This is xnu-11215.1.10. See this file in:
/*
* Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <mach_kdp.h>
#include <mach/mach_types.h>
#include <mach/machine.h>
#include <mach/exception_types.h>
#include <kern/cpu_data.h>
#include <i386/trap.h>
#include <i386/mp.h>
#include <kdp/kdp_internal.h>
#include <mach-o/loader.h>
#include <mach-o/nlist.h>
#include <IOKit/IOPlatformExpert.h> /* for PE_halt_restart */
#include <kern/machine.h> /* for halt_all_cpus */
#include <libkern/OSAtomic.h>
#include <kern/thread.h>
#include <i386/thread.h>
#include <i386/trap_internal.h>
#include <vm/vm_map.h>
#include <i386/pmap.h>
#define KDP_TEST_HARNESS 0
#if KDP_TEST_HARNESS
#define dprintf(x) printf x
#else
#define dprintf(x)
#endif
extern cpu_type_t cpuid_cputype(void);
extern cpu_subtype_t cpuid_cpusubtype(void);
void print_saved_state(void *);
void kdp_call(void);
int kdp_getc(void);
void kdp_getstate(x86_thread_state64_t *);
void kdp_setstate(x86_thread_state64_t *);
unsigned machine_read64(addr64_t srcaddr, caddr_t dstaddr, uint32_t len);
int machine_trace_thread64(thread_t thread, char * tracepos, char * tracebound,
int nframes, uint32_t * thread_trace_flags);
void
kdp_exception(
unsigned char *pkt,
int *len,
unsigned short *remote_port,
unsigned int exception,
unsigned int code,
unsigned int subcode
)
{
kdp_exception_t *rq = (kdp_exception_t *)pkt;
rq->hdr.request = KDP_EXCEPTION;
rq->hdr.is_reply = 0;
rq->hdr.seq = kdp.exception_seq;
rq->hdr.key = 0;
rq->hdr.len = sizeof(*rq);
rq->n_exc_info = 1;
rq->exc_info[0].cpu = 0;
rq->exc_info[0].exception = exception;
rq->exc_info[0].code = code;
rq->exc_info[0].subcode = subcode;
rq->hdr.len += rq->n_exc_info * sizeof(kdp_exc_info_t);
bcopy((char *)rq, (char *)pkt, rq->hdr.len);
kdp.exception_ack_needed = TRUE;
*remote_port = kdp.exception_port;
*len = rq->hdr.len;
}
boolean_t
kdp_exception_ack(
unsigned char *pkt,
int len
)
{
kdp_exception_ack_t *rq = (kdp_exception_ack_t *)pkt;
if (((unsigned int) len) < sizeof(*rq)) {
return FALSE;
}
if (!rq->hdr.is_reply || rq->hdr.request != KDP_EXCEPTION) {
return FALSE;
}
dprintf(("kdp_exception_ack seq %x %x\n", rq->hdr.seq, kdp.exception_seq));
if (rq->hdr.seq == kdp.exception_seq) {
kdp.exception_ack_needed = FALSE;
kdp.exception_seq++;
}
return TRUE;
}
void
kdp_getstate(
x86_thread_state64_t *state
)
{
x86_saved_state64_t *saved_state;
saved_state = (x86_saved_state64_t *)kdp.saved_state;
state->rax = saved_state->rax;
state->rbx = saved_state->rbx;
state->rcx = saved_state->rcx;
state->rdx = saved_state->rdx;
state->rdi = saved_state->rdi;
state->rsi = saved_state->rsi;
state->rbp = saved_state->rbp;
state->r8 = saved_state->r8;
state->r9 = saved_state->r9;
state->r10 = saved_state->r10;
state->r11 = saved_state->r11;
state->r12 = saved_state->r12;
state->r13 = saved_state->r13;
state->r14 = saved_state->r14;
state->r15 = saved_state->r15;
state->rsp = saved_state->isf.rsp;
state->rflags = saved_state->isf.rflags;
state->rip = saved_state->isf.rip;
state->cs = saved_state->isf.cs;
state->fs = saved_state->fs;
state->gs = saved_state->gs;
}
void
kdp_setstate(
x86_thread_state64_t *state
)
{
x86_saved_state64_t *saved_state;
saved_state = (x86_saved_state64_t *)kdp.saved_state;
saved_state->rax = state->rax;
saved_state->rbx = state->rbx;
saved_state->rcx = state->rcx;
saved_state->rdx = state->rdx;
saved_state->rdi = state->rdi;
