This is xnu-11215.1.10. See this file in:
/*
* Copyright (c) 2000-2024 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
/*
* Mach Operating System
* Copyright (c) 1991,1990 Carnegie Mellon University
* All Rights Reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
#include <mach_ldebug.h>
#include <sys/kdebug.h>
#include <mach/kern_return.h>
#include <mach/thread_status.h>
#include <mach/vm_param.h>
#include <kern/kalloc.h>
#include <kern/mach_param.h>
#include <kern/processor.h>
#include <kern/cpu_data.h>
#include <kern/cpu_number.h>
#include <kern/task.h>
#include <kern/thread.h>
#include <kern/sched_prim.h>
#include <kern/misc_protos.h>
#include <kern/assert.h>
#include <kern/spl.h>
#include <kern/machine.h>
#include <kern/kpc.h>
#include <ipc/ipc_port.h>
#include <vm/vm_kern.h>
#include <vm/vm_map_xnu.h>
#include <vm/pmap.h>
#include <vm/vm_protos.h>
#include <i386/cpu_data.h>
#include <i386/cpu_number.h>
#include <i386/eflags.h>
#include <i386/proc_reg.h>
#include <i386/fpu.h>
#include <i386/misc_protos.h>
#include <i386/mp_desc.h>
#include <i386/thread.h>
#include <i386/machine_routines.h>
#include <i386/lapic.h> /* LAPIC_PMC_SWI_VECTOR */
#include <i386/seg.h>
#if HYPERVISOR
#include <kern/hv_support.h>
#endif
#include <san/kcov_stksz.h>
/*
* Maps state flavor to number of words in the state:
*/
unsigned int _MachineStateCount[THREAD_STATE_FLAVORS] = {
[x86_THREAD_STATE32] = x86_THREAD_STATE32_COUNT,
[x86_THREAD_STATE64] = x86_THREAD_STATE64_COUNT,
[x86_THREAD_FULL_STATE64] = x86_THREAD_FULL_STATE64_COUNT,
[x86_THREAD_STATE] = x86_THREAD_STATE_COUNT,
[x86_FLOAT_STATE32] = x86_FLOAT_STATE32_COUNT,
[x86_FLOAT_STATE64] = x86_FLOAT_STATE64_COUNT,
[x86_FLOAT_STATE] = x86_FLOAT_STATE_COUNT,
[x86_EXCEPTION_STATE32] = x86_EXCEPTION_STATE32_COUNT,
[x86_EXCEPTION_STATE64] = x86_EXCEPTION_STATE64_COUNT,
[x86_EXCEPTION_STATE] = x86_EXCEPTION_STATE_COUNT,
[x86_DEBUG_STATE32] = x86_DEBUG_STATE32_COUNT,
[x86_DEBUG_STATE64] = x86_DEBUG_STATE64_COUNT,
[x86_DEBUG_STATE] = x86_DEBUG_STATE_COUNT,
[x86_AVX_STATE32] = x86_AVX_STATE32_COUNT,
[x86_AVX_STATE64] = x86_AVX_STATE64_COUNT,
[x86_AVX_STATE] = x86_AVX_STATE_COUNT,
[x86_AVX512_STATE32] = x86_AVX512_STATE32_COUNT,
[x86_AVX512_STATE64] = x86_AVX512_STATE64_COUNT,
[x86_AVX512_STATE] = x86_AVX512_STATE_COUNT,
[x86_PAGEIN_STATE] = x86_PAGEIN_STATE_COUNT,
[x86_INSTRUCTION_STATE] = x86_INSTRUCTION_STATE_COUNT,
[x86_LAST_BRANCH_STATE] = x86_LAST_BRANCH_STATE_COUNT
};
ZONE_DEFINE_TYPE(iss_zone, "x86_64 saved state",
x86_saved_state_t, ZC_NONE);
ZONE_DEFINE_TYPE(ids_zone, "x86_64 debug state",
x86_debug_state64_t, ZC_NONE);
/* Forward */
extern void Thread_continue(void);
extern void Load_context(
thread_t thread) __attribute__((noreturn));
static void
get_exception_state32(thread_t thread, x86_exception_state32_t *es);
static void
get_exception_state64(thread_t thread, x86_exception_state64_t *es);
static void
get_thread_state32(thread_t thread, x86_thread_state32_t *ts);
static void
get_thread_state64(thread_t thread, void *ts, boolean_t full);
static int
set_thread_state32(thread_t thread, x86_thread_state32_t *ts);
static int
set_thread_state64(thread_t thread, void *ts, boolean_t full);
/*
* Don't let an illegal value for the lower 32-bits of dr7 get set.
* Specifically, check for undefined settings. Setting these bit patterns
* result in undefined behaviour and can lead to an unexpected
* TRCTRAP.
*/
static boolean_t
dr7d_is_valid(uint32_t *dr7d)
{
int i;
uint32_t mask1, mask2;
/*
* If the DE bit is set in CR4, R/W0-3 can be pattern
* "10B" to indicate i/o reads and write
*/
if (!(get_cr4() & CR4_DE)) {
for (i = 0, mask1 = 0x3 << 16, mask2 = 0x2 << 16; i < 4;
i++, mask1 <<= 4, mask2 <<= 4) {
if ((*dr7d & mask1) == mask2) {
return FALSE;
}
}
}
/*
* if we are doing an instruction execution break (indicated
* by r/w[x] being "00B"), then the len[x] must also be set
* to "00B"
*/
for (i = 0; i < 4; i++) {
if (((((*dr7d >> (16 + i * 4))) & 0x3) == 0) &&
((((*dr7d >> (18 + i * 4))) & 0x3) != 0)) {
return FALSE;
}
}
/*
* Intel docs have these bits fixed.
*/
*dr7d |= 0x1 << 10; /* set bit 10 to 1 */
*dr7d &= ~(0x1 << 11); /* set bit 11 to 0 */
*dr7d &= ~(0x1 << 12); /* set bit 12 to 0 */
*dr7d &= ~(0x1 << 14); /* set bit 14 to 0 */
*dr7d &= ~(0x1 << 15); /* set bit 15 to 0 */
/*
* We don't allow anything to set the global breakpoints.
*/
if (*dr7d & 0x2) {
return FALSE;
}
if (*dr7d & (0x2 << 2)) {
return FALSE;
}
if (*dr7d & (0x2 << 4)) {
return FALSE;
}
if (*dr7d & (0x2 << 6)) {
return FALSE;
}
return TRUE;
}
extern void set_64bit_debug_regs(x86_debug_state64_t *ds);
boolean_t
debug_state_is_valid32(x86_debug_state32_t *ds)
{
if (!dr7d_is_valid(&ds->dr7)) {
return FALSE;
}
return TRUE;
}
boolean_t
debug_state_is_valid64(x86_debug_state64_t *ds)
{
if (!dr7d_is_valid((uint32_t *)&ds->dr7)) {
return FALSE;
}
/*
* Don't allow the user to set debug addresses above their max
* value
*/
if (ds->dr7 & 0x1) {
if (ds->dr0 >= VM_MAX_PAGE_ADDRESS) {
return FALSE;
}
}
if (ds->dr7 & (0x1 << 2)) {
if (ds->dr1 >= VM_MAX_PAGE_ADDRESS) {
return FALSE;
}
}
if (ds->dr7 & (0x1 << 4)) {
if (ds->dr2 >= VM_MAX_PAGE_ADDRESS) {
return FALSE;
}
}
if (ds->dr7 & (0x1 << 6)) {
if (ds->dr3 >= VM_MAX_PAGE_ADDRESS) {
return FALSE;
}
}
/* For x86-64, we must ensure the upper 32-bits of DR7 are clear */
ds->dr7 &= 0xffffffffULL;
return TRUE;
}
static kern_return_t
set_debug_state32(thread_t thread, x86_debug_state32_t *ds)
{
x86_debug_state32_t *new_ids;
pcb_t pcb;
pcb = THREAD_TO_PCB(thread);
if (debug_state_is_valid32(ds) != TRUE) {
return KERN_INVALID_ARGUMENT;
}
if (pcb->ids == NULL) {
new_ids = zalloc_flags(ids_zone, Z_WAITOK | Z_ZERO);
simple_lock(&pcb->lock, LCK_GRP_NULL);
/* make sure it wasn't already alloc()'d elsewhere */
if (pcb->ids == NULL) {
pcb->ids = new_ids;
simple_unlock(&pcb->lock);
} else {
simple_unlock(&pcb->lock);
zfree(ids_zone, new_ids);
}
}
copy_debug_state32(ds, pcb->ids, FALSE);
return KERN_SUCCESS;
}
static kern_return_t
set_debug_state64(thread_t thread, x86_debug_state64_t *ds)
{
x86_debug_state64_t *new_ids;
pcb_t pcb;
pcb = THREAD_TO_PCB(thread);
if (debug_state_is_valid64(ds) != TRUE) {
return KERN_INVALID_ARGUMENT;
}
if (pcb->ids == NULL) {
new_ids = zalloc_flags(ids_zone, Z_WAITOK | Z_ZERO);
#if HYPERVISOR
if (thread->hv_thread_target) {
hv_callbacks.volatile_state(thread->hv_thread_target,
HV_DEBUG_STATE);
}
#endif
simple_lock(&pcb->lock, LCK_GRP_NULL);
/* make sure it wasn't already alloc()'d elsewhere */
if (pcb->ids == NULL) {
pcb->ids = new_ids;
simple_unlock(&pcb->lock);
} else {
simple_unlock(&pcb->lock);
zfree(ids_zone, new_ids);
}
}
copy_debug_state64(ds, pcb->ids, FALSE);
return KERN_SUCCESS;
}
static void
get_debug_state32(thread_t thread, x86_debug_state32_t *ds)
{
x86_debug_state32_t *saved_state;
saved_state = thread->machine.ids;
if (saved_state) {
copy_debug_state32(saved_state, ds, TRUE);
} else {
bzero(ds, sizeof *ds);
}
}
static void
get_debug_state64(thread_t thread, x86_debug_state64_t *ds)
{
x86_debug_state64_t *saved_state;
saved_state = (x86_debug_state64_t *)thread->machine.ids;
if (saved_state) {
copy_debug_state64(saved_state, ds, TRUE);
} else {
bzero(ds, sizeof *ds);
}
}
/*
* consider_machine_collect:
*
* Try to collect machine-dependent pages
*/
void
consider_machine_collect(void)
{
}
void
consider_machine_adjust(void)
{
}
/*
* Switch to the first thread on a CPU.
