/*
* Copyright (c) 2003-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Here's what to do if you want to add a new routine to the comm page:
*
* 1. Add a definition for it's address in osfmk/i386/cpu_capabilities.h,
* being careful to reserve room for future expansion.
*
* 2. Write one or more versions of the routine, each with it's own
* commpage_descriptor. The tricky part is getting the "special",
* "musthave", and "canthave" fields right, so that exactly one
* version of the routine is selected for every machine.
* The source files should be in osfmk/i386/commpage/.
*
* 3. Add a ptr to your new commpage_descriptor(s) in the "routines"
* array in osfmk/i386/commpage/commpage_asm.s. There are two
* arrays, one for the 32-bit and one for the 64-bit commpage.
*
* 4. Write the code in Libc to use the new routine.
*/
#include <mach/mach_types.h>
#include <mach/machine.h>
#include <mach/vm_map.h>
#include <mach/mach_vm.h>
#include <mach/machine.h>
#include <i386/cpuid.h>
#include <i386/tsc.h>
#include <i386/rtclock_protos.h>
#include <i386/cpu_data.h>
#include <i386/machine_routines.h>
#include <i386/misc_protos.h>
#include <i386/cpuid.h>
#include <machine/cpu_capabilities.h>
#include <machine/commpage.h>
#include <machine/pmap.h>
#include <vm/vm_kern_xnu.h>
#include <vm/vm_map_xnu.h>
#include <stdatomic.h>
#include <ipc/ipc_port.h>
#include <kern/page_decrypt.h>
#include <kern/processor.h>
#include <sys/kdebug.h>
#include <sys/random.h>
#if CONFIG_ATM
#include <atm/atm_internal.h>
#endif
/* the lists of commpage routines are in commpage_asm.s */
extern commpage_descriptor* commpage_32_routines[];
extern commpage_descriptor* commpage_64_routines[];
extern vm_map_t commpage32_map; // the shared submap, set up in vm init
extern vm_map_t commpage64_map; // the shared submap, set up in vm init
extern vm_map_t commpage_text32_map; // the shared submap, set up in vm init
extern vm_map_t commpage_text64_map; // the shared submap, set up in vm init
char *commPagePtr32 = NULL; // virtual addr in kernel map of 32-bit commpage
char *commPagePtr64 = NULL; // ...and of 64-bit commpage
char *commPageTextPtr32 = NULL; // virtual addr in kernel map of 32-bit commpage
char *commPageTextPtr64 = NULL; // ...and of 64-bit commpage
uint64_t _cpu_capabilities = 0; // define the capability vector
typedef uint32_t commpage_address_t;
static commpage_address_t next; // next available address in comm page
static char *commPagePtr; // virtual addr in kernel map of commpage we are working on
static commpage_address_t commPageBaseOffset; // subtract from 32-bit runtime address to get offset in virtual commpage in kernel map
static commpage_time_data *time_data32 = NULL;
static commpage_time_data *time_data64 = NULL;
static new_commpage_timeofday_data_t *gtod_time_data32 = NULL;
static new_commpage_timeofday_data_t *gtod_time_data64 = NULL;
decl_simple_lock_data(static, commpage_active_cpus_lock);
/* Allocate the commpage and add to the shared submap created by vm:
* 1. allocate a page in the kernel map (RW)
* 2. wire it down
* 3. make a memory entry out of it
* 4. map that entry into the shared comm region map (R-only)
*/
static void*
commpage_allocate(
vm_map_t submap, // commpage32_map or commpage_map64
size_t area_used, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
vm_prot_t uperm)
{
mach_vm_offset_t kernel_addr = 0; // address of commpage in kernel map
mach_vm_offset_t zero = 0;
vm_size_t size = area_used; // size actually populated
vm_map_entry_t entry;
ipc_port_t handle;
kern_return_t kr;
vm_map_kernel_flags_t vmk_flags;
if (submap == NULL) {
panic("commpage submap is null");
}
kr = mach_vm_map_kernel(kernel_map,
&kernel_addr,
area_used,
0,
VM_MAP_KERNEL_FLAGS_ANYWHERE(.vm_tag = VM_KERN_MEMORY_OSFMK),
NULL,
0,
FALSE,
VM_PROT_ALL,
VM_PROT_ALL,
VM_INHERIT_NONE);
if (kr != KERN_SUCCESS) {
panic("cannot allocate commpage %d", kr);
}
if ((kr = vm_map_wire_kernel(kernel_map,
kernel_addr,
kernel_addr + area_used,
VM_PROT_DEFAULT, VM_KERN_MEMORY_OSFMK,
FALSE))) {
panic("cannot wire commpage: %d", kr);
}
/*
* Now that the object is created and wired into the kernel map, mark it so that no delay
* copy-on-write will ever be performed on it as a result of mapping it into user-space.