saved_state->rsi = state->rsi;
saved_state->rbp = state->rbp;
saved_state->r8 = state->r8;
saved_state->r9 = state->r9;
saved_state->r10 = state->r10;
saved_state->r11 = state->r11;
saved_state->r12 = state->r12;
saved_state->r13 = state->r13;
saved_state->r14 = state->r14;
saved_state->r15 = state->r15;
saved_state->isf.rflags = state->rflags;
saved_state->isf.rsp = state->rsp;
saved_state->isf.rip = state->rip;
saved_state->fs = (uint32_t)state->fs;
saved_state->gs = (uint32_t)state->gs;
}
kdp_error_t
kdp_machine_read_regs(
__unused unsigned int cpu,
unsigned int flavor,
char *data,
int *size
)
{
static x86_float_state64_t null_fpstate;
switch (flavor) {
case x86_THREAD_STATE64:
dprintf(("kdp_readregs THREAD_STATE64\n"));
kdp_getstate((x86_thread_state64_t *)data);
*size = sizeof(x86_thread_state64_t);
return KDPERR_NO_ERROR;
case x86_FLOAT_STATE64:
dprintf(("kdp_readregs THREAD_FPSTATE64\n"));
*(x86_float_state64_t *)data = null_fpstate;
*size = sizeof(x86_float_state64_t);
return KDPERR_NO_ERROR;
default:
dprintf(("kdp_readregs bad flavor %d\n", flavor));
*size = 0;
return KDPERR_BADFLAVOR;
}
}
kdp_error_t
kdp_machine_write_regs(
__unused unsigned int cpu,
unsigned int flavor,
char *data,
__unused int *size
)
{
switch (flavor) {
case x86_THREAD_STATE64:
dprintf(("kdp_writeregs THREAD_STATE64\n"));
kdp_setstate((x86_thread_state64_t *)data);
return KDPERR_NO_ERROR;
case x86_FLOAT_STATE64:
dprintf(("kdp_writeregs THREAD_FPSTATE64\n"));
return KDPERR_NO_ERROR;
default:
dprintf(("kdp_writeregs bad flavor %d\n", flavor));
return KDPERR_BADFLAVOR;
}
}
void
kdp_machine_hostinfo(
kdp_hostinfo_t *hostinfo
)
{
int i;
hostinfo->cpus_mask = 0;
for (i = 0; i < machine_info.max_cpus; i++) {
if (cpu_data_ptr[i] == NULL) {
continue;
}
hostinfo->cpus_mask |= (1 << i);
}
hostinfo->cpu_type = cpuid_cputype() | CPU_ARCH_ABI64;
hostinfo->cpu_subtype = cpuid_cpusubtype();
}
void
kdp_panic(
const char *fmt,
...
)
{
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wformat-nonliteral"
char kdp_fmt[256];
va_list args;
va_start(args, fmt);
(void) snprintf(kdp_fmt, sizeof(kdp_fmt), "kdp panic: %s", fmt);
vprintf(kdp_fmt, args);
va_end(args);
__asm__ volatile ("hlt");
#pragma clang diagnostic pop
}
int
kdp_intr_disbl(void)
{
return splhigh();
}
void
kdp_intr_enbl(int s)
{
splx(s);
}
int
kdp_getc(void)
{
return console_try_read_char();
}
void
kdp_us_spin(int usec)
{
delay(usec / 100);
}
void
print_saved_state(void *state)
{
x86_saved_state64_t *saved_state;
saved_state = state;
kprintf("pc = 0x%llx\n", saved_state->isf.rip);
kprintf("cr2= 0x%llx\n", saved_state->cr2);
kprintf("rp = TODO FIXME\n");
kprintf("sp = %p\n", saved_state);
}
void
kdp_sync_cache(void)
{
return; /* No op here. */
}
void
kdp_call(void)
{
__asm__ volatile ("int $3"); /* Let the processor do the work */
}
typedef struct _cframe_t {
struct _cframe_t *prev;
unsigned caller;
unsigned args[0];
} cframe_t;
boolean_t
kdp_i386_trap(
unsigned int trapno,
x86_saved_state64_t *saved_state,
kern_return_t result,
vm_offset_t va
)
{
unsigned int exception, code, subcode = 0;
boolean_t prev_interrupts_state;
if (trapno != T_INT3 && trapno != T_DEBUG) {
kprintf("Debugger: Unexpected kernel trap number: "
"0x%x, RIP: 0x%llx, CR2: 0x%llx\n",
trapno, saved_state->isf.rip, saved_state->cr2);
if (!kdp.is_conn) {
return FALSE;
}
}
prev_interrupts_state = ml_set_interrupts_enabled(FALSE);
disable_preemption();