*/
void
machine_load_context(
thread_t new)
{
new->machine.specFlags |= OnProc;
act_machine_switch_pcb(NULL, new);
Load_context(new);
}
static void
machine_rsb_stuff(void)
{
#define RSB_STUFF_SPACE_REQD (256 + 16) /* 256 bytes plus a buffer of another 16 for misc. */
asm volatile (
".macro RSBST from=0, to=15\n"
" call 1f\n"
"2:\n"
" pause\n"
" lfence\n"
" jmp 2b\n"
"1:\n"
" call 1f\n"
"2:\n"
" pause\n"
" lfence\n"
" jmp 2b\n"
"1:\n"
" .if \\to - \\from \n"
" RSBST \"(\\from + 1)\", \\to \n"
" .endif \n"
".endmacro \n"
"\n"
"L_rsbst:\n"
" RSBST \n"
" addq $(16 * 2 * 8), %%rsp\n"
::: "memory", "cc");
}
static inline void
pmap_switch_context(thread_t ot, thread_t nt, int cnum)
{
pmap_assert(ml_get_interrupts_enabled() == FALSE);
vm_map_t nmap = nt->map, omap = ot->map;
if ((omap != nmap) || (nmap->pmap->pagezero_accessible)) {
PMAP_DEACTIVATE_MAP(omap, ot, cnum);
PMAP_ACTIVATE_MAP(nmap, nt, cnum);
if (__improbable((nt->machine.mthr_do_segchk & MTHR_RSBST) &&
(current_kernel_stack_depth() + RSB_STUFF_SPACE_REQD) < kernel_stack_size)) {
machine_rsb_stuff();
}
}
}
/*
* Switch to a new thread.
* Save the old thread`s kernel state or continuation,
* and return it.
*/
thread_t
machine_switch_context(
thread_t old,
thread_continue_t continuation,
thread_t new)
{
assert(current_cpu_datap()->cpu_active_stack == old->kernel_stack);
#if HYPERVISOR
if (old->hv_thread_target) {
hv_callbacks.preempt(old->hv_thread_target);
}
#endif
#if CONFIG_CPU_COUNTERS
kpc_off_cpu(old);
#endif /* CONFIG_CPU_COUNTERS */
/*
* Save FP registers if in use.
*/
fpu_switch_context(old, new);
old->machine.specFlags &= ~OnProc;
new->machine.specFlags |= OnProc;
/*
* Monitor the stack depth and report new max,
* not worrying about races.
*/
vm_offset_t depth = current_kernel_stack_depth();
if (depth > kernel_stack_depth_max) {
kernel_stack_depth_max = depth;
KERNEL_DEBUG_CONSTANT(
MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_DEPTH),
(long) depth, 0, 0, 0, 0);
}
/*
* Switch address maps if need be, even if not switching tasks.
* (A server activation may be "borrowing" a client map.)
*/
pmap_switch_context(old, new, cpu_number());
/*
* Load the rest of the user state for the new thread
*/
act_machine_switch_pcb(old, new);
#if HYPERVISOR
if (new->hv_thread_target) {
hv_callbacks.dispatch(new->hv_thread_target);
}
#endif
return Switch_context(old, continuation, new);
}
boolean_t
machine_thread_on_core(thread_t thread)
{
return thread->machine.specFlags & OnProc;
}
boolean_t
machine_thread_on_core_allow_invalid(thread_t thread)
{
extern int _copyin_atomic32(const char *src, uint32_t *dst);
uint32_t flags;
/*
* Utilize that the thread zone is sequestered which means
* that this kernel-to-kernel copyin can't read data
* from anything but a thread, zeroed or freed memory.
*/
assert(get_preemption_level() > 0);
thread = pgz_decode_allow_invalid(thread, ZONE_ID_THREAD);
if (thread == THREAD_NULL) {
return false;
}
thread_require(thread);
if (_copyin_atomic32((void *)&thread->machine.specFlags, &flags) == 0) {
return flags & OnProc;
}
return false;
}
thread_t
machine_processor_shutdown(
thread_t thread,
void (*doshutdown)(processor_t),
processor_t processor)
{
#if CONFIG_VMX
vmx_suspend();
#endif
fpu_switch_context(thread, NULL);
pmap_switch_context(thread, processor->idle_thread, cpu_number());
return Shutdown_context(thread, doshutdown, processor);
}
/*
* This is where registers that are not normally specified by the mach-o
* file on an execve would be nullified, perhaps to avoid a covert channel.
*/
void
machine_thread_state_initialize(
thread_t thread)
{
/*
* If there's an fpu save area, free it.
* The initialized state will then be lazily faulted-in, if required.
* And if we're target, re-arm the no-fpu trap.
*/
if (thread->machine.ifps) {
(void) fpu_set_fxstate(thread, NULL, x86_FLOAT_STATE64);
if (thread == current_thread()) {
clear_fpu();
}
}
if (thread->machine.ids) {
zfree(ids_zone, thread->machine.ids);
thread->machine.ids = NULL;
}
}
uint32_t
get_eflags_exportmask(void)
{
return EFL_USER_SET;
}
/*
* x86_SAVED_STATE32 - internal save/restore general register state on 32/64 bit processors
* for 32bit tasks only
* x86_SAVED_STATE64 - internal save/restore general register state on 64 bit processors
* for 64bit tasks only
* x86_THREAD_STATE32 - external set/get general register state on 32/64 bit processors
* for 32bit tasks only
* x86_THREAD_STATE64 - external set/get general register state on 64 bit processors
* for 64bit tasks only
* x86_SAVED_STATE - external set/get general register state on 32/64 bit processors
* for either 32bit or 64bit tasks
* x86_FLOAT_STATE32 - internal/external save/restore float and xmm state on 32/64 bit processors
* for 32bit tasks only
* x86_FLOAT_STATE64 - internal/external save/restore float and xmm state on 64 bit processors
* for 64bit tasks only
* x86_FLOAT_STATE - external save/restore float and xmm state on 32/64 bit processors
* for either 32bit or 64bit tasks
* x86_EXCEPTION_STATE32 - external get exception state on 32/64 bit processors
* for 32bit tasks only
* x86_EXCEPTION_STATE64 - external get exception state on 64 bit processors
* for 64bit tasks only
* x86_EXCEPTION_STATE - external get exception state on 323/64 bit processors
* for either 32bit or 64bit tasks
*/
static void
get_exception_state64(thread_t thread, x86_exception_state64_t *es)
{
x86_saved_state64_t *saved_state;
saved_state = USER_REGS64(thread);
es->trapno = saved_state->isf.trapno;
es->cpu = saved_state->isf.cpu;
es->err = (typeof(es->err))saved_state->isf.err;
es->faultvaddr = saved_state->cr2;
}
static void
get_exception_state32(thread_t thread, x86_exception_state32_t *es)
{
x86_saved_state32_t *saved_state;
saved_state = USER_REGS32(thread);
es->trapno = saved_state->trapno;
es->cpu = saved_state->cpu;
es->err = saved_state->err;
es->faultvaddr = saved_state->cr2;
}
static int
set_thread_state32(thread_t thread, x86_thread_state32_t *ts)
{
x86_saved_state32_t *saved_state;
pal_register_cache_state(thread, DIRTY);
saved_state = USER_REGS32(thread);
/*
* Scrub segment selector values:
*/
ts->cs = USER_CS;
/*
* On a 64 bit kernel, we always override the data segments,
* as the actual selector numbers have changed. This also
* means that we don't support setting the data segments
* manually any more.
