else {
kr = thread_shared_rsrc_policy_clear(thread, CLUSTER_SHARED_RSRC_TYPE_NATIVE_FIRST, agent);
}
}
/*
* The thread_shared_rsrc_policy_* routines only fail if the performance controller is
* attempting to double set/clear a policy on the thread.
*/
assert(kr == KERN_SUCCESS);
}
#endif /* CONFIG_SCHED_EDGE */
void
machine_switch_perfcontrol_context(perfcontrol_event event,
uint64_t timestamp,
uint32_t flags,
uint64_t new_thread_same_pri_latency,
thread_t old,
thread_t new)
{
if (sched_perfcontrol_switch != sched_perfcontrol_switch_default) {
perfcontrol_state_t old_perfcontrol_state = FIND_PERFCONTROL_STATE(old);
perfcontrol_state_t new_perfcontrol_state = FIND_PERFCONTROL_STATE(new);
sched_perfcontrol_switch(old_perfcontrol_state, new_perfcontrol_state);
}
if (sched_perfcontrol_csw != sched_perfcontrol_csw_default) {
uint32_t cpu_id = (uint32_t)cpu_number();
struct perfcontrol_cpu_counters cpu_counters;
struct perfcontrol_thread_data offcore, oncore;
machine_switch_populate_perfcontrol_thread_data(&offcore, old, 0);
machine_switch_populate_perfcontrol_thread_data(&oncore, new,
new_thread_same_pri_latency);
machine_switch_populate_perfcontrol_cpu_counters(&cpu_counters);
#if CONFIG_CPU_COUNTERS
uint64_t counters[MT_CORE_NFIXED];
bool ctrs_enabled = perfcontrol_callout_counters_begin(counters);
#endif /* CONFIG_CPU_COUNTERS */
sched_perfcontrol_csw(event, cpu_id, timestamp, flags,
&offcore, &oncore, &cpu_counters, NULL);
#if CONFIG_CPU_COUNTERS
if (ctrs_enabled) {
perfcontrol_callout_counters_end(counters, PERFCONTROL_CALLOUT_CONTEXT);
}
#endif /* CONFIG_CPU_COUNTERS */
recount_add_energy(old, get_threadtask(old),
offcore.energy_estimate_nj);
#if CONFIG_SCHED_EDGE
if (sched_perfcontrol_thread_shared_rsrc_flags_enabled) {
sched_perfcontrol_thread_flags_update(old, &offcore, SHARED_RSRC_POLICY_AGENT_PERFCTL_CSW);
}
#endif /* CONFIG_SCHED_EDGE */
}
}
void
machine_switch_perfcontrol_state_update(perfcontrol_event event,
uint64_t timestamp,
uint32_t flags,
thread_t thread)
{
if (sched_perfcontrol_state_update == sched_perfcontrol_state_update_default) {
return;
}
uint32_t cpu_id = (uint32_t)cpu_number();
struct perfcontrol_thread_data data;
machine_switch_populate_perfcontrol_thread_data(&data, thread, 0);
#if CONFIG_CPU_COUNTERS
uint64_t counters[MT_CORE_NFIXED];
bool ctrs_enabled = perfcontrol_callout_counters_begin(counters);
#endif /* CONFIG_CPU_COUNTERS */
sched_perfcontrol_state_update(event, cpu_id, timestamp, flags,
&data, NULL);
#if CONFIG_CPU_COUNTERS
if (ctrs_enabled) {
perfcontrol_callout_counters_end(counters, PERFCONTROL_CALLOUT_STATE_UPDATE);
}
#endif /* CONFIG_CPU_COUNTERS */
#if CONFIG_PERVASIVE_ENERGY
recount_add_energy(thread, get_threadtask(thread), data.energy_estimate_nj);
#endif /* CONFIG_PERVASIVE_ENERGY */
#if CONFIG_SCHED_EDGE
if (sched_perfcontrol_thread_shared_rsrc_flags_enabled && (event == QUANTUM_EXPIRY)) {
sched_perfcontrol_thread_flags_update(thread, &data, SHARED_RSRC_POLICY_AGENT_PERFCTL_QUANTUM);
} else {
assert(data.thread_flags_mask == 0);
}
#endif /* CONFIG_SCHED_EDGE */
}
void
machine_thread_going_on_core(thread_t new_thread,
thread_urgency_t urgency,
uint64_t sched_latency,
uint64_t same_pri_latency,
uint64_t timestamp)
{
if (sched_perfcontrol_oncore == sched_perfcontrol_oncore_default) {
return;
}
struct going_on_core on_core;
perfcontrol_state_t state = FIND_PERFCONTROL_STATE(new_thread);
on_core.thread_id = new_thread->thread_id;
on_core.energy_estimate_nj = 0;
on_core.qos_class = (uint16_t)proc_get_effective_thread_policy(new_thread, TASK_POLICY_QOS);
on_core.urgency = (uint16_t)urgency;
on_core.is_32_bit = thread_is_64bit_data(new_thread) ? FALSE : TRUE;
on_core.is_kernel_thread = get_threadtask(new_thread) == kernel_task;
#if CONFIG_THREAD_GROUPS
struct thread_group *tg = thread_group_get(new_thread);