* If such a delayed copy ever occurred, we could remove the kernel's wired mapping - and
* that would be a real disaster.
*
* JMM - What we really need is a way to create it like this in the first place.
*/
if (!(kr = vm_map_lookup_entry( kernel_map, vm_map_trunc_page(kernel_addr, VM_MAP_PAGE_MASK(kernel_map)), &entry) || entry->is_sub_map)) {
panic("cannot find commpage entry %d", kr);
}
VME_OBJECT(entry)->copy_strategy = MEMORY_OBJECT_COPY_NONE;
if ((kr = mach_make_memory_entry( kernel_map, // target map
&size, // size
kernel_addr, // offset (address in kernel map)
uperm, // protections as specified
&handle, // this is the object handle we get
NULL ))) { // parent_entry (what is this?)
panic("cannot make entry for commpage %d", kr);
}
vmk_flags = VM_MAP_KERNEL_FLAGS_FIXED();
if (uperm == (VM_PROT_READ | VM_PROT_EXECUTE)) {
/*
* Mark this unsigned executable mapping as "jit" to avoid
* code-signing violations when attempting to execute unsigned
* code.
*/
vmk_flags.vmkf_map_jit = TRUE;
}
kr = mach_vm_map_kernel(
submap, // target map (shared submap)
&zero, // address (map into 1st page in submap)
area_used, // size
0, // mask
vmk_flags,
handle, // port is the memory entry we just made
0, // offset (map 1st page in memory entry)
FALSE, // copy
uperm, // cur_protection (R-only in user map)
uperm, // max_protection
VM_INHERIT_SHARE); // inheritance
if (kr != KERN_SUCCESS) {
panic("cannot map commpage %d", kr);
}
ipc_port_release(handle);
/* Make the kernel mapping non-executable. This cannot be done
* at the time of map entry creation as mach_make_memory_entry
* cannot handle disjoint permissions at this time.
*/
kr = vm_protect(kernel_map, kernel_addr, area_used, FALSE, VM_PROT_READ | VM_PROT_WRITE);
assert(kr == KERN_SUCCESS);
return (void*)(intptr_t)kernel_addr; // return address in kernel map
}
/* Get address (in kernel map) of a commpage field. */
static void*
commpage_addr_of(
commpage_address_t addr_at_runtime )
{
return (void*) ((uintptr_t)commPagePtr + (addr_at_runtime - commPageBaseOffset));
}
/*
* Calculate address of data within 32- and 64-bit commpages (not to be used with commpage
* text).
*/
static void*
commpage_specific_addr_of(char *commPageBase, commpage_address_t addr_at_runtime)
{
/*
* Note that the base address (_COMM_PAGE32_BASE_ADDRESS) is the same for
* 32- and 64-bit commpages
*/
return (void*) ((uintptr_t)commPageBase + (addr_at_runtime - _COMM_PAGE32_BASE_ADDRESS));
}
/* Determine number of CPUs on this system. We cannot rely on
* machine_info.max_cpus this early in the boot.