*/
ts->ss = USER_DS;
ts->ds = USER_DS;
ts->es = USER_DS;
/* Set GS to CTHREAD only if's been established */
ts->gs = thread->machine.cthread_self ? USER_CTHREAD : NULL_SEG;
/* Check segment selectors are safe */
if (!valid_user_segment_selectors(ts->cs,
ts->ss,
ts->ds,
ts->es,
ts->fs,
ts->gs)) {
return KERN_INVALID_ARGUMENT;
}
saved_state->eax = ts->eax;
saved_state->ebx = ts->ebx;
saved_state->ecx = ts->ecx;
saved_state->edx = ts->edx;
saved_state->edi = ts->edi;
saved_state->esi = ts->esi;
saved_state->ebp = ts->ebp;
saved_state->uesp = ts->esp;
saved_state->efl = (ts->eflags & ~EFL_USER_CLEAR) | EFL_USER_SET;
saved_state->eip = ts->eip;
saved_state->cs = ts->cs;
saved_state->ss = ts->ss;
saved_state->ds = ts->ds;
saved_state->es = ts->es;
saved_state->fs = ts->fs;
saved_state->gs = ts->gs;
/*
* If the trace trap bit is being set,
* ensure that the user returns via iret
* - which is signaled thusly:
*/
if ((saved_state->efl & EFL_TF) && saved_state->cs == SYSENTER_CS) {
saved_state->cs = SYSENTER_TF_CS;
}
return KERN_SUCCESS;
}
static int
set_thread_state64(thread_t thread, void *state, int full)
{
x86_thread_state64_t *ts;
x86_saved_state64_t *saved_state;
if (full == TRUE) {
ts = &((x86_thread_full_state64_t *)state)->ss64;
if (!valid_user_code_selector(((x86_thread_full_state64_t *)ts)->ss64.cs)) {
return KERN_INVALID_ARGUMENT;
}
} else {
ts = (x86_thread_state64_t *)state;
// In this case, ts->cs exists but is ignored, and
// CS is always set to USER_CS below instead.
}
pal_register_cache_state(thread, DIRTY);
saved_state = USER_REGS64(thread);
if (!IS_USERADDR64_CANONICAL(ts->rsp) ||
!IS_USERADDR64_CANONICAL(ts->rip)) {
return KERN_INVALID_ARGUMENT;
}
saved_state->r8 = ts->r8;
saved_state->r9 = ts->r9;
saved_state->r10 = ts->r10;
saved_state->r11 = ts->r11;
saved_state->r12 = ts->r12;
saved_state->r13 = ts->r13;
saved_state->r14 = ts->r14;
saved_state->r15 = ts->r15;
saved_state->rax = ts->rax;
saved_state->rbx = ts->rbx;
saved_state->rcx = ts->rcx;
saved_state->rdx = ts->rdx;
saved_state->rdi = ts->rdi;
saved_state->rsi = ts->rsi;
saved_state->rbp = ts->rbp;
saved_state->isf.rsp = ts->rsp;
saved_state->isf.rflags = (ts->rflags & ~EFL_USER_CLEAR) | EFL_USER_SET;
saved_state->isf.rip = ts->rip;
if (full == FALSE) {
saved_state->isf.cs = USER64_CS;
} else {
saved_state->isf.cs = ((x86_thread_full_state64_t *)ts)->ss64.cs;
saved_state->isf.ss = ((x86_thread_full_state64_t *)ts)->ss;
saved_state->ds = (uint32_t)((x86_thread_full_state64_t *)ts)->ds;
saved_state->es = (uint32_t)((x86_thread_full_state64_t *)ts)->es;
machine_thread_set_tsd_base(thread,
((x86_thread_full_state64_t *)ts)->gsbase);
}
saved_state->fs = (uint32_t)ts->fs;
saved_state->gs = (uint32_t)ts->gs;
return KERN_SUCCESS;
}
static void
get_thread_state32(thread_t thread, x86_thread_state32_t *ts)
{
x86_saved_state32_t *saved_state;
pal_register_cache_state(thread, VALID);
saved_state = USER_REGS32(thread);
ts->eax = saved_state->eax;
ts->ebx = saved_state->ebx;
ts->ecx = saved_state->ecx;
ts->edx = saved_state->edx;
ts->edi = saved_state->edi;
ts->esi = saved_state->esi;
ts->ebp = saved_state->ebp;
ts->esp = saved_state->uesp;
ts->eflags = saved_state->efl;
ts->eip = saved_state->eip;
ts->cs = saved_state->cs;
ts->ss = saved_state->ss;
ts->ds = saved_state->ds;
ts->es = saved_state->es;
ts->fs = saved_state->fs;
ts->gs = saved_state->gs;
}
static void
get_thread_state64(thread_t thread, void *state, boolean_t full)
{
x86_thread_state64_t *ts;
x86_saved_state64_t *saved_state;
if (full == TRUE) {
ts = &((x86_thread_full_state64_t *)state)->ss64;
} else {
ts = (x86_thread_state64_t *)state;
}
pal_register_cache_state(thread, VALID);
saved_state = USER_REGS64(thread);
ts->r8 = saved_state->r8;
ts->r9 = saved_state->r9;
ts->r10 = saved_state->r10;
ts->r11 = saved_state->r11;
ts->r12 = saved_state->r12;
ts->r13 = saved_state->r13;
ts->r14 = saved_state->r14;
ts->r15 = saved_state->r15;
ts->rax = saved_state->rax;
ts->rbx = saved_state->rbx;
ts->rcx = saved_state->rcx;
ts->rdx = saved_state->rdx;
ts->rdi = saved_state->rdi;
ts->rsi = saved_state->rsi;
ts->rbp = saved_state->rbp;
ts->rsp = saved_state->isf.rsp;
ts->rflags = saved_state->isf.rflags;
ts->rip = saved_state->isf.rip;
ts->cs = saved_state->isf.cs;
if (full == TRUE) {
((x86_thread_full_state64_t *)state)->ds = saved_state->ds;
((x86_thread_full_state64_t *)state)->es = saved_state->es;
((x86_thread_full_state64_t *)state)->ss = saved_state->isf.ss;
((x86_thread_full_state64_t *)state)->gsbase =
thread->machine.cthread_self;
}
ts->fs = saved_state->fs;
ts->gs = saved_state->gs;
}
kern_return_t
machine_thread_state_convert_to_user(
__unused thread_t thread,
__unused thread_flavor_t flavor,
__unused thread_state_t tstate,
__unused mach_msg_type_number_t *count,
__unused thread_set_status_flags_t tssf_flags)
{
// No conversion to userspace representation on this platform
return KERN_SUCCESS;
}
kern_return_t
machine_thread_state_convert_from_user(
__unused thread_t thread,
__unused thread_flavor_t flavor,
__unused thread_state_t tstate,
__unused mach_msg_type_number_t count,
__unused thread_state_t old_tstate,
__unused mach_msg_type_number_t old_count,
__unused thread_set_status_flags_t tssf_flags)
{
// No conversion from userspace representation on this platform
return KERN_SUCCESS;
}
kern_return_t
machine_thread_siguctx_pointer_convert_to_user(
__unused thread_t thread,
__unused user_addr_t *uctxp)
{
// No conversion to userspace representation on this platform
return KERN_SUCCESS;
}
kern_return_t
machine_thread_function_pointers_convert_from_user(
__unused thread_t thread,
__unused user_addr_t *fptrs,
__unused uint32_t count)
{
// No conversion from userspace representation on this platform
return KERN_SUCCESS;
}
/*
* act_machine_set_state:
*
* Set the status of the specified thread.
*/
kern_return_t
machine_thread_set_state(
thread_t thr_act,
thread_flavor_t flavor,
thread_state_t tstate,
mach_msg_type_number_t count)
{
switch (flavor) {
case x86_SAVED_STATE32:
{
x86_saved_state32_t *state;
x86_saved_state32_t *saved_state;
if (count < x86_SAVED_STATE32_COUNT) {
return KERN_INVALID_ARGUMENT;
}
state = (x86_saved_state32_t *) tstate;
/*
* Refuse to allow 64-bit processes to set
* 32-bit state.