on_core.thread_group_id = thread_group_get_id(tg);
on_core.thread_group_data = thread_group_get_machine_data(tg);
#endif
on_core.scheduling_latency = sched_latency;
on_core.start_time = timestamp;
on_core.scheduling_latency_at_same_basepri = same_pri_latency;
#if CONFIG_CPU_COUNTERS
uint64_t counters[MT_CORE_NFIXED];
bool ctrs_enabled = perfcontrol_callout_counters_begin(counters);
#endif /* CONFIG_CPU_COUNTERS */
sched_perfcontrol_oncore(state, &on_core);
#if CONFIG_CPU_COUNTERS
if (ctrs_enabled) {
perfcontrol_callout_counters_end(counters, PERFCONTROL_CALLOUT_ON_CORE);
}
#endif /* CONFIG_CPU_COUNTERS */
}
void
machine_thread_going_off_core(thread_t old_thread, boolean_t thread_terminating,
uint64_t last_dispatch, __unused boolean_t thread_runnable)
{
if (sched_perfcontrol_offcore == sched_perfcontrol_offcore_default) {
return;
}
struct going_off_core off_core;
perfcontrol_state_t state = FIND_PERFCONTROL_STATE(old_thread);
off_core.thread_id = old_thread->thread_id;
off_core.energy_estimate_nj = 0;
off_core.end_time = last_dispatch;
#if CONFIG_THREAD_GROUPS
struct thread_group *tg = thread_group_get(old_thread);
off_core.thread_group_id = thread_group_get_id(tg);
off_core.thread_group_data = thread_group_get_machine_data(tg);
#endif
#if CONFIG_CPU_COUNTERS
uint64_t counters[MT_CORE_NFIXED];
bool ctrs_enabled = perfcontrol_callout_counters_begin(counters);
#endif /* CONFIG_CPU_COUNTERS */
sched_perfcontrol_offcore(state, &off_core, thread_terminating);
#if CONFIG_CPU_COUNTERS
if (ctrs_enabled) {
perfcontrol_callout_counters_end(counters, PERFCONTROL_CALLOUT_OFF_CORE);
}
#endif /* CONFIG_CPU_COUNTERS */
}
#if CONFIG_THREAD_GROUPS
void
machine_thread_group_init(struct thread_group *tg)
{
if (sched_perfcontrol_thread_group_init == sched_perfcontrol_thread_group_default) {
return;
}
struct thread_group_data data;
data.thread_group_id = thread_group_get_id(tg);
data.thread_group_data = thread_group_get_machine_data(tg);
data.thread_group_size = thread_group_machine_data_size();
data.thread_group_flags = thread_group_get_flags(tg);
sched_perfcontrol_thread_group_init(&data);
}
void
machine_thread_group_deinit(struct thread_group *tg)
{
if (sched_perfcontrol_thread_group_deinit == sched_perfcontrol_thread_group_default) {
return;
}
struct thread_group_data data;
data.thread_group_id = thread_group_get_id(tg);
data.thread_group_data = thread_group_get_machine_data(tg);
data.thread_group_size = thread_group_machine_data_size();
data.thread_group_flags = thread_group_get_flags(tg);
sched_perfcontrol_thread_group_deinit(&data);
}
void
machine_thread_group_flags_update(struct thread_group *tg, uint32_t flags)
{
if (sched_perfcontrol_thread_group_flags_update == sched_perfcontrol_thread_group_default) {
return;
}
struct thread_group_data data;
data.thread_group_id = thread_group_get_id(tg);
data.thread_group_data = thread_group_get_machine_data(tg);
data.thread_group_size = thread_group_machine_data_size();
data.thread_group_flags = flags;
sched_perfcontrol_thread_group_flags_update(&data);
}
void
machine_thread_group_blocked(struct thread_group *blocked_tg,
struct thread_group *blocking_tg,
uint32_t flags,
thread_t blocked_thread)
{
if (sched_perfcontrol_thread_group_blocked == sched_perfcontrol_thread_group_blocked_default) {
return;
}
spl_t s = splsched();
perfcontrol_state_t state = FIND_PERFCONTROL_STATE(blocked_thread);
struct thread_group_data blocked_data;
assert(blocked_tg != NULL);
blocked_data.thread_group_id = thread_group_get_id(blocked_tg);
blocked_data.thread_group_data = thread_group_get_machine_data(blocked_tg);
blocked_data.thread_group_size = thread_group_machine_data_size();
if (blocking_tg == NULL) {
/*
* For special cases such as the render server, the blocking TG is a
* well known TG. Only in that case, the blocking_tg should be NULL.