*/
static int
commpage_cpus( void )
{
unsigned int cpus;
cpus = ml_wait_max_cpus(); // NB: this call can block
if (cpus == 0) {
panic("commpage cpus==0");
}
if (cpus > 0xFF) {
cpus = 0xFF;
}
return cpus;
}
/* Initialize kernel version of _cpu_capabilities vector (used by KEXTs.) */
static void
commpage_init_cpu_capabilities( void )
{
uint64_t bits;
int cpus;
ml_cpu_info_t cpu_info;
bits = 0;
ml_cpu_get_info(&cpu_info);
switch (cpu_info.vector_unit) {
case 9:
bits |= kHasAVX1_0;
OS_FALLTHROUGH;
case 8:
bits |= kHasSSE4_2;
OS_FALLTHROUGH;
case 7:
bits |= kHasSSE4_1;
OS_FALLTHROUGH;
case 6:
bits |= kHasSupplementalSSE3;
OS_FALLTHROUGH;
case 5:
bits |= kHasSSE3;
OS_FALLTHROUGH;
case 4:
bits |= kHasSSE2;
OS_FALLTHROUGH;
case 3:
bits |= kHasSSE;
OS_FALLTHROUGH;
case 2:
bits |= kHasMMX;
OS_FALLTHROUGH;
default:
break;
}
switch (cpu_info.cache_line_size) {
case 128:
bits |= kCache128;
break;
case 64:
bits |= kCache64;
break;
case 32:
bits |= kCache32;
break;
default:
break;
}
cpus = commpage_cpus(); // how many CPUs do we have
bits |= (cpus << kNumCPUsShift);
bits |= kFastThreadLocalStorage; // we use %gs for TLS
#define setif(_bits, _bit, _condition) \
if (_condition) _bits |= _bit
setif(bits, kUP, cpus == 1);
setif(bits, k64Bit, cpu_mode_is64bit());
setif(bits, kSlow, tscFreq <= SLOW_TSC_THRESHOLD);
setif(bits, kHasAES, cpuid_features() &
CPUID_FEATURE_AES);
setif(bits, kHasF16C, cpuid_features() &
CPUID_FEATURE_F16C);
setif(bits, kHasRDRAND, cpuid_features() &
CPUID_FEATURE_RDRAND);
setif(bits, kHasFMA, cpuid_features() &
CPUID_FEATURE_FMA);
setif(bits, kHasBMI1, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_BMI1);
setif(bits, kHasBMI2, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_BMI2);
/* Do not advertise RTM and HLE if the TSX FORCE ABORT WA is required */
if (cpuid_wa_required(CPU_INTEL_TSXFA) & CWA_OFF) {
setif(bits, kHasRTM, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_RTM);
setif(bits, kHasHLE, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_HLE);
}
setif(bits, kHasAVX2_0, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_AVX2);
setif(bits, kHasRDSEED, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_RDSEED);
setif(bits, kHasADX, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_ADX);
#if 0 /* The kernel doesn't support MPX or SGX */
setif(bits, kHasMPX, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_MPX);
setif(bits, kHasSGX, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_SGX);
#endif
if (ml_fpu_avx512_enabled()) {
setif(bits, kHasAVX512F, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_AVX512F);
setif(bits, kHasAVX512CD, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_AVX512CD);
setif(bits, kHasAVX512DQ, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_AVX512DQ);
setif(bits, kHasAVX512BW, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_AVX512BW);
setif(bits, kHasAVX512VL, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_AVX512VL);
setif(bits, kHasAVX512IFMA, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_AVX512IFMA);
setif(bits, kHasAVX512VBMI, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_AVX512VBMI);
setif(bits, kHasVAES, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_VAES);
setif(bits, kHasVPCLMULQDQ, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_VPCLMULQDQ);
setif(bits, kHasAVX512VNNI, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_AVX512VNNI);
setif(bits, kHasAVX512BITALG, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_AVX512BITALG);
setif(bits, kHasAVX512VPOPCNTDQ, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_AVX512VPCDQ);
}
if (cpuid_leaf7_features() & CPUID_LEAF7_FEATURE_ERMS) {
uint64_t misc_enable = rdmsr64(MSR_IA32_MISC_ENABLE);
setif(bits, kHasENFSTRG, (misc_enable & 1ULL));
}
_cpu_capabilities = bits; // set kernel version for use by drivers etc
}
/* initialize the approx_time_supported flag and set the approx time to 0.
* Called during initial commpage population.
*/
static void
commpage_mach_approximate_time_init(void)
{
char *cp = commPagePtr32;
uint8_t supported;
#ifdef CONFIG_MACH_APPROXIMATE_TIME
supported = 1;
#else
supported = 0;
#endif
if (cp) {
cp += (_COMM_PAGE_APPROX_TIME_SUPPORTED - _COMM_PAGE32_BASE_ADDRESS);
*(boolean_t *)cp = supported;
}
cp = commPagePtr64;
if (cp) {
cp += (_COMM_PAGE_APPROX_TIME_SUPPORTED - _COMM_PAGE32_START_ADDRESS);
*(boolean_t *)cp = supported;
}
commpage_update_mach_approximate_time(0);
}
static void
commpage_mach_continuous_time_init(void)
{
commpage_update_mach_continuous_time(0);
}
static void
commpage_boottime_init(void)
{
clock_sec_t secs;
clock_usec_t microsecs;
clock_get_boottime_microtime(&secs, µsecs);
commpage_update_boottime(secs * USEC_PER_SEC + microsecs);
}
uint64_t
_get_cpu_capabilities(void)
{
return _cpu_capabilities;
}
/* Copy data into commpage. */
static void
commpage_stuff(
commpage_address_t address,
const void *source,
int length )
{
void *dest = commpage_addr_of(address);
if (address < next) {
panic("commpage overlap at address 0x%p, 0x%x < 0x%x", dest, address, next);
}
bcopy(source, dest, length);
next = address + length;
}
/*
* Updates both the 32-bit and 64-bit commpages with the new data.