*/
if (thread_is_64bit_addr(thr_act)) {
return KERN_INVALID_ARGUMENT;
}
/* Check segment selectors are safe */
if (!valid_user_segment_selectors(state->cs,
state->ss,
state->ds,
state->es,
state->fs,
state->gs)) {
return KERN_INVALID_ARGUMENT;
}
pal_register_cache_state(thr_act, DIRTY);
saved_state = USER_REGS32(thr_act);
/*
* General registers
*/
saved_state->edi = state->edi;
saved_state->esi = state->esi;
saved_state->ebp = state->ebp;
saved_state->uesp = state->uesp;
saved_state->ebx = state->ebx;
saved_state->edx = state->edx;
saved_state->ecx = state->ecx;
saved_state->eax = state->eax;
saved_state->eip = state->eip;
saved_state->efl = (state->efl & ~EFL_USER_CLEAR) | EFL_USER_SET;
/*
* If the trace trap bit is being set,
* ensure that the user returns via iret
* - which is signaled thusly:
*/
if ((saved_state->efl & EFL_TF) && state->cs == SYSENTER_CS) {
state->cs = SYSENTER_TF_CS;
}
/*
* User setting segment registers.
* Code and stack selectors have already been
* checked. Others will be reset by 'iret'
* if they are not valid.
*/
saved_state->cs = state->cs;
saved_state->ss = state->ss;
saved_state->ds = state->ds;
saved_state->es = state->es;
saved_state->fs = state->fs;
saved_state->gs = state->gs;
break;
}
case x86_SAVED_STATE64:
{
x86_saved_state64_t *state;
x86_saved_state64_t *saved_state;
if (count < x86_SAVED_STATE64_COUNT) {
return KERN_INVALID_ARGUMENT;
}
if (!thread_is_64bit_addr(thr_act)) {
return KERN_INVALID_ARGUMENT;
}
state = (x86_saved_state64_t *) tstate;
/* Verify that the supplied code segment selector is
* valid. In 64-bit mode, the FS and GS segment overrides
* use the FS.base and GS.base MSRs to calculate
* base addresses, and the trampolines don't directly
* restore the segment registers--hence they are no
* longer relevant for validation.
*/
if (!valid_user_code_selector(state->isf.cs)) {
return KERN_INVALID_ARGUMENT;
}
/* Check pc and stack are canonical addresses */
if (!IS_USERADDR64_CANONICAL(state->isf.rsp) ||
!IS_USERADDR64_CANONICAL(state->isf.rip)) {
return KERN_INVALID_ARGUMENT;
}
pal_register_cache_state(thr_act, DIRTY);
saved_state = USER_REGS64(thr_act);
/*
* General registers
*/
saved_state->r8 = state->r8;
saved_state->r9 = state->r9;
saved_state->r10 = state->r10;
saved_state->r11 = state->r11;
saved_state->r12 = state->r12;
saved_state->r13 = state->r13;
saved_state->r14 = state->r14;
saved_state->r15 = state->r15;
saved_state->rdi = state->rdi;
saved_state->rsi = state->rsi;
saved_state->rbp = state->rbp;
saved_state->rbx = state->rbx;
saved_state->rdx = state->rdx;
saved_state->rcx = state->rcx;
saved_state->rax = state->rax;
saved_state->isf.rsp = state->isf.rsp;
saved_state->isf.rip = state->isf.rip;
saved_state->isf.rflags = (state->isf.rflags & ~EFL_USER_CLEAR) | EFL_USER_SET;
/*
* User setting segment registers.
* Code and stack selectors have already been
* checked. Others will be reset by 'sys'
* if they are not valid.
*/
saved_state->isf.cs = state->isf.cs;
saved_state->isf.ss = state->isf.ss;
saved_state->fs = state->fs;
saved_state->gs = state->gs;
break;
}
case x86_FLOAT_STATE32:
case x86_AVX_STATE32:
case x86_AVX512_STATE32:
{
if (count != _MachineStateCount[flavor]) {
return KERN_INVALID_ARGUMENT;
}
if (thread_is_64bit_addr(thr_act)) {
return KERN_INVALID_ARGUMENT;
}
return fpu_set_fxstate(thr_act, tstate, flavor);
}
case x86_FLOAT_STATE64:
case x86_AVX_STATE64:
case x86_AVX512_STATE64:
{
if (count != _MachineStateCount[flavor]) {
return KERN_INVALID_ARGUMENT;
}
if (!thread_is_64bit_addr(thr_act)) {
return KERN_INVALID_ARGUMENT;
}
return fpu_set_fxstate(thr_act, tstate, flavor);
}
case x86_FLOAT_STATE:
{
x86_float_state_t *state;
if (count != x86_FLOAT_STATE_COUNT) {
return KERN_INVALID_ARGUMENT;
}
state = (x86_float_state_t *)tstate;
if (state->fsh.flavor == x86_FLOAT_STATE64 && state->fsh.count == x86_FLOAT_STATE64_COUNT &&
thread_is_64bit_addr(thr_act)) {
return fpu_set_fxstate(thr_act, (thread_state_t)&state->ufs.fs64, x86_FLOAT_STATE64);
}
if (state->fsh.flavor == x86_FLOAT_STATE32 && state->fsh.count == x86_FLOAT_STATE32_COUNT &&
!thread_is_64bit_addr(thr_act)) {
return fpu_set_fxstate(thr_act, (thread_state_t)&state->ufs.fs32, x86_FLOAT_STATE32);
}
return KERN_INVALID_ARGUMENT;
}
case x86_AVX_STATE:
case x86_AVX512_STATE:
{
x86_avx_state_t *state;
if (count != _MachineStateCount[flavor]) {
return KERN_INVALID_ARGUMENT;
}
state = (x86_avx_state_t *)tstate;
/* Flavors are defined to have sequential values: 32-bit, 64-bit, non-specific */
/* 64-bit flavor? */
if (state->ash.flavor == (flavor - 1) &&
state->ash.count == _MachineStateCount[flavor - 1] &&
thread_is_64bit_addr(thr_act)) {
return fpu_set_fxstate(thr_act,
(thread_state_t)&state->ufs.as64,
flavor - 1);
}
/* 32-bit flavor? */
if (state->ash.flavor == (flavor - 2) &&
state->ash.count == _MachineStateCount[flavor - 2] &&
!thread_is_64bit_addr(thr_act)) {
return fpu_set_fxstate(thr_act,
(thread_state_t)&state->ufs.as32,
flavor - 2);
}
return KERN_INVALID_ARGUMENT;
}
case x86_THREAD_STATE32:
{
if (count != x86_THREAD_STATE32_COUNT) {
return KERN_INVALID_ARGUMENT;
}
if (thread_is_64bit_addr(thr_act)) {
return KERN_INVALID_ARGUMENT;
}
return set_thread_state32(thr_act, (x86_thread_state32_t *)tstate);
}
case x86_THREAD_STATE64:
{
if (count != x86_THREAD_STATE64_COUNT) {
return KERN_INVALID_ARGUMENT;
}
if (!thread_is_64bit_addr(thr_act)) {
return KERN_INVALID_ARGUMENT;
}
return set_thread_state64(thr_act, tstate, FALSE);
}
case x86_THREAD_FULL_STATE64:
{
if (count != x86_THREAD_FULL_STATE64_COUNT) {
return KERN_INVALID_ARGUMENT;
}
if (!thread_is_64bit_addr(thr_act)) {
return KERN_INVALID_ARGUMENT;
}
/* If this process does not have a custom LDT, return failure */
if (get_threadtask(thr_act)->i386_ldt == 0) {
return KERN_INVALID_ARGUMENT;
}
return set_thread_state64(thr_act, tstate, TRUE);
}
case x86_THREAD_STATE:
{
x86_thread_state_t *state;
if (count != x86_THREAD_STATE_COUNT) {
return KERN_INVALID_ARGUMENT;
}
state = (x86_thread_state_t *)tstate;
if (state->tsh.flavor == x86_THREAD_STATE64 &&
state->tsh.count == x86_THREAD_STATE64_COUNT &&
thread_is_64bit_addr(thr_act)) {
return set_thread_state64(thr_act, &state->uts.ts64, FALSE);
} else if (state->tsh.flavor == x86_THREAD_FULL_STATE64 &&
state->tsh.count == x86_THREAD_FULL_STATE64_COUNT &&
thread_is_64bit_addr(thr_act) && get_threadtask(thr_act)->i386_ldt != 0) {
return set_thread_state64(thr_act, &state->uts.ts64, TRUE);
} else if (state->tsh.flavor == x86_THREAD_STATE32 &&
state->tsh.count == x86_THREAD_STATE32_COUNT &&
!thread_is_64bit_addr(thr_act)) {
return set_thread_state32(thr_act, &state->uts.ts32);
} else {
return KERN_INVALID_ARGUMENT;
}
}
case x86_DEBUG_STATE32:
{
x86_debug_state32_t *state;
kern_return_t ret;
if (thread_is_64bit_addr(thr_act)) {
return KERN_INVALID_ARGUMENT;
}
state = (x86_debug_state32_t *)tstate;
ret = set_debug_state32(thr_act, state);
return ret;
}
case x86_DEBUG_STATE64:
{
x86_debug_state64_t *state;
kern_return_t ret;
if (!thread_is_64bit_addr(thr_act)) {
return KERN_INVALID_ARGUMENT;
}
state = (x86_debug_state64_t *)tstate;
ret = set_debug_state64(thr_act, state);
return ret;
}
case x86_DEBUG_STATE:
{
x86_debug_state_t *state;
kern_return_t ret = KERN_INVALID_ARGUMENT;
if (count != x86_DEBUG_STATE_COUNT) {
return KERN_INVALID_ARGUMENT;
}
state = (x86_debug_state_t *)tstate;
if (state->dsh.flavor == x86_DEBUG_STATE64 &&
state->dsh.count == x86_DEBUG_STATE64_COUNT &&
thread_is_64bit_addr(thr_act)) {
ret = set_debug_state64(thr_act, &state->uds.ds64);
} else if (state->dsh.flavor == x86_DEBUG_STATE32 &&
state->dsh.count == x86_DEBUG_STATE32_COUNT &&
!thread_is_64bit_addr(thr_act)) {
ret = set_debug_state32(thr_act, &state->uds.ds32);
}
return ret;
}
default:
return KERN_INVALID_ARGUMENT;
}
return KERN_SUCCESS;
}
mach_vm_address_t
machine_thread_pc(thread_t thr_act)
{
if (thread_is_64bit_addr(thr_act)) {
return (mach_vm_address_t)USER_REGS64(thr_act)->isf.rip;
} else {
return (mach_vm_address_t)USER_REGS32(thr_act)->eip;
}
}
void
machine_thread_reset_pc(thread_t thr_act, mach_vm_address_t pc)
{
pal_register_cache_state(thr_act, DIRTY);
if (thread_is_64bit_addr(thr_act)) {
if (!IS_USERADDR64_CANONICAL(pc)) {
pc = 0;
}
USER_REGS64(thr_act)->isf.rip = (uint64_t)pc;
} else {
USER_REGS32(thr_act)->eip = (uint32_t)pc;
}
}
/*
* thread_getstatus:
*
* Get the status of the specified thread.
*/
kern_return_t
machine_thread_get_state(
thread_t thr_act,
thread_flavor_t flavor,
thread_state_t tstate,
mach_msg_type_number_t *count)
{
switch (flavor) {
case THREAD_STATE_FLAVOR_LIST:
{
if (*count < 3) {
return KERN_INVALID_ARGUMENT;
}
tstate[0] = i386_THREAD_STATE;
tstate[1] = i386_FLOAT_STATE;
tstate[2] = i386_EXCEPTION_STATE;
*count = 3;
break;
}
case THREAD_STATE_FLAVOR_LIST_NEW:
{
if (*count < 4) {
return KERN_INVALID_ARGUMENT;
}
tstate[0] = x86_THREAD_STATE;
tstate[1] = x86_FLOAT_STATE;
tstate[2] = x86_EXCEPTION_STATE;
tstate[3] = x86_DEBUG_STATE;
*count = 4;
break;
}
case THREAD_STATE_FLAVOR_LIST_10_9:
{
if (*count < 5) {
return KERN_INVALID_ARGUMENT;
}
tstate[0] = x86_THREAD_STATE;
tstate[1] = x86_FLOAT_STATE;
tstate[2] = x86_EXCEPTION_STATE;
tstate[3] = x86_DEBUG_STATE;
tstate[4] = x86_AVX_STATE;
*count = 5;
break;
}
case THREAD_STATE_FLAVOR_LIST_10_13:
{
if (*count < 6) {
return KERN_INVALID_ARGUMENT;
}
tstate[0] = x86_THREAD_STATE;
tstate[1] = x86_FLOAT_STATE;
tstate[2] = x86_EXCEPTION_STATE;
tstate[3] = x86_DEBUG_STATE;
tstate[4] = x86_AVX_STATE;
tstate[5] = x86_AVX512_STATE;
*count = 6;
break;
}
case THREAD_STATE_FLAVOR_LIST_10_15:
{
if (*count < 7) {
return KERN_INVALID_ARGUMENT;
}
tstate[0] = x86_THREAD_STATE;
tstate[1] = x86_FLOAT_STATE;
tstate[2] = x86_EXCEPTION_STATE;
tstate[3] = x86_DEBUG_STATE;
tstate[4] = x86_AVX_STATE;
tstate[5] = x86_AVX512_STATE;
tstate[6] = x86_PAGEIN_STATE;
*count = 7;
break;
}
case x86_SAVED_STATE32:
{
x86_saved_state32_t *state;
x86_saved_state32_t *saved_state;
if (*count < x86_SAVED_STATE32_COUNT) {
return KERN_INVALID_ARGUMENT;
}
if (thread_is_64bit_addr(thr_act)) {
return KERN_INVALID_ARGUMENT;
}
state = (x86_saved_state32_t *) tstate;
saved_state = USER_REGS32(thr_act);
/*
* First, copy everything:
*/
*state = *saved_state;
state->ds = saved_state->ds & 0xffff;
state->es = saved_state->es & 0xffff;
state->fs = saved_state->fs & 0xffff;
state->gs = saved_state->gs & 0xffff;
*count = x86_SAVED_STATE32_COUNT;
break;
}
case x86_SAVED_STATE64:
{
x86_saved_state64_t *state;
x86_saved_state64_t *saved_state;
if (*count < x86_SAVED_STATE64_COUNT) {
return KERN_INVALID_ARGUMENT;
}
if (!thread_is_64bit_addr(thr_act)) {
return KERN_INVALID_ARGUMENT;
}
state = (x86_saved_state64_t *)tstate;
saved_state = USER_REGS64(thr_act);
/*
* First, copy everything:
*/
*state = *saved_state;
state->ds = saved_state->ds & 0xffff;
state->es = saved_state->es & 0xffff;
state->fs = saved_state->fs & 0xffff;
state->gs = saved_state->gs & 0xffff;
*count = x86_SAVED_STATE64_COUNT;
break;
}
case x86_FLOAT_STATE32:
{
if (*count < x86_FLOAT_STATE32_COUNT) {
return KERN_INVALID_ARGUMENT;
}
if (thread_is_64bit_addr(thr_act)) {
return KERN_INVALID_ARGUMENT;
}
*count = x86_FLOAT_STATE32_COUNT;
return fpu_get_fxstate(thr_act, tstate, flavor);
}
case x86_FLOAT_STATE64:
{
if (*count < x86_FLOAT_STATE64_COUNT) {
return KERN_INVALID_ARGUMENT;
}
if (!thread_is_64bit_addr(thr_act)) {
return KERN_INVALID_ARGUMENT;
}
*count = x86_FLOAT_STATE64_COUNT;
return fpu_get_fxstate(thr_act, tstate, flavor);
}
case x86_FLOAT_STATE:
{
x86_float_state_t *state;
kern_return_t kret;
if (*count < x86_FLOAT_STATE_COUNT) {
return KERN_INVALID_ARGUMENT;
}
state = (x86_float_state_t *)tstate;
/*
* no need to bzero... currently
* x86_FLOAT_STATE64_COUNT == x86_FLOAT_STATE32_COUNT
*/
if (thread_is_64bit_addr(thr_act)) {
state->fsh.flavor = x86_FLOAT_STATE64;
state->fsh.count = x86_FLOAT_STATE64_COUNT;
kret = fpu_get_fxstate(thr_act, (thread_state_t)&state->ufs.fs64, x86_FLOAT_STATE64);
} else {
state->fsh.flavor = x86_FLOAT_STATE32;
state->fsh.count = x86_FLOAT_STATE32_COUNT;
kret = fpu_get_fxstate(thr_act, (thread_state_t)&state->ufs.fs32, x86_FLOAT_STATE32);
}
*count = x86_FLOAT_STATE_COUNT;
return kret;
}
case x86_AVX_STATE32:
case x86_AVX512_STATE32:
{
if (*count != _MachineStateCount[flavor]) {
return KERN_INVALID_ARGUMENT;
}
if (thread_is_64bit_addr(thr_act)) {
return KERN_INVALID_ARGUMENT;
}
*count = _MachineStateCount[flavor];
return fpu_get_fxstate(thr_act, tstate, flavor);
}
case x86_AVX_STATE64:
case x86_AVX512_STATE64:
{
if (*count != _MachineStateCount[flavor]) {
return KERN_INVALID_ARGUMENT;
}
if (!thread_is_64bit_addr(thr_act)) {
return KERN_INVALID_ARGUMENT;
}
*count = _MachineStateCount[flavor];
return fpu_get_fxstate(thr_act, tstate, flavor);
}
case x86_AVX_STATE:
case x86_AVX512_STATE:
{
x86_avx_state_t *state;
thread_state_t fstate;
if (*count < _MachineStateCount[flavor]) {
return KERN_INVALID_ARGUMENT;
}
*count = _MachineStateCount[flavor];
state = (x86_avx_state_t *)tstate;
bzero((char *)state, *count * sizeof(int));
if (thread_is_64bit_addr(thr_act)) {
flavor -= 1; /* 64-bit flavor */
fstate = (thread_state_t) &state->ufs.as64;
} else {
flavor -= 2; /* 32-bit flavor */
fstate = (thread_state_t) &state->ufs.as32;
}
state->ash.flavor = flavor;
state->ash.count = _MachineStateCount[flavor];
return fpu_get_fxstate(thr_act, fstate, flavor);
}
case x86_THREAD_STATE32:
{
if (*count < x86_THREAD_STATE32_COUNT) {