*/
assert(flags & PERFCONTROL_CALLOUT_BLOCKING_TG_RENDER_SERVER);
sched_perfcontrol_thread_group_blocked(&blocked_data, NULL, flags, state);
} else {
struct thread_group_data blocking_data;
blocking_data.thread_group_id = thread_group_get_id(blocking_tg);
blocking_data.thread_group_data = thread_group_get_machine_data(blocking_tg);
blocking_data.thread_group_size = thread_group_machine_data_size();
sched_perfcontrol_thread_group_blocked(&blocked_data, &blocking_data, flags, state);
}
KDBG(MACHDBG_CODE(DBG_MACH_THREAD_GROUP, MACH_THREAD_GROUP_BLOCK) | DBG_FUNC_START,
thread_tid(blocked_thread), thread_group_get_id(blocked_tg),
blocking_tg ? thread_group_get_id(blocking_tg) : THREAD_GROUP_INVALID,
flags);
splx(s);
}
void
machine_thread_group_unblocked(struct thread_group *unblocked_tg,
struct thread_group *unblocking_tg,
uint32_t flags,
thread_t unblocked_thread)
{
if (sched_perfcontrol_thread_group_unblocked == sched_perfcontrol_thread_group_unblocked_default) {
return;
}
spl_t s = splsched();
perfcontrol_state_t state = FIND_PERFCONTROL_STATE(unblocked_thread);
struct thread_group_data unblocked_data;
assert(unblocked_tg != NULL);
unblocked_data.thread_group_id = thread_group_get_id(unblocked_tg);
unblocked_data.thread_group_data = thread_group_get_machine_data(unblocked_tg);
unblocked_data.thread_group_size = thread_group_machine_data_size();
if (unblocking_tg == NULL) {
/*
* For special cases such as the render server, the unblocking TG is a
* well known TG. Only in that case, the unblocking_tg should be NULL.
*/
assert(flags & PERFCONTROL_CALLOUT_BLOCKING_TG_RENDER_SERVER);
sched_perfcontrol_thread_group_unblocked(&unblocked_data, NULL, flags, state);
} else {
struct thread_group_data unblocking_data;
unblocking_data.thread_group_id = thread_group_get_id(unblocking_tg);
unblocking_data.thread_group_data = thread_group_get_machine_data(unblocking_tg);
unblocking_data.thread_group_size = thread_group_machine_data_size();
sched_perfcontrol_thread_group_unblocked(&unblocked_data, &unblocking_data, flags, state);
}
KDBG(MACHDBG_CODE(DBG_MACH_THREAD_GROUP, MACH_THREAD_GROUP_BLOCK) | DBG_FUNC_END,
thread_tid(unblocked_thread), thread_group_get_id(unblocked_tg),
unblocking_tg ? thread_group_get_id(unblocking_tg) : THREAD_GROUP_INVALID,
flags);
splx(s);
}
#endif /* CONFIG_THREAD_GROUPS */
void
machine_max_runnable_latency(uint64_t bg_max_latency,
uint64_t default_max_latency,
uint64_t realtime_max_latency)
{
if (sched_perfcontrol_max_runnable_latency == sched_perfcontrol_max_runnable_latency_default) {
return;
}
struct perfcontrol_max_runnable_latency latencies = {
.max_scheduling_latencies = {
[THREAD_URGENCY_NONE] = 0,
[THREAD_URGENCY_BACKGROUND] = bg_max_latency,
[THREAD_URGENCY_NORMAL] = default_max_latency,
[THREAD_URGENCY_REAL_TIME] = realtime_max_latency
}
};
sched_perfcontrol_max_runnable_latency(&latencies);
}
void
machine_work_interval_notify(thread_t thread,
struct kern_work_interval_args* kwi_args)
{
if (sched_perfcontrol_work_interval_notify == sched_perfcontrol_work_interval_notify_default) {
return;
}
perfcontrol_state_t state = FIND_PERFCONTROL_STATE(thread);
struct perfcontrol_work_interval work_interval = {
.thread_id = thread->thread_id,
.qos_class = (uint16_t)proc_get_effective_thread_policy(thread, TASK_POLICY_QOS),
.urgency = kwi_args->urgency,
.flags = kwi_args->notify_flags,
.work_interval_id = kwi_args->work_interval_id,
.start = kwi_args->start,
.finish = kwi_args->finish,
.deadline = kwi_args->deadline,
.next_start = kwi_args->next_start,
.create_flags = kwi_args->create_flags,
};
#if CONFIG_THREAD_GROUPS
struct thread_group *tg;
tg = thread_group_get(thread);
work_interval.thread_group_id = thread_group_get_id(tg);
work_interval.thread_group_data = thread_group_get_machine_data(tg);
#endif
sched_perfcontrol_work_interval_notify(state, &work_interval);
}
void
machine_perfcontrol_deadline_passed(uint64_t deadline)
{
if (sched_perfcontrol_deadline_passed != sched_perfcontrol_deadline_passed_default) {
sched_perfcontrol_deadline_passed(deadline);
}
}
#if SCHED_HYGIENE_DEBUG
__options_decl(int_mask_hygiene_flags_t, uint8_t, {
INT_MASK_BASE = 0x00,
INT_MASK_FROM_HANDLER = 0x01,
INT_MASK_IS_STACKSHOT = 0x02,
});
/*
* ml_spin_debug_reset()
* Reset the timestamp on a thread that has been unscheduled
* to avoid false alarms. Alarm will go off if interrupts are held
* disabled for too long, starting from now.