*/
static void
commpage_update(commpage_address_t address, const void *source, int length)
{
void *dest = commpage_specific_addr_of(commPagePtr32, address);
bcopy(source, dest, length);
dest = commpage_specific_addr_of(commPagePtr64, address);
bcopy(source, dest, length);
}
void
commpage_post_ucode_update(void)
{
commpage_init_cpu_capabilities();
commpage_update(_COMM_PAGE_CPU_CAPABILITIES64, &_cpu_capabilities, sizeof(_cpu_capabilities));
commpage_update(_COMM_PAGE_CPU_CAPABILITIES, &_cpu_capabilities, sizeof(uint32_t));
}
/* Copy a routine into comm page if it matches running machine.
*/
static void
commpage_stuff_routine(
commpage_descriptor *rd )
{
commpage_stuff(rd->commpage_address, rd->code_address, rd->code_length);
}
/* Fill in the 32- or 64-bit commpage. Called once for each.
*/
static void
commpage_populate_one(
vm_map_t submap, // commpage32_map or compage64_map
char ** kernAddressPtr, // &commPagePtr32 or &commPagePtr64
size_t area_used, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
commpage_address_t base_offset, // will become commPageBaseOffset
commpage_time_data** time_data, // &time_data32 or &time_data64
new_commpage_timeofday_data_t** gtod_time_data, // >od_time_data32 or >od_time_data64
const char* signature, // "commpage 32-bit" or "commpage 64-bit"
vm_prot_t uperm)
{
uint8_t c1;
uint16_t c2;
uint64_t c8;
uint8_t c256[256] = {0};
uint32_t cfamily;
short version = _COMM_PAGE_THIS_VERSION;
next = 0;
commPagePtr = (char *)commpage_allocate( submap, (vm_size_t) area_used, uperm );
*kernAddressPtr = commPagePtr; // save address either in commPagePtr32 or 64
commPageBaseOffset = base_offset;
*time_data = commpage_addr_of( _COMM_PAGE_TIME_DATA_START );
*gtod_time_data = commpage_addr_of( _COMM_PAGE_NEWTIMEOFDAY_DATA );
/* Stuff in the constants. We move things into the comm page in strictly
* ascending order, so we can check for overlap and panic if so.
* Note: the 32-bit cpu_capabilities vector is retained in addition to
* the expanded 64-bit vector.
*/
commpage_stuff(_COMM_PAGE_SIGNATURE, signature, (int)MIN(_COMM_PAGE_SIGNATURELEN, strlen(signature)));
commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES64, &_cpu_capabilities, sizeof(_cpu_capabilities));
commpage_stuff(_COMM_PAGE_VERSION, &version, sizeof(short));
commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES, &_cpu_capabilities, sizeof(uint32_t));
c2 = 32; // default
if (_cpu_capabilities & kCache64) {
c2 = 64;
} else if (_cpu_capabilities & kCache128) {
c2 = 128;
}
commpage_stuff(_COMM_PAGE_CACHE_LINESIZE, &c2, 2);
/* machine_info valid after ml_wait_max_cpus() */
c1 = machine_info.physical_cpu_max;
commpage_stuff(_COMM_PAGE_PHYSICAL_CPUS, &c1, 1);
c1 = machine_info.logical_cpu_max;
commpage_stuff(_COMM_PAGE_LOGICAL_CPUS, &c1, 1);
c1 = ml_get_cluster_count();
commpage_stuff(_COMM_PAGE_CPU_CLUSTERS, &c1, 1);
c8 = ml_cpu_cache_size(0);
commpage_stuff(_COMM_PAGE_MEMORY_SIZE, &c8, 8);
cfamily = cpuid_info()->cpuid_cpufamily;
commpage_stuff(_COMM_PAGE_CPUFAMILY, &cfamily, 4);
c1 = PAGE_SHIFT;
commpage_stuff(_COMM_PAGE_KERNEL_PAGE_SHIFT, &c1, 1);
commpage_stuff(_COMM_PAGE_USER_PAGE_SHIFT_64, &c1, 1);
ml_map_cpus_to_clusters(c256);
commpage_stuff(_COMM_PAGE_CPU_TO_CLUSTER, c256, 256);
if (next > _COMM_PAGE_END) {
panic("commpage overflow: next = 0x%08x, commPagePtr = 0x%p", next, commPagePtr);
}
}
/* Fill in commpages: called once, during kernel initialization, from the
* startup thread before user-mode code is running.