return KERN_INVALID_ARGUMENT;
}
if (thread_is_64bit_addr(thr_act)) {
return KERN_INVALID_ARGUMENT;
}
*count = x86_THREAD_STATE32_COUNT;
get_thread_state32(thr_act, (x86_thread_state32_t *)tstate);
break;
}
case x86_THREAD_STATE64:
{
if (*count < x86_THREAD_STATE64_COUNT) {
return KERN_INVALID_ARGUMENT;
}
if (!thread_is_64bit_addr(thr_act)) {
return KERN_INVALID_ARGUMENT;
}
*count = x86_THREAD_STATE64_COUNT;
get_thread_state64(thr_act, tstate, FALSE);
break;
}
case x86_THREAD_FULL_STATE64:
{
if (*count < x86_THREAD_FULL_STATE64_COUNT) {
return KERN_INVALID_ARGUMENT;
}
if (!thread_is_64bit_addr(thr_act)) {
return KERN_INVALID_ARGUMENT;
}
/* If this process does not have a custom LDT, return failure */
if (get_threadtask(thr_act)->i386_ldt == 0) {
return KERN_INVALID_ARGUMENT;
}
*count = x86_THREAD_FULL_STATE64_COUNT;
get_thread_state64(thr_act, tstate, TRUE);
break;
}
case x86_THREAD_STATE:
{
x86_thread_state_t *state;
if (*count < x86_THREAD_STATE_COUNT) {
return KERN_INVALID_ARGUMENT;
}
state = (x86_thread_state_t *)tstate;
bzero((char *)state, sizeof(x86_thread_state_t));
if (thread_is_64bit_addr(thr_act)) {
state->tsh.flavor = x86_THREAD_STATE64;
state->tsh.count = x86_THREAD_STATE64_COUNT;
get_thread_state64(thr_act, &state->uts.ts64, FALSE);
} else {
state->tsh.flavor = x86_THREAD_STATE32;
state->tsh.count = x86_THREAD_STATE32_COUNT;
get_thread_state32(thr_act, &state->uts.ts32);
}
*count = x86_THREAD_STATE_COUNT;
break;
}
case x86_EXCEPTION_STATE32:
{
if (*count < x86_EXCEPTION_STATE32_COUNT) {
return KERN_INVALID_ARGUMENT;
}
if (thread_is_64bit_addr(thr_act)) {
return KERN_INVALID_ARGUMENT;
}
*count = x86_EXCEPTION_STATE32_COUNT;
get_exception_state32(thr_act, (x86_exception_state32_t *)tstate);
/*
* Suppress the cpu number for binary compatibility
* of this deprecated state.
*/
((x86_exception_state32_t *)tstate)->cpu = 0;
break;
}
case x86_EXCEPTION_STATE64:
{
if (*count < x86_EXCEPTION_STATE64_COUNT) {
return KERN_INVALID_ARGUMENT;
}
if (!thread_is_64bit_addr(thr_act)) {
return KERN_INVALID_ARGUMENT;
}
*count = x86_EXCEPTION_STATE64_COUNT;
get_exception_state64(thr_act, (x86_exception_state64_t *)tstate);
/*
* Suppress the cpu number for binary compatibility
* of this deprecated state.
*/
((x86_exception_state64_t *)tstate)->cpu = 0;
break;
}
case x86_EXCEPTION_STATE:
{
x86_exception_state_t *state;
if (*count < x86_EXCEPTION_STATE_COUNT) {
return KERN_INVALID_ARGUMENT;
}
state = (x86_exception_state_t *)tstate;
bzero((char *)state, sizeof(x86_exception_state_t));
if (thread_is_64bit_addr(thr_act)) {
state->esh.flavor = x86_EXCEPTION_STATE64;
state->esh.count = x86_EXCEPTION_STATE64_COUNT;
get_exception_state64(thr_act, &state->ues.es64);
} else {
state->esh.flavor = x86_EXCEPTION_STATE32;
state->esh.count = x86_EXCEPTION_STATE32_COUNT;
get_exception_state32(thr_act, &state->ues.es32);
}
*count = x86_EXCEPTION_STATE_COUNT;
break;
}
case x86_DEBUG_STATE32:
{
if (*count < x86_DEBUG_STATE32_COUNT) {
return KERN_INVALID_ARGUMENT;
}
if (thread_is_64bit_addr(thr_act)) {
return KERN_INVALID_ARGUMENT;
}
get_debug_state32(thr_act, (x86_debug_state32_t *)tstate);
*count = x86_DEBUG_STATE32_COUNT;
break;
}
case x86_DEBUG_STATE64:
{
if (*count < x86_DEBUG_STATE64_COUNT) {
return KERN_INVALID_ARGUMENT;
}
if (!thread_is_64bit_addr(thr_act)) {
return KERN_INVALID_ARGUMENT;
}
get_debug_state64(thr_act, (x86_debug_state64_t *)tstate);
*count = x86_DEBUG_STATE64_COUNT;
break;
}
case x86_DEBUG_STATE:
{
x86_debug_state_t *state;
if (*count < x86_DEBUG_STATE_COUNT) {
return KERN_INVALID_ARGUMENT;
}
state = (x86_debug_state_t *)tstate;
bzero(state, sizeof *state);
if (thread_is_64bit_addr(thr_act)) {
state->dsh.flavor = x86_DEBUG_STATE64;
state->dsh.count = x86_DEBUG_STATE64_COUNT;
get_debug_state64(thr_act, &state->uds.ds64);
} else {
state->dsh.flavor = x86_DEBUG_STATE32;
state->dsh.count = x86_DEBUG_STATE32_COUNT;
get_debug_state32(thr_act, &state->uds.ds32);
}
*count = x86_DEBUG_STATE_COUNT;
break;
}
case x86_PAGEIN_STATE:
{
if (*count < x86_PAGEIN_STATE_COUNT) {
return KERN_INVALID_ARGUMENT;
}
x86_pagein_state_t *state = (void *)tstate;
state->__pagein_error = thr_act->t_pagein_error;
*count = x86_PAGEIN_STATE_COUNT;
break;
}
case x86_INSTRUCTION_STATE:
{
if (*count < x86_INSTRUCTION_STATE_COUNT) {
return KERN_INVALID_ARGUMENT;
}
x86_instruction_state_t *state = (void *)tstate;
x86_instruction_state_t *src_state = THREAD_TO_PCB(thr_act)->insn_state;
if (src_state != 0 && (src_state->insn_stream_valid_bytes > 0 || src_state->out_of_synch)) {
#if DEVELOPMENT || DEBUG
extern int insnstream_force_cacheline_mismatch;
#endif
size_t byte_count = (src_state->insn_stream_valid_bytes > x86_INSTRUCTION_STATE_MAX_INSN_BYTES)
? x86_INSTRUCTION_STATE_MAX_INSN_BYTES : src_state->insn_stream_valid_bytes;
if (byte_count > 0) {
bcopy(src_state->insn_bytes, state->insn_bytes, byte_count);
}
state->insn_offset = src_state->insn_offset;
state->insn_stream_valid_bytes = byte_count;
#if DEVELOPMENT || DEBUG
state->out_of_synch = src_state->out_of_synch || insnstream_force_cacheline_mismatch;
insnstream_force_cacheline_mismatch = 0; /* One-shot, reset after use */
if (state->out_of_synch) {
bcopy(&src_state->insn_cacheline[0], &state->insn_cacheline[0],
x86_INSTRUCTION_STATE_CACHELINE_SIZE);
} else {
bzero(&state->insn_cacheline[0], x86_INSTRUCTION_STATE_CACHELINE_SIZE);
}
#else
state->out_of_synch = src_state->out_of_synch;
#endif
*count = x86_INSTRUCTION_STATE_COUNT;
} else {
*count = 0;
}
break;
}
case x86_LAST_BRANCH_STATE:
{
if (last_branch_enabled_modes != LBR_ENABLED_USERMODE || *count < x86_LAST_BRANCH_STATE_COUNT) {
return KERN_INVALID_ARGUMENT;
}
/* Callers to this function are assumed to be from user space and the LBR values will be filtered accordingly */
if (i386_filtered_lbr_state_to_mach_thread_state(thr_act, (last_branch_state_t *)tstate, true) < 0) {
*count = 0;
return KERN_INVALID_ARGUMENT;
}
*count = x86_LAST_BRANCH_STATE_COUNT;
break;
}
default:
return KERN_INVALID_ARGUMENT;
}
return KERN_SUCCESS;
}
kern_return_t
machine_thread_get_kern_state(
thread_t thread,
thread_flavor_t flavor,
thread_state_t tstate,
mach_msg_type_number_t *count)
{
x86_saved_state_t *int_state = current_cpu_datap()->cpu_int_state;
/*
* This works only for an interrupted kernel thread
*/
if (thread != current_thread() || int_state == NULL) {
return KERN_FAILURE;
}
switch (flavor) {
case x86_THREAD_STATE32: {
x86_thread_state32_t *state;
x86_saved_state32_t *saved_state;
if (!is_saved_state32(int_state) ||
*count < x86_THREAD_STATE32_COUNT) {
return KERN_INVALID_ARGUMENT;
}
state = (x86_thread_state32_t *) tstate;
saved_state = saved_state32(int_state);
/*
* General registers.