*
* Call ml_get_timebase() directly to prevent extra overhead on newer
* platforms that's enabled in DEVELOPMENT kernel configurations.
*/
void
ml_spin_debug_reset(thread_t thread)
{
if (thread->machine.intmask_timestamp) {
thread->machine.intmask_timestamp = ml_get_sched_hygiene_timebase();
INTERRUPT_MASKED_DEBUG_CAPTURE_PMC(thread);
}
}
/*
* ml_spin_debug_clear()
* Clear the timestamp and cycle/instruction counts on a thread that
* has been unscheduled to avoid false alarms
*/
void
ml_spin_debug_clear(thread_t thread)
{
thread->machine.intmask_timestamp = 0;
thread->machine.intmask_cycles = 0;
thread->machine.intmask_instr = 0;
}
/*
* ml_spin_debug_clear_self()
* Clear the timestamp on the current thread to prevent
* false alarms
*/
void
ml_spin_debug_clear_self(void)
{
ml_spin_debug_clear(current_thread());
}
#ifndef KASAN
/*
* Get a character representing the provided thread's kind of CPU.
*/
#if !CONFIG_CPU_COUNTERS
__unused
#endif // !CONFIG_CPU_COUNTERS
static char
__ml_interrupts_disabled_cpu_kind(thread_t thread)
{
#if __AMP__
processor_t processor = thread->last_processor;
if (!processor) {
return '!';
}
switch (processor->processor_set->pset_cluster_type) {
case PSET_AMP_P:
return 'P';
case PSET_AMP_E:
return 'E';
default:
return '?';
}
#else // __AMP__
#pragma unused(thread)
return '-';
#endif // !__AMP__
}
#define EXTRA_INFO_STRING_SIZE 256
#define LOW_FREQ_THRESHOLD_MHZ 500
#define HIGH_CPI_THRESHOLD 3
static void
__ml_trigger_interrupts_disabled_handle(thread_t thread, uint64_t start, uint64_t now, uint64_t timeout, int_mask_hygiene_flags_t flags)
{
mach_timebase_info_data_t timebase;
clock_timebase_info(&timebase);
bool is_int_handler = flags & INT_MASK_FROM_HANDLER;
bool is_stackshot = flags & INT_MASK_IS_STACKSHOT;
const uint64_t time_elapsed = now - start;
const uint64_t time_elapsed_ns = (time_elapsed * timebase.numer) / timebase.denom;
uint64_t current_cycles = 0, current_instrs = 0;
#if CONFIG_CPU_COUNTERS
if (sched_hygiene_debug_pmc) {
mt_cur_cpu_cycles_instrs_speculative(¤t_cycles, ¤t_instrs);
}
#endif // CONFIG_CPU_COUNTERS
const uint64_t cycles_elapsed = current_cycles - thread->machine.intmask_cycles;
const uint64_t instrs_elapsed = current_instrs - thread->machine.intmask_instr;
if (interrupt_masked_debug_mode == SCHED_HYGIENE_MODE_PANIC) {
const uint64_t timeout_ns = ((timeout * debug_cpu_performance_degradation_factor) * timebase.numer) / timebase.denom;
char extra_info_string[EXTRA_INFO_STRING_SIZE] = { '\0' };
#if CONFIG_CPU_COUNTERS
if (sched_hygiene_debug_pmc) {
const uint64_t time_elapsed_us = time_elapsed_ns / 1000;
const uint64_t average_freq_mhz = cycles_elapsed / time_elapsed_us;
const uint64_t average_cpi_whole = cycles_elapsed / instrs_elapsed;
const uint64_t average_cpi_fractional = ((cycles_elapsed * 100) / instrs_elapsed) % 100;
bool high_cpi = average_cpi_whole >= HIGH_CPI_THRESHOLD;
char core_kind = __ml_interrupts_disabled_cpu_kind(thread);
bool low_mhz = average_freq_mhz < LOW_FREQ_THRESHOLD_MHZ;
snprintf(extra_info_string, EXTRA_INFO_STRING_SIZE,
", %sfreq = %llu MHz, %sCPI = %llu.%llu, CPU kind = %c",
low_mhz ? "low " : "",
average_freq_mhz,
high_cpi ? "high " : "",
average_cpi_whole,
average_cpi_fractional,
core_kind);
}
#endif // CONFIG_CPU_COUNTERS
if (is_int_handler) {
panic("Processing of an interrupt (type = %u, handler address = %p, vector = %p) "
"took %llu nanoseconds (start = %llu, now = %llu, timeout = %llu ns%s)",
thread->machine.int_type, (void *)thread->machine.int_handler_addr, (void *)thread->machine.int_vector,
time_elapsed_ns, start, now, timeout_ns, extra_info_string);