*
* See the top of this file for a list of what you have to do to add
* a new routine to the commpage.
*/
void
commpage_populate( void )
{
commpage_init_cpu_capabilities();
commpage_populate_one( commpage32_map,
&commPagePtr32,
_COMM_PAGE32_AREA_USED,
_COMM_PAGE32_BASE_ADDRESS,
&time_data32,
>od_time_data32,
_COMM_PAGE32_SIGNATURE_STRING,
VM_PROT_READ);
#ifndef __LP64__
pmap_commpage32_init((vm_offset_t) commPagePtr32, _COMM_PAGE32_BASE_ADDRESS,
_COMM_PAGE32_AREA_USED / INTEL_PGBYTES);
#endif
time_data64 = time_data32; /* if no 64-bit commpage, point to 32-bit */
gtod_time_data64 = gtod_time_data32;
if (_cpu_capabilities & k64Bit) {
commpage_populate_one( commpage64_map,
&commPagePtr64,
_COMM_PAGE64_AREA_USED,
_COMM_PAGE32_START_ADDRESS, /* commpage address are relative to 32-bit commpage placement */
&time_data64,
>od_time_data64,
_COMM_PAGE64_SIGNATURE_STRING,
VM_PROT_READ);
#ifndef __LP64__
pmap_commpage64_init((vm_offset_t) commPagePtr64, _COMM_PAGE64_BASE_ADDRESS,
_COMM_PAGE64_AREA_USED / INTEL_PGBYTES);
#endif
}
simple_lock_init(&commpage_active_cpus_lock, 0);
commpage_update_active_cpus();
commpage_mach_approximate_time_init();
commpage_mach_continuous_time_init();
commpage_boottime_init();
rtc_nanotime_init_commpage();
commpage_update_kdebug_state();
#if CONFIG_ATM
commpage_update_atm_diagnostic_config(atm_get_diagnostic_config());
#endif
/*
* Set random values for targets in Apple Security Bounty
* addr should be unmapped for userland processes
* kaddr should be unmapped for kernel
*/
uint64_t asb_value, asb_addr, asb_kvalue, asb_kaddr;
uint64_t asb_rand_vals[] = {
0x93e78adcded4d3d5, 0xd16c5b76ad99bccf, 0x67dfbbd12c4a594e, 0x7365636e6f6f544f,
0x239a974c9811e04b, 0xbf60e7fa45741446, 0x8acf5210b466b05, 0x67dfbbd12c4a594e
};
const int nrandval = sizeof(asb_rand_vals) / sizeof(asb_rand_vals[0]);
uint8_t randidx;
read_random(&randidx, sizeof(uint8_t));
asb_value = asb_rand_vals[randidx++ % nrandval];
commpage_update(_COMM_PAGE_ASB_TARGET_VALUE, &asb_value, sizeof(asb_value));
asb_addr = asb_rand_vals[randidx++ % nrandval];
uint64_t user_min = MACH_VM_MAX_ADDRESS;
uint64_t user_max = UINT64_MAX;
asb_addr %= (user_max - user_min);
asb_addr += user_min;
commpage_update(_COMM_PAGE_ASB_TARGET_ADDRESS, &asb_addr, sizeof(asb_addr));
asb_kvalue = asb_rand_vals[randidx++ % nrandval];
commpage_update(_COMM_PAGE_ASB_TARGET_KERN_VALUE, &asb_kvalue, sizeof(asb_kvalue));
asb_kaddr = asb_rand_vals[randidx++ % nrandval];
uint64_t kernel_min = 0x0LL;
uint64_t kernel_max = VM_MIN_KERNEL_ADDRESS;
asb_kaddr %= (kernel_max - kernel_min);
asb_kaddr += kernel_min;
commpage_update(_COMM_PAGE_ASB_TARGET_KERN_ADDRESS, &asb_kaddr, sizeof(asb_kaddr));
}
/* Fill in the common routines during kernel initialization.