*/
state->eax = saved_state->eax;
state->ebx = saved_state->ebx;
state->ecx = saved_state->ecx;
state->edx = saved_state->edx;
state->edi = saved_state->edi;
state->esi = saved_state->esi;
state->ebp = saved_state->ebp;
state->esp = saved_state->uesp;
state->eflags = saved_state->efl;
state->eip = saved_state->eip;
state->cs = saved_state->cs;
state->ss = saved_state->ss;
state->ds = saved_state->ds & 0xffff;
state->es = saved_state->es & 0xffff;
state->fs = saved_state->fs & 0xffff;
state->gs = saved_state->gs & 0xffff;
*count = x86_THREAD_STATE32_COUNT;
return KERN_SUCCESS;
}
case x86_THREAD_STATE64: {
x86_thread_state64_t *state;
x86_saved_state64_t *saved_state;
if (!is_saved_state64(int_state) ||
*count < x86_THREAD_STATE64_COUNT) {
return KERN_INVALID_ARGUMENT;
}
state = (x86_thread_state64_t *) tstate;
saved_state = saved_state64(int_state);
/*
* General registers.
*/
state->rax = saved_state->rax;
state->rbx = saved_state->rbx;
state->rcx = saved_state->rcx;
state->rdx = saved_state->rdx;
state->rdi = saved_state->rdi;
state->rsi = saved_state->rsi;
state->rbp = saved_state->rbp;
state->rsp = saved_state->isf.rsp;
state->r8 = saved_state->r8;
state->r9 = saved_state->r9;
state->r10 = saved_state->r10;
state->r11 = saved_state->r11;
state->r12 = saved_state->r12;
state->r13 = saved_state->r13;
state->r14 = saved_state->r14;
state->r15 = saved_state->r15;
state->rip = saved_state->isf.rip;
state->rflags = saved_state->isf.rflags;
state->cs = saved_state->isf.cs;
state->fs = saved_state->fs & 0xffff;
state->gs = saved_state->gs & 0xffff;
*count = x86_THREAD_STATE64_COUNT;
return KERN_SUCCESS;
}
case x86_THREAD_STATE: {
x86_thread_state_t *state = NULL;
if (*count < x86_THREAD_STATE_COUNT) {
return KERN_INVALID_ARGUMENT;
}
state = (x86_thread_state_t *) tstate;
if (is_saved_state32(int_state)) {
x86_saved_state32_t *saved_state = saved_state32(int_state);
state->tsh.flavor = x86_THREAD_STATE32;
state->tsh.count = x86_THREAD_STATE32_COUNT;
/*
* General registers.
*/
state->uts.ts32.eax = saved_state->eax;
state->uts.ts32.ebx = saved_state->ebx;
state->uts.ts32.ecx = saved_state->ecx;
state->uts.ts32.edx = saved_state->edx;
state->uts.ts32.edi = saved_state->edi;
state->uts.ts32.esi = saved_state->esi;
state->uts.ts32.ebp = saved_state->ebp;
state->uts.ts32.esp = saved_state->uesp;
state->uts.ts32.eflags = saved_state->efl;
state->uts.ts32.eip = saved_state->eip;
state->uts.ts32.cs = saved_state->cs;
state->uts.ts32.ss = saved_state->ss;
state->uts.ts32.ds = saved_state->ds & 0xffff;
state->uts.ts32.es = saved_state->es & 0xffff;
state->uts.ts32.fs = saved_state->fs & 0xffff;
state->uts.ts32.gs = saved_state->gs & 0xffff;
} else if (is_saved_state64(int_state)) {
x86_saved_state64_t *saved_state = saved_state64(int_state);
state->tsh.flavor = x86_THREAD_STATE64;
state->tsh.count = x86_THREAD_STATE64_COUNT;
/*
* General registers.
*/
state->uts.ts64.rax = saved_state->rax;
state->uts.ts64.rbx = saved_state->rbx;
state->uts.ts64.rcx = saved_state->rcx;
state->uts.ts64.rdx = saved_state->rdx;
state->uts.ts64.rdi = saved_state->rdi;
state->uts.ts64.rsi = saved_state->rsi;
state->uts.ts64.rbp = saved_state->rbp;
state->uts.ts64.rsp = saved_state->isf.rsp;
state->uts.ts64.r8 = saved_state->r8;
state->uts.ts64.r9 = saved_state->r9;
state->uts.ts64.r10 = saved_state->r10;
state->uts.ts64.r11 = saved_state->r11;
state->uts.ts64.r12 = saved_state->r12;
state->uts.ts64.r13 = saved_state->r13;
state->uts.ts64.r14 = saved_state->r14;
state->uts.ts64.r15 = saved_state->r15;
state->uts.ts64.rip = saved_state->isf.rip;
state->uts.ts64.rflags = saved_state->isf.rflags;
state->uts.ts64.cs = saved_state->isf.cs;
state->uts.ts64.fs = saved_state->fs & 0xffff;
state->uts.ts64.gs = saved_state->gs & 0xffff;
} else {
panic("unknown thread state");
}
*count = x86_THREAD_STATE_COUNT;
return KERN_SUCCESS;
}
}
return KERN_FAILURE;
}
void
machine_thread_switch_addrmode(thread_t thread)
{
task_t task = get_threadtask(thread);
/*
* We don't want to be preempted until we're done
* - particularly if we're switching the current thread
*/
disable_preemption();
/*
* Reset the state saveareas. As we're resetting, we anticipate no
* memory allocations in this path.
*/
machine_thread_create(thread, task, false);
/* Adjust FPU state */
fpu_switch_addrmode(thread, task_has_64Bit_addr(task));
/* If we're switching ourselves, reset the pcb addresses etc. */
if (thread == current_thread()) {
boolean_t istate = ml_set_interrupts_enabled(FALSE);
act_machine_switch_pcb(NULL, thread);
ml_set_interrupts_enabled(istate);
}
enable_preemption();
}
/*
* This is used to set the current thr_act/thread
* when starting up a new processor
*/
void
machine_set_current_thread(thread_t thread)
{
current_cpu_datap()->cpu_active_thread = thread;
}
/*
* Perform machine-dependent per-thread initializations
*/
void
machine_thread_init(void)
{
fpu_module_init();
}
/*
* machine_thread_template_init: Initialize machine-specific portion of
* the thread template.