} else {
panic("%s for %llu nanoseconds (start = %llu, now = %llu, timeout = %llu ns%s)",
is_stackshot ? "Stackshot disabled interrupts" : "Interrupts held disabled",
time_elapsed_ns, start, now, timeout_ns, extra_info_string);
}
} else if (interrupt_masked_debug_mode == SCHED_HYGIENE_MODE_TRACE) {
if (is_int_handler) {
static const uint32_t interrupt_handled_dbgid =
MACHDBG_CODE(DBG_MACH_SCHED, MACH_INT_HANDLED_EXPIRED);
DTRACE_SCHED3(interrupt_handled_dbgid, uint64_t, time_elapsed,
uint64_t, cycles_elapsed, uint64_t, instrs_elapsed);
KDBG(interrupt_handled_dbgid, time_elapsed,
cycles_elapsed, instrs_elapsed);
} else {
static const uint32_t interrupt_masked_dbgid =
MACHDBG_CODE(DBG_MACH_SCHED, MACH_INT_MASKED_EXPIRED);
DTRACE_SCHED3(interrupt_masked_dbgid, uint64_t, time_elapsed,
uint64_t, cycles_elapsed, uint64_t, instrs_elapsed);
KDBG(interrupt_masked_dbgid, time_elapsed,
cycles_elapsed, instrs_elapsed);
}
}
}
#endif // !defined(KASAN)
static inline void
__ml_handle_interrupts_disabled_duration(thread_t thread, uint64_t timeout, bool is_int_handler)
{
if (timeout == 0) {
return; // 0 means timeout disabled.
}
uint64_t start = is_int_handler ? thread->machine.inthandler_timestamp : thread->machine.intmask_timestamp;
if (start != 0) {
uint64_t now = ml_get_sched_hygiene_timebase();
if (interrupt_masked_debug_mode &&
((now - start) > timeout * debug_cpu_performance_degradation_factor) &&
!thread->machine.inthandler_abandon) {
/*
* Disable the actual panic for KASAN due to the overhead of KASAN itself, leave the rest of the
* mechanism enabled so that KASAN can catch any bugs in the mechanism itself.
*/
#ifndef KASAN
__ml_trigger_interrupts_disabled_handle(thread, start, now, timeout, is_int_handler);
#endif
}
if (is_int_handler) {
uint64_t const duration = now - start;
/*
* No need for an atomic add, the only thread modifying
* this is ourselves. Other threads querying will just see
* either the old or the new value. (This will also just
* resolve to regular loads and stores on relevant
* platforms.)
*/
uint64_t const old_duration = os_atomic_load_wide(&thread->machine.int_time_mt, relaxed);
os_atomic_store_wide(&thread->machine.int_time_mt, old_duration + duration, relaxed);
}
}
}
void
ml_handle_interrupts_disabled_duration(thread_t thread)
{
__ml_handle_interrupts_disabled_duration(thread, os_atomic_load(&interrupt_masked_timeout, relaxed), INT_MASK_BASE);
}
void
ml_handle_stackshot_interrupt_disabled_duration(thread_t thread)
{
/* Use MAX() to let the user bump the timeout further if needed */
uint64_t stackshot_timeout = os_atomic_load(&stackshot_interrupt_masked_timeout, relaxed);
uint64_t normal_timeout = os_atomic_load(&interrupt_masked_timeout, relaxed);
uint64_t timeout = MAX(stackshot_timeout, normal_timeout);
__ml_handle_interrupts_disabled_duration(thread, timeout, INT_MASK_IS_STACKSHOT);
}
void
ml_handle_interrupt_handler_duration(thread_t thread)
{
__ml_handle_interrupts_disabled_duration(thread, os_atomic_load(&interrupt_masked_timeout, relaxed), INT_MASK_FROM_HANDLER);
}
void
ml_irq_debug_start(uintptr_t handler, uintptr_t vector)
{
INTERRUPT_MASKED_DEBUG_START(handler, DBG_INTR_TYPE_OTHER);
current_thread()->machine.int_vector = (uintptr_t)VM_KERNEL_STRIP_PTR(vector);
}
void
ml_irq_debug_end()
{
INTERRUPT_MASKED_DEBUG_END();
}
/*
* Abandon a potential timeout when handling an interrupt. It is important to
* continue to keep track of the interrupt time so the time-stamp can't be
* reset. (Interrupt time is subtracted from preemption time to maintain
* accurate preemption time measurement).