* This is called before user-mode code is running.
*/
void
commpage_text_populate( void )
{
commpage_descriptor **rd;
next = 0;
commPagePtr = (char *) commpage_allocate(commpage_text32_map, (vm_size_t) _COMM_PAGE_TEXT_AREA_USED, VM_PROT_READ | VM_PROT_EXECUTE);
commPageTextPtr32 = commPagePtr;
char *cptr = commPagePtr;
int i = 0;
for (; i < _COMM_PAGE_TEXT_AREA_USED; i++) {
cptr[i] = 0xCC;
}
commPageBaseOffset = _COMM_PAGE_TEXT_START;
for (rd = commpage_32_routines; *rd != NULL; rd++) {
commpage_stuff_routine(*rd);
}
#ifndef __LP64__
pmap_commpage32_init((vm_offset_t) commPageTextPtr32, _COMM_PAGE_TEXT_START,
_COMM_PAGE_TEXT_AREA_USED / INTEL_PGBYTES);
#endif
if (_cpu_capabilities & k64Bit) {
next = 0;
commPagePtr = (char *) commpage_allocate(commpage_text64_map, (vm_size_t) _COMM_PAGE_TEXT_AREA_USED, VM_PROT_READ | VM_PROT_EXECUTE);
commPageTextPtr64 = commPagePtr;
cptr = commPagePtr;
for (i = 0; i < _COMM_PAGE_TEXT_AREA_USED; i++) {
cptr[i] = 0xCC;
}
for (rd = commpage_64_routines; *rd != NULL; rd++) {
commpage_stuff_routine(*rd);
}
#ifndef __LP64__
pmap_commpage64_init((vm_offset_t) commPageTextPtr64, _COMM_PAGE_TEXT_START,
_COMM_PAGE_TEXT_AREA_USED / INTEL_PGBYTES);
#endif
}
if (next > _COMM_PAGE_TEXT_END) {
panic("commpage text overflow: next=0x%08x, commPagePtr=%p", next, commPagePtr);
}
}
/* Update commpage nanotime information.
*
* This routine must be serialized by some external means, ie a lock.
*/
void
commpage_set_nanotime(
uint64_t tsc_base,
uint64_t ns_base,
uint32_t scale,
uint32_t shift )
{
commpage_time_data *p32 = time_data32;
commpage_time_data *p64 = time_data64;
static uint32_t generation = 0;
uint32_t next_gen;
if (p32 == NULL) { /* have commpages been allocated yet? */
return;
}
if (generation != p32->nt_generation) {
panic("nanotime trouble 1"); /* possibly not serialized */
}
if (ns_base < p32->nt_ns_base) {
panic("nanotime trouble 2");
}
if ((shift != 0) && ((_cpu_capabilities & kSlow) == 0)) {
panic("nanotime trouble 3");
}
next_gen = ++generation;
if (next_gen == 0) {
next_gen = ++generation;
}
p32->nt_generation = 0; /* mark invalid, so commpage won't try to use it */
p64->nt_generation = 0;
p32->nt_tsc_base = tsc_base;
p64->nt_tsc_base = tsc_base;
p32->nt_ns_base = ns_base;
p64->nt_ns_base = ns_base;
p32->nt_scale = scale;
p64->nt_scale = scale;
p32->nt_shift = shift;
p64->nt_shift = shift;
p32->nt_generation = next_gen; /* mark data as valid */
p64->nt_generation = next_gen;
}
/* Update commpage gettimeofday() information. As with nanotime(), we interleave
* updates to the 32- and 64-bit commpage, in order to keep time more nearly in sync
* between the two environments.
*
* This routine must be serializeed by some external means, ie a lock.