*/
void
machine_thread_template_init(thread_t thr_template)
{
assert(fpu_default != UNDEFINED);
THREAD_TO_PCB(thr_template)->xstate = fpu_default;
}
user_addr_t
get_useraddr(void)
{
thread_t thr_act = current_thread();
if (thread_is_64bit_addr(thr_act)) {
x86_saved_state64_t *iss64;
iss64 = USER_REGS64(thr_act);
return iss64->isf.rip;
} else {
x86_saved_state32_t *iss32;
iss32 = USER_REGS32(thr_act);
return iss32->eip;
}
}
/*
* detach and return a kernel stack from a thread
*/
vm_offset_t
machine_stack_detach(thread_t thread)
{
vm_offset_t stack;
KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_DETACH),
(uintptr_t)thread_tid(thread), thread->priority,
thread->sched_pri, 0,
0);
stack = thread->kernel_stack;
#if CONFIG_STKSZ
kcov_stksz_set_thread_stack(thread, stack);
#endif
thread->kernel_stack = 0;
return stack;
}
/*
* attach a kernel stack to a thread and initialize it
*/
void
machine_stack_attach(
thread_t thread,
vm_offset_t stack)
{
struct x86_kernel_state *statep;
KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_ATTACH),
(uintptr_t)thread_tid(thread), thread->priority,
thread->sched_pri, 0, 0);
assert(stack);
thread->kernel_stack = stack;
#if CONFIG_STKSZ
kcov_stksz_set_thread_stack(thread, 0);
#endif
thread_initialize_kernel_state(thread);
statep = STACK_IKS(stack);
/*
* Reset the state of the thread to resume from a continuation,
* including resetting the stack and frame pointer to avoid backtracers
* seeing this temporary state and attempting to walk the defunct stack.
*/
statep->k_rbp = (uint64_t) 0;
statep->k_rip = (uint64_t) Thread_continue;
statep->k_rbx = (uint64_t) thread_continue;
statep->k_rsp = (uint64_t) STACK_IKS(stack);
return;
}
/*
* move a stack from old to new thread
*/
void
machine_stack_handoff(thread_t old,
thread_t new)
{
vm_offset_t stack;
assert(new);
assert(old);
#if HYPERVISOR
if (old->hv_thread_target) {
hv_callbacks.preempt(old->hv_thread_target);
}
#endif
kpc_off_cpu(old);
stack = old->kernel_stack;
if (stack == old->reserved_stack) {
assert(new->reserved_stack);
old->reserved_stack = new->reserved_stack;
new->reserved_stack = stack;
}
#if CONFIG_STKSZ
kcov_stksz_set_thread_stack(old, old->kernel_stack);
#endif
old->kernel_stack = 0;
/*
* A full call to machine_stack_attach() is unnecessry
* because old stack is already initialized.
*/
new->kernel_stack = stack;
#if CONFIG_STKSZ
kcov_stksz_set_thread_stack(new, 0);
#endif
fpu_switch_context(old, new);
old->machine.specFlags &= ~OnProc;
new->machine.specFlags |= OnProc;
pmap_switch_context(old, new, cpu_number());
act_machine_switch_pcb(old, new);
#if HYPERVISOR
if (new->hv_thread_target) {
hv_callbacks.dispatch(new->hv_thread_target);
}
#endif
machine_set_current_thread(new);
thread_initialize_kernel_state(new);
return;
}
struct x86_act_context32 {
x86_saved_state32_t ss;
x86_float_state32_t fs;
x86_debug_state32_t ds;
};
struct x86_act_context64 {
x86_saved_state64_t ss;
x86_float_state64_t fs;
x86_debug_state64_t ds;
};
void *
act_thread_csave(void)
{
kern_return_t kret;
mach_msg_type_number_t val;
thread_t thr_act = current_thread();
if (thread_is_64bit_addr(thr_act)) {
struct x86_act_context64 *ic64;
ic64 = kalloc_data(sizeof(struct x86_act_context64), Z_WAITOK);
if (ic64 == (struct x86_act_context64 *)NULL) {
return (void *)0;
}
val = x86_SAVED_STATE64_COUNT;
kret = machine_thread_get_state(thr_act, x86_SAVED_STATE64,
(thread_state_t) &ic64->ss, &val);
if (kret != KERN_SUCCESS) {
kfree_data(ic64, sizeof(struct x86_act_context64));
return (void *)0;
}
val = x86_FLOAT_STATE64_COUNT;
kret = machine_thread_get_state(thr_act, x86_FLOAT_STATE64,
(thread_state_t) &ic64->fs, &val);
if (kret != KERN_SUCCESS) {
kfree_data(ic64, sizeof(struct x86_act_context64));
return (void *)0;
}
val = x86_DEBUG_STATE64_COUNT;
kret = machine_thread_get_state(thr_act,
x86_DEBUG_STATE64,
(thread_state_t)&ic64->ds,
&val);
if (kret != KERN_SUCCESS) {
kfree_data(ic64, sizeof(struct x86_act_context64));
return (void *)0;
}
return ic64;
} else {
struct x86_act_context32 *ic32;
ic32 = kalloc_data(sizeof(struct x86_act_context32), Z_WAITOK);
if (ic32 == (struct x86_act_context32 *)NULL) {
return (void *)0;
}
val = x86_SAVED_STATE32_COUNT;
kret = machine_thread_get_state(thr_act, x86_SAVED_STATE32,
(thread_state_t) &ic32->ss, &val);
if (kret != KERN_SUCCESS) {
kfree_data(ic32, sizeof(struct x86_act_context32));
return (void *)0;
}
val = x86_FLOAT_STATE32_COUNT;
kret = machine_thread_get_state(thr_act, x86_FLOAT_STATE32,
(thread_state_t) &ic32->fs, &val);
if (kret != KERN_SUCCESS) {
kfree_data(ic32, sizeof(struct x86_act_context32));
return (void *)0;
}
val = x86_DEBUG_STATE32_COUNT;
kret = machine_thread_get_state(thr_act,
x86_DEBUG_STATE32,
(thread_state_t)&ic32->ds,
&val);
if (kret != KERN_SUCCESS) {
kfree_data(ic32, sizeof(struct x86_act_context32));
return (void *)0;
}
return ic32;
}
}
void
act_thread_catt(void *ctx)
{
thread_t thr_act = current_thread();
kern_return_t kret;
if (ctx == (void *)NULL) {
return;
}
if (thread_is_64bit_addr(thr_act)) {
struct x86_act_context64 *ic64;
ic64 = (struct x86_act_context64 *)ctx;
kret = machine_thread_set_state(thr_act, x86_SAVED_STATE64,
(thread_state_t) &ic64->ss, x86_SAVED_STATE64_COUNT);
if (kret == KERN_SUCCESS) {
machine_thread_set_state(thr_act, x86_FLOAT_STATE64,
(thread_state_t) &ic64->fs, x86_FLOAT_STATE64_COUNT);
}
kfree_data(ic64, sizeof(struct x86_act_context64));
} else {
struct x86_act_context32 *ic32;
ic32 = (struct x86_act_context32 *)ctx;
kret = machine_thread_set_state(thr_act, x86_SAVED_STATE32,
(thread_state_t) &ic32->ss, x86_SAVED_STATE32_COUNT);
if (kret == KERN_SUCCESS) {
(void) machine_thread_set_state(thr_act, x86_FLOAT_STATE32,
(thread_state_t) &ic32->fs, x86_FLOAT_STATE32_COUNT);
}
kfree_data(ic32, sizeof(struct x86_act_context32));
}
}
void
act_thread_cfree(__unused void *ctx)
{
/* XXX - Unused */
}
/*
* Duplicate one x86_debug_state32_t to another. "all" parameter
* chooses whether dr4 and dr5 are copied (they are never meant
* to be installed when we do machine_task_set_state() or
* machine_thread_set_state()).
*/
void
copy_debug_state32(
x86_debug_state32_t *src,
x86_debug_state32_t *target,
boolean_t all)
{
if (all) {
target->dr4 = src->dr4;
target->dr5 = src->dr5;
}
target->dr0 = src->dr0;
target->dr1 = src->dr1;
target->dr2 = src->dr2;
target->dr3 = src->dr3;
target->dr6 = src->dr6;
target->dr7 = src->dr7;
}
/*
* Duplicate one x86_debug_state64_t to another. "all" parameter
* chooses whether dr4 and dr5 are copied (they are never meant
* to be installed when we do machine_task_set_state() or
* machine_thread_set_state()).
*/
void
copy_debug_state64(
x86_debug_state64_t *src,
x86_debug_state64_t *target,
boolean_t all)
{
if (all) {
target->dr4 = src->dr4;
target->dr5 = src->dr5;
}
target->dr0 = src->dr0;
target->dr1 = src->dr1;
target->dr2 = src->dr2;
target->dr3 = src->dr3;
target->dr6 = src->dr6;
target->dr7 = src->dr7;
}