* When `inthandler_abandon` is true, a timeout will be ignored when the
* interrupt handler finishes.
*/
void
ml_irq_debug_abandon(void)
{
assert(!ml_get_interrupts_enabled());
thread_t t = current_thread();
if (t->machine.inthandler_timestamp != 0) {
t->machine.inthandler_abandon = true;
}
}
#endif // SCHED_HYGIENE_DEBUG
#if SCHED_HYGIENE_DEBUG
__attribute__((noinline))
static void
ml_interrupt_masked_debug_timestamp(thread_t thread)
{
thread->machine.intmask_timestamp = ml_get_sched_hygiene_timebase();
INTERRUPT_MASKED_DEBUG_CAPTURE_PMC(thread);
}
#endif
boolean_t
ml_set_interrupts_enabled_with_debug(boolean_t enable, boolean_t __unused debug)
{
thread_t thread;
uint64_t state;
thread = current_thread();
state = __builtin_arm_rsr("DAIF");
if (__improbable(!(state & DAIF_DEBUGF))) {
panic("%s: debug exceptions enabled in kernel mode", __func__);
}
if (enable && (state & DAIF_STANDARD_DISABLE)) {
assert3u(state & DAIF_STANDARD_DISABLE, ==, DAIF_STANDARD_DISABLE);
assert(getCpuDatap()->cpu_int_state == NULL); // Make sure we're not enabling interrupts from primary interrupt context
#if SCHED_HYGIENE_DEBUG
if (__probable(debug && (interrupt_masked_debug_mode || sched_preemption_disable_debug_mode))) {
// Interrupts are currently masked, we will enable them (after finishing this check)
if (stackshot_active()) {
ml_handle_stackshot_interrupt_disabled_duration(thread);
} else {
ml_handle_interrupts_disabled_duration(thread);
}
thread->machine.intmask_timestamp = 0;
thread->machine.intmask_cycles = 0;
thread->machine.intmask_instr = 0;
}
#endif // SCHED_HYGIENE_DEBUG
if (get_preemption_level() == 0) {
while (thread->machine.CpuDatap->cpu_pending_ast & AST_URGENT) {
#if __ARM_USER_PROTECT__
uintptr_t up = arm_user_protect_begin(thread);
#endif
ast_taken_kernel();
#if __ARM_USER_PROTECT__
arm_user_protect_end(thread, up, FALSE);
#endif
}
}
__builtin_arm_wsr("DAIFClr", DAIFSC_STANDARD_DISABLE);
} else if (!enable && ((state & DAIF_STANDARD_DISABLE) != DAIF_STANDARD_DISABLE)) {
assert3u(state & DAIF_STANDARD_DISABLE, ==, 0);
__builtin_arm_wsr("DAIFSet", DAIFSC_STANDARD_DISABLE);
#if SCHED_HYGIENE_DEBUG
if (__probable(debug && (interrupt_masked_debug_mode || sched_preemption_disable_debug_mode))) {
// Interrupts were enabled, we just masked them
ml_interrupt_masked_debug_timestamp(thread);
}
#endif
}
return (state & DAIF_STANDARD_DISABLE) != DAIF_STANDARD_DISABLE;
}
boolean_t
ml_set_interrupts_enabled(boolean_t enable)
{
return ml_set_interrupts_enabled_with_debug(enable, true);
}
boolean_t
ml_early_set_interrupts_enabled(boolean_t enable)
{
return ml_set_interrupts_enabled(enable);
}
/*
* Interrupt enable function exported for AppleCLPC without
* measurements enabled.
*
* Only for AppleCLPC!
*/
boolean_t
sched_perfcontrol_ml_set_interrupts_without_measurement(boolean_t enable)
{
return ml_set_interrupts_enabled_with_debug(enable, false);
}
/*
* Routine: ml_at_interrupt_context
* Function: Check if running at interrupt context
*/
boolean_t
ml_at_interrupt_context(void)
{
/* Do not use a stack-based check here, as the top-level exception handler
* is free to use some other stack besides the per-CPU interrupt stack.
* Interrupts should always be disabled if we're at interrupt context.
* Check that first, as we may be in a preemptible non-interrupt context, in
* which case we could be migrated to a different CPU between obtaining
* the per-cpu data pointer and loading cpu_int_state. We then might end
* up checking the interrupt state of a different CPU, resulting in a false
* positive. But if interrupts are disabled, we also know we cannot be
* preempted. */
return !ml_get_interrupts_enabled() && (getCpuDatap()->cpu_int_state != NULL);
}
/*
* This answers the question
* "after returning from this interrupt handler with the AST_URGENT bit set,
* will I end up in ast_taken_user or ast_taken_kernel?"