*/
void
commpage_set_timestamp(
uint64_t abstime,
uint64_t sec,
uint64_t frac,
uint64_t scale,
uint64_t tick_per_sec)
{
new_commpage_timeofday_data_t *p32 = gtod_time_data32;
new_commpage_timeofday_data_t *p64 = gtod_time_data64;
p32->TimeStamp_tick = 0x0ULL;
p64->TimeStamp_tick = 0x0ULL;
p32->TimeStamp_sec = sec;
p64->TimeStamp_sec = sec;
p32->TimeStamp_frac = frac;
p64->TimeStamp_frac = frac;
p32->Ticks_scale = scale;
p64->Ticks_scale = scale;
p32->Ticks_per_sec = tick_per_sec;
p64->Ticks_per_sec = tick_per_sec;
p32->TimeStamp_tick = abstime;
p64->TimeStamp_tick = abstime;
}
/* Update _COMM_PAGE_MEMORY_PRESSURE. Called periodically from vm's compute_memory_pressure() */
void
commpage_set_memory_pressure(
unsigned int pressure )
{
char *cp;
uint32_t *ip;
cp = commPagePtr32;
if (cp) {
cp += (_COMM_PAGE_MEMORY_PRESSURE - _COMM_PAGE32_BASE_ADDRESS);
ip = (uint32_t*) (void *) cp;
*ip = (uint32_t) pressure;
}
cp = commPagePtr64;
if (cp) {
cp += (_COMM_PAGE_MEMORY_PRESSURE - _COMM_PAGE32_START_ADDRESS);
ip = (uint32_t*) (void *) cp;
*ip = (uint32_t) pressure;
}
}
/* Updated every time a logical CPU goes offline/online */
void
commpage_update_active_cpus(void)
{
char *cp;
volatile uint8_t *ip;
/* At least 32-bit commpage must be initialized */
if (!commPagePtr32) {
return;
}
simple_lock(&commpage_active_cpus_lock, LCK_GRP_NULL);
cp = commPagePtr32;
cp += (_COMM_PAGE_ACTIVE_CPUS - _COMM_PAGE32_BASE_ADDRESS);
ip = (volatile uint8_t*) cp;
*ip = (uint8_t) processor_avail_count_user;
cp = commPagePtr64;
if (cp) {
cp += (_COMM_PAGE_ACTIVE_CPUS - _COMM_PAGE32_START_ADDRESS);
ip = (volatile uint8_t*) cp;
*ip = (uint8_t) processor_avail_count_user;
}
simple_unlock(&commpage_active_cpus_lock);
}
/*
* Update the commpage with current kdebug state. This currently has bits for
* global trace state, and typefilter enablement. It is likely additional state
* will be tracked in the future.
*
* INVARIANT: This value will always be 0 if global tracing is disabled. This
* allows simple guard tests of "if (*_COMM_PAGE_KDEBUG_ENABLE) { ... }"
*/
void
commpage_update_kdebug_state(void)
{
volatile uint32_t *saved_data_ptr;
char *cp;
cp = commPagePtr32;
if (cp) {
cp += (_COMM_PAGE_KDEBUG_ENABLE - _COMM_PAGE32_BASE_ADDRESS);
saved_data_ptr = (volatile uint32_t *)cp;
*saved_data_ptr = kdebug_commpage_state();
}
cp = commPagePtr64;
if (cp) {
cp += (_COMM_PAGE_KDEBUG_ENABLE - _COMM_PAGE32_START_ADDRESS);
saved_data_ptr = (volatile uint32_t *)cp;
*saved_data_ptr = kdebug_commpage_state();
}
}
/* Ditto for atm_diagnostic_config */
void
commpage_update_atm_diagnostic_config(uint32_t diagnostic_config)
{
volatile uint32_t *saved_data_ptr;
char *cp;
cp = commPagePtr32;
if (cp) {
cp += (_COMM_PAGE_ATM_DIAGNOSTIC_CONFIG - _COMM_PAGE32_BASE_ADDRESS);
saved_data_ptr = (volatile uint32_t *)cp;
*saved_data_ptr = diagnostic_config;
}
cp = commPagePtr64;
if (cp) {
cp += (_COMM_PAGE_ATM_DIAGNOSTIC_CONFIG - _COMM_PAGE32_START_ADDRESS);
saved_data_ptr = (volatile uint32_t *)cp;
*saved_data_ptr = diagnostic_config;
}
}
/*
* update the commpage with if dtrace user land probes are enabled
*/
void
commpage_update_dof(boolean_t enabled)
{
#if CONFIG_DTRACE
char *cp;
cp = commPagePtr32;