if (saved_state->isf.rflags & EFL_TF) {
enable_preemption_no_check();
}
switch (trapno) {
case T_DIVIDE_ERROR:
exception = EXC_ARITHMETIC;
code = EXC_I386_DIVERR;
break;
case T_OVERFLOW:
exception = EXC_SOFTWARE;
code = EXC_I386_INTOFLT;
break;
case T_OUT_OF_BOUNDS:
exception = EXC_ARITHMETIC;
code = EXC_I386_BOUNDFLT;
break;
case T_INVALID_OPCODE:
exception = EXC_BAD_INSTRUCTION;
code = EXC_I386_INVOPFLT;
break;
case T_SEGMENT_NOT_PRESENT:
exception = EXC_BAD_INSTRUCTION;
code = EXC_I386_SEGNPFLT;
subcode = (unsigned int)saved_state->isf.err;
break;
case T_STACK_FAULT:
exception = EXC_BAD_INSTRUCTION;
code = EXC_I386_STKFLT;
subcode = (unsigned int)saved_state->isf.err;
break;
case T_GENERAL_PROTECTION:
exception = EXC_BAD_INSTRUCTION;
code = EXC_I386_GPFLT;
subcode = (unsigned int)saved_state->isf.err;
break;
case T_PAGE_FAULT:
exception = EXC_BAD_ACCESS;
code = result;
subcode = (unsigned int)va;
break;
case T_WATCHPOINT:
exception = EXC_SOFTWARE;
code = EXC_I386_ALIGNFLT;
break;
case T_DEBUG:
case T_INT3:
exception = EXC_BREAKPOINT;
code = EXC_I386_BPTFLT;
break;
default:
exception = EXC_BAD_INSTRUCTION;
code = trapno;
break;
}
if (current_cpu_datap()->cpu_fatal_trap_state) {
current_cpu_datap()->cpu_post_fatal_trap_state = saved_state;
saved_state = current_cpu_datap()->cpu_fatal_trap_state;
}
handle_debugger_trap(exception, code, subcode, saved_state);
enable_preemption();
ml_set_interrupts_enabled(prev_interrupts_state);
/* If the instruction single step bit is set, disable kernel preemption
*/
if (saved_state->isf.rflags & EFL_TF) {
disable_preemption();
}
return TRUE;
}
void
kdp_machine_get_breakinsn(
uint8_t *bytes,
uint32_t *size
)
{
bytes[0] = 0xcc;
*size = 1;
}
#define RETURN_OFFSET64 8
/* Routine to encapsulate the 64-bit address read hack*/
unsigned
machine_read64(addr64_t srcaddr, caddr_t dstaddr, uint32_t len)
{
return (unsigned)kdp_machine_vm_read(srcaddr, dstaddr, len);
}
int
machine_trace_thread64(thread_t thread,
char * tracepos,
char * tracebound,
int nframes,
uint32_t * thread_trace_flags)
{
extern bool machine_trace_thread_validate_kva(vm_offset_t addr);
uint64_t * tracebuf = (uint64_t *)tracepos;
unsigned framesize = sizeof(addr64_t);
uint32_t fence = 0;
int framecount = 0;
addr64_t prev_rip = 0;
addr64_t prevsp = 0;
vm_offset_t kern_virt_addr = 0;
nframes = (tracebound > tracepos) ? MIN(nframes, (int)((tracebound - tracepos) / framesize)) : 0;
addr64_t stackptr = STACK_IKS(thread->kernel_stack)->k_rbp;
prev_rip = STACK_IKS(thread->kernel_stack)->k_rip;
prev_rip = VM_KERNEL_UNSLIDE(prev_rip);
for (framecount = 0; framecount < nframes; framecount++) {
*tracebuf++ = prev_rip;
if (!stackptr || (stackptr == fence)) {
break;
}
if (stackptr & 0x0000007) {
break;
}
if (stackptr <= prevsp) {
break;
}
kern_virt_addr = stackptr + RETURN_OFFSET64;
bool ok = machine_trace_thread_validate_kva(kern_virt_addr);
if (!ok) {
if (thread_trace_flags) {
*thread_trace_flags |= kThreadTruncatedBT;
}
break;
}
prev_rip = VM_KERNEL_UNSLIDE(*(uint64_t *)kern_virt_addr);
prevsp = stackptr;
kern_virt_addr = stackptr;
ok = machine_trace_thread_validate_kva(kern_virt_addr);
if (!ok) {
if (thread_trace_flags) {
*thread_trace_flags |= kThreadTruncatedBT;
}
break;
}
stackptr = *(uint64_t *)kern_virt_addr;
}
return (uint32_t) (((char *) tracebuf) - tracepos);
}
void
kdp_ml_enter_debugger(void)
{
__asm__ __volatile__ ("int3");
}