*
* If it's called in non-interrupt context (e.g. regular syscall), it should
* return false.
*
* Must be called with interrupts disabled.
*/
bool
ml_did_interrupt_userspace(void)
{
assert(ml_get_interrupts_enabled() == false);
struct arm_saved_state *state = getCpuDatap()->cpu_int_state;
return state && PSR64_IS_USER(get_saved_state_cpsr(state));
}
vm_offset_t
ml_stack_remaining(void)
{
uintptr_t local = (uintptr_t) &local;
vm_offset_t intstack_top_ptr;
/* Since this is a stack-based check, we don't need to worry about
* preemption as we do in ml_at_interrupt_context(). If we are preemptible,
* then the sp should never be within any CPU's interrupt stack unless
* something has gone horribly wrong. */
intstack_top_ptr = getCpuDatap()->intstack_top;
if ((local < intstack_top_ptr) && (local > intstack_top_ptr - INTSTACK_SIZE)) {
return local - (getCpuDatap()->intstack_top - INTSTACK_SIZE);
} else {
return local - current_thread()->kernel_stack;
}
}
static boolean_t ml_quiescing = FALSE;
void
ml_set_is_quiescing(boolean_t quiescing)
{
assert(ml_quiescing != quiescing);
ml_quiescing = quiescing;
os_atomic_thread_fence(release);
}
boolean_t
ml_is_quiescing(void)
{
os_atomic_thread_fence(acquire);
return ml_quiescing;
}
uint64_t
ml_get_booter_memory_size(void)
{
uint64_t size;
uint64_t roundsize = 512 * 1024 * 1024ULL;
size = BootArgs->memSizeActual;
if (!size) {
size = BootArgs->memSize;
if (size < (2 * roundsize)) {
roundsize >>= 1;
}
size = (size + roundsize - 1) & ~(roundsize - 1);
}
size -= BootArgs->memSize;
return size;
}
uint64_t
ml_get_abstime_offset(void)
{
return rtclock_base_abstime;
}
uint64_t
ml_get_conttime_offset(void)
{
#if HIBERNATION && HAS_CONTINUOUS_HWCLOCK
return hwclock_conttime_offset;
#elif HAS_CONTINUOUS_HWCLOCK
return 0;
#else
return rtclock_base_abstime + mach_absolutetime_asleep;
#endif
}
uint64_t
ml_get_time_since_reset(void)
{
#if HAS_CONTINUOUS_HWCLOCK
if (wake_conttime == UINT64_MAX) {
return UINT64_MAX;
} else {
return mach_continuous_time() - wake_conttime;
}
#else
/* The timebase resets across S2R, so just return the raw value. */
return ml_get_hwclock();
#endif
}
void
ml_set_reset_time(__unused uint64_t wake_time)
{
#if HAS_CONTINUOUS_HWCLOCK
wake_conttime = wake_time;
#endif
}
uint64_t
ml_get_conttime_wake_time(void)
{
#if HAS_CONTINUOUS_HWCLOCK
/*
* For now, we will reconstitute the timebase value from
* cpu_timebase_init and use it as the wake time.
*/
return wake_abstime - ml_get_abstime_offset();
#else /* HAS_CONTINOUS_HWCLOCK */
/* The wake time is simply our continuous time offset. */
return ml_get_conttime_offset();
#endif /* HAS_CONTINOUS_HWCLOCK */
}
/*
* ml_snoop_thread_is_on_core(thread_t thread)
* Check if the given thread is currently on core. This function does not take
* locks, disable preemption, or otherwise guarantee synchronization. The
* result should be considered advisory.