if (cp) {
cp += (_COMM_PAGE_DTRACE_DOF_ENABLED - _COMM_PAGE32_BASE_ADDRESS);
*cp = (enabled ? 1 : 0);
}
cp = commPagePtr64;
if (cp) {
cp += (_COMM_PAGE_DTRACE_DOF_ENABLED - _COMM_PAGE32_START_ADDRESS);
*cp = (enabled ? 1 : 0);
}
#else
(void)enabled;
#endif
}
/*
* update the dyld global config flags
*/
void
commpage_update_dyld_flags(uint64_t value)
{
char *cp;
cp = commPagePtr32;
if (cp) {
cp += (_COMM_PAGE_DYLD_FLAGS - _COMM_PAGE32_BASE_ADDRESS);
*(uint64_t *)cp = value;
}
cp = commPagePtr64;
if (cp) {
cp += (_COMM_PAGE_DYLD_FLAGS - _COMM_PAGE32_BASE_ADDRESS);
*(uint64_t *)cp = value;
}
}
/*
* update the commpage data for last known value of mach_absolute_time()
*/
void
commpage_update_mach_approximate_time(uint64_t abstime)
{
#ifdef CONFIG_MACH_APPROXIMATE_TIME
uint64_t saved_data;
char *cp;
cp = commPagePtr32;
if (cp) {
cp += (_COMM_PAGE_APPROX_TIME - _COMM_PAGE32_BASE_ADDRESS);
saved_data = atomic_load_explicit((_Atomic uint64_t *)(uintptr_t)cp, memory_order_relaxed);
if (saved_data < abstime) {
/* ignoring the success/fail return value assuming that
* if the value has been updated since we last read it,
* "someone" has a newer timestamp than us and ours is
* now invalid. */
atomic_compare_exchange_strong_explicit((_Atomic uint64_t *)(uintptr_t)cp,
&saved_data, abstime, memory_order_relaxed, memory_order_relaxed);
}
}
cp = commPagePtr64;
if (cp) {
cp += (_COMM_PAGE_APPROX_TIME - _COMM_PAGE32_START_ADDRESS);
saved_data = atomic_load_explicit((_Atomic uint64_t *)(uintptr_t)cp, memory_order_relaxed);
if (saved_data < abstime) {
/* ignoring the success/fail return value assuming that
* if the value has been updated since we last read it,
* "someone" has a newer timestamp than us and ours is
* now invalid. */
atomic_compare_exchange_strong_explicit((_Atomic uint64_t *)(uintptr_t)cp,
&saved_data, abstime, memory_order_relaxed, memory_order_relaxed);
}
}
#else
#pragma unused (abstime)
#endif
}
void
commpage_update_mach_continuous_time(uint64_t sleeptime)
{
char *cp;
cp = commPagePtr32;
if (cp) {
cp += (_COMM_PAGE_CONT_TIMEBASE - _COMM_PAGE32_START_ADDRESS);
*(uint64_t *)cp = sleeptime;
}
cp = commPagePtr64;
if (cp) {
cp += (_COMM_PAGE_CONT_TIMEBASE - _COMM_PAGE32_START_ADDRESS);
*(uint64_t *)cp = sleeptime;
}
}
void
commpage_update_boottime(uint64_t boottime)
{
char *cp;
cp = commPagePtr32;
if (cp) {
cp += (_COMM_PAGE_BOOTTIME_USEC - _COMM_PAGE32_START_ADDRESS);
*(uint64_t *)cp = boottime;
}
cp = commPagePtr64;
if (cp) {
cp += (_COMM_PAGE_BOOTTIME_USEC - _COMM_PAGE32_START_ADDRESS);
*(uint64_t *)cp = boottime;
}
}
extern user32_addr_t commpage_text32_location;
extern user64_addr_t commpage_text64_location;
/* Check to see if a given address is in the Preemption Free Zone (PFZ) */
uint32_t
commpage_is_in_pfz32(uint32_t addr32)
{
if ((addr32 >= (commpage_text32_location + _COMM_TEXT_PFZ_START_OFFSET))
&& (addr32 < (commpage_text32_location + _COMM_TEXT_PFZ_END_OFFSET))) {
return 1;
} else {
return 0;
}
}
uint32_t
commpage_is_in_pfz64(addr64_t addr64)
{
if ((addr64 >= (commpage_text64_location + _COMM_TEXT_PFZ_START_OFFSET))
&& (addr64 < (commpage_text64_location + _COMM_TEXT_PFZ_END_OFFSET))) {
return 1;
} else {
return 0;
}
}