*/
bool
ml_snoop_thread_is_on_core(thread_t thread)
{
unsigned int cur_cpu_num = 0;
const unsigned int max_cpu_id = ml_get_max_cpu_number();
for (cur_cpu_num = 0; cur_cpu_num <= max_cpu_id; cur_cpu_num++) {
if (CpuDataEntries[cur_cpu_num].cpu_data_vaddr) {
if (CpuDataEntries[cur_cpu_num].cpu_data_vaddr->cpu_active_thread == thread) {
return true;
}
}
}
return false;
}
int
ml_early_cpu_max_number(void)
{
assert(startup_phase >= STARTUP_SUB_TUNABLES);
return ml_get_max_cpu_number();
}
void
ml_set_max_cpus(unsigned int max_cpus __unused)
{
lck_mtx_lock(&max_cpus_lock);
if (max_cpus_initialized != MAX_CPUS_SET) {
if (max_cpus_initialized == MAX_CPUS_WAIT) {
thread_wakeup((event_t) &max_cpus_initialized);
}
max_cpus_initialized = MAX_CPUS_SET;
}
lck_mtx_unlock(&max_cpus_lock);
}
unsigned int
ml_wait_max_cpus(void)
{
assert(lockdown_done);
lck_mtx_lock(&max_cpus_lock);
while (max_cpus_initialized != MAX_CPUS_SET) {
max_cpus_initialized = MAX_CPUS_WAIT;
lck_mtx_sleep(&max_cpus_lock, LCK_SLEEP_DEFAULT, &max_cpus_initialized, THREAD_UNINT);
}
lck_mtx_unlock(&max_cpus_lock);
return machine_info.max_cpus;
}
void
ml_cpu_get_info_type(ml_cpu_info_t * ml_cpu_info, cluster_type_t cluster_type)
{
cache_info_t *cpuid_cache_info;
cpuid_cache_info = cache_info_type(cluster_type);
ml_cpu_info->vector_unit = 0;
ml_cpu_info->cache_line_size = cpuid_cache_info->c_linesz;
ml_cpu_info->l1_icache_size = cpuid_cache_info->c_isize;
ml_cpu_info->l1_dcache_size = cpuid_cache_info->c_dsize;
#if (__ARM_ARCH__ >= 8)
ml_cpu_info->l2_settings = 1;
ml_cpu_info->l2_cache_size = cpuid_cache_info->c_l2size;
#else
#error Unsupported arch
#endif
ml_cpu_info->l3_settings = 0;
ml_cpu_info->l3_cache_size = 0xFFFFFFFF;
}
/*
* Routine: ml_cpu_get_info
* Function: Fill out the ml_cpu_info_t structure with parameters associated
* with the boot cluster.
*/
void
ml_cpu_get_info(ml_cpu_info_t * ml_cpu_info)
{
ml_cpu_get_info_type(ml_cpu_info, ml_get_topology_info()->boot_cpu->cluster_type);
}
unsigned int
ml_get_cpu_number_type(cluster_type_t cluster_type, bool logical, bool available)
{
/*
* At present no supported ARM system features SMT, so the "logical"
* parameter doesn't have an impact on the result.
*/
if (logical && available) {
return os_atomic_load(&cluster_type_num_active_cpus[cluster_type], relaxed);
} else if (logical && !available) {
return ml_get_topology_info()->cluster_type_num_cpus[cluster_type];
} else if (!logical && available) {
return os_atomic_load(&cluster_type_num_active_cpus[cluster_type], relaxed);
} else {
return ml_get_topology_info()->cluster_type_num_cpus[cluster_type];
}
}
void
ml_get_cluster_type_name(cluster_type_t cluster_type, char *name, size_t name_size)
{
strlcpy(name, cluster_type_names[cluster_type], name_size);
}
unsigned int
ml_get_cluster_number_type(cluster_type_t cluster_type)
{
return ml_get_topology_info()->cluster_type_num_clusters[cluster_type];
}
unsigned int
ml_cpu_cache_sharing(unsigned int level, cluster_type_t cluster_type, bool include_all_cpu_types __unused)
{
unsigned int cpu_number = 0, cluster_types = 0;
/*
* Level 0 corresponds to main memory, which is shared across all cores.
*/
if (level == 0) {
return ml_get_topology_info()->num_cpus;
}
/*
* At present no supported ARM system features more than 2 levels of caches.
*/
if (level > 2) {
return 0;
}
/*
* L1 caches are always per core.
*/
if (level == 1) {
return 1;
}
cluster_types = (1 << cluster_type);
/*
* Traverse clusters until we find the one(s) of the desired type(s).
*/
for (int i = 0; i < ml_get_topology_info()->num_clusters; i++) {
ml_topology_cluster_t *cluster = &ml_get_topology_info()->clusters[i];
if ((1 << cluster->cluster_type) & cluster_types) {
cpu_number += cluster->num_cpus;
cluster_types &= ~(1 << cluster->cluster_type);
if (!cluster_types) {
break;
}
}
}
return cpu_number;
}
unsigned int
ml_get_cpu_types(void)
{
return ml_get_topology_info()->cluster_types;
}
void
machine_conf(void)
{
/*
* This is known to be inaccurate. mem_size should always be capped at 2 GB
*/
machine_info.memory_size = (uint32_t)mem_size;
// rdar://problem/58285685: Userland expects _COMM_PAGE_LOGICAL_CPUS to report
// (max_cpu_id+1) rather than a literal *count* of logical CPUs.
unsigned int num_cpus = ml_get_topology_info()->max_cpu_id + 1;
machine_info.max_cpus = num_cpus;
machine_info.physical_cpu_max = num_cpus;
machine_info.logical_cpu_max = num_cpus;
}
void
machine_init(void)
{
debug_log_init();
clock_config();
is_clock_configured = TRUE;
if (debug_enabled) {
pmap_map_globals();
}
ml_lockdown_init();
}