This is xnu-11215.1.10. See this file in:
/*
 * Copyright (c) 2017 Apple Computer, Inc. All rights reserved.
 *
 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
 *
 * This file contains Original Code and/or Modifications of Original Code
 * as defined in and that are subject to the Apple Public Source License
 * Version 2.0 (the 'License'). You may not use this file except in
 * compliance with the License. The rights granted to you under the License
 * may not be used to create, or enable the creation or redistribution of,
 * unlawful or unlicensed copies of an Apple operating system, or to
 * circumvent, violate, or enable the circumvention or violation of, any
 * terms of an Apple operating system software license agreement.
 *
 * Please obtain a copy of the License at
 * http://www.opensource.apple.com/apsl/ and read it before using this file.
 *
 * The Original Code and all software distributed under the License are
 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
 * Please see the License for the specific language governing rights and
 * limitations under the License.
 *
 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
 */

#include <kdp/kdp_core.h>
#include <kdp/processor_core.h>
#include <kdp/core_notes.h>
#include <kern/assert.h>
#include <kern/monotonic.h>
#include <kern/zalloc.h>
#include <libkern/kernel_mach_header.h>
#include <libkern/OSAtomic.h>
#include <libsa/types.h>
#include <pexpert/pexpert.h>
#include <vm/vm_map.h>

#ifdef CONFIG_KDP_INTERACTIVE_DEBUGGING

#define roundup(x, y)   ((((x) % (y)) == 0) ? \
	                (x) : ((x) + ((y) - ((x) % (y)))))

#define DATA_OWNER_LEGACY_BIN_SPEC "kern ver str"
/*
 * Format of the legacy bin spec (LC_IDENT-like) LC_NOTE payload as expected by LLDB
 */
typedef struct {
	uint32_t version; // currently 1
	char version_string[KERN_COREDUMP_VERSIONSTRINGMAXSIZE];
} __attribute__((packed)) legacy_bin_spec;
#define LEGACY_BIN_SPEC_VERSION 1

__enum_closed_decl(kern_coredump_type_t, uint8_t, {
	XNU_COREDUMP,
	USERSPACE_COREDUMP,
	COPROCESSOR_COREDUMP,
	SECURE_COREDUMP,
	NUM_COREDUMP_TYPES,
});

static uint32_t bin_spec_map[NUM_COREDUMP_TYPES] = {
	[XNU_COREDUMP] = MAIN_BIN_SPEC_TYPE_KERNEL,
	[USERSPACE_COREDUMP] = MAIN_BIN_SPEC_TYPE_USER,
	[COPROCESSOR_COREDUMP] = MAIN_BIN_SPEC_TYPE_STANDALONE,
	[SECURE_COREDUMP] = MAIN_BIN_SPEC_TYPE_STANDALONE
};

/*
 * The processor_core_context structure describes the current
 * corefile that's being generated. It also includes a pointer
 * to the core_outvars which is used by the KDP code for context
 * about the specific output mechanism being used.
 *
 * We include *remaining variables to catch inconsistencies / bugs
 * in the co-processor coredump callbacks.
 */
typedef struct {
	struct kdp_core_out_vars * core_outvars;     /* Output procedure info (see kdp_out_stage.h) */
	kern_coredump_callback_config *core_config;  /* Information about core currently being dumped */
	void *core_refcon;                           /* Reference constant associated with the coredump helper */
	boolean_t core_should_be_skipped;            /* Indicates whether this specific core should not be dumped */
	boolean_t core_is64bit;                      /* Bitness of CPU */
	kern_coredump_type_t core_type;              /* Indicates type of this core*/
	uint32_t core_mh_magic;                      /* Magic for mach header */
	cpu_type_t core_cpu_type;                    /* CPU type for mach header */
	cpu_subtype_t core_cpu_subtype;              /* CPU subtype for mach header */
	uint64_t core_file_length;                   /* Overall corefile length including any zero padding */
	uint64_t core_file_length_compressed;        /* File length after compression */
	uint64_t core_segment_count;                 /* Number of LC_SEGMENTs in the core currently being dumped */
	uint64_t core_segments_remaining;            /* Number of LC_SEGMENTs that have not been added to the header */
	uint64_t core_segment_byte_total;            /* Sum of all the data from the LC_SEGMENTS in the core */
	uint64_t core_segment_bytes_remaining;       /* Quantity of data remaining from LC_SEGMENTs that have yet to be added */
	uint64_t core_thread_count;                  /* Number of LC_THREADs to be included */
	uint64_t core_threads_remaining;             /* Number of LC_THREADs that have yet to be included */
	uint64_t core_thread_state_size;             /* Size of each LC_THREAD */
	uint64_t core_note_count;                    /* Number of LC_NOTEs to be included */
	uint64_t core_notes_remaining;               /* Number of LC_NOTEs that have not been added to the header */
	uint64_t core_note_bytes_total;              /* Sum of all data from the LC_NOTE segments in the core */
	uint64_t core_note_bytes_remaining;          /* Quantity of data remaining from LC_NOTEs that have yet to be added */
	uint64_t core_cur_hoffset;                   /* Current offset in this core's header */
	uint64_t core_cur_foffset;                   /* Current offset in this core's overall file */
	uint64_t core_header_size;                   /* Size of this core's header */
	uint64_t core_total_bytes;                   /* Total amount of data to be included in this core (excluding zero fill) */
} processor_core_context;

/*
 * The kern_coredump_core structure describes a core that has been
 * registered for use by the coredump mechanism.
 */
struct kern_coredump_core {
	struct kern_coredump_core *kcc_next;             /* Next processor to dump */
	void *kcc_refcon;                                /* Reference constant to be passed to callbacks */
	char kcc_corename[MACH_CORE_FILEHEADER_NAMELEN]; /* Description of this processor */
	boolean_t kcc_is64bit;                           /* Processor bitness */
	uint32_t kcc_mh_magic;                           /* Magic for mach header */
	cpu_type_t kcc_cpu_type;                         /* CPU type for mach header */
	cpu_subtype_t kcc_cpu_subtype;                   /* CPU subtype for mach header */
	kern_coredump_callback_config kcc_cb;            /* Registered processor callbacks for coredump */
};

struct kern_coredump_core * kern_coredump_core_list = NULL;
struct kern_coredump_core * kern_userspace_coredump_core_list = NULL;
LCK_GRP_DECLARE(kern_userspace_coredump_core_list_lock_grp, "userspace coredump list");
LCK_MTX_DECLARE(kern_userspace_coredump_core_list_lock, &kern_userspace_coredump_core_list_lock_grp);

typedef kern_return_t (*legacy_sw_vers_registered_cb)(void *refcon, core_save_sw_vers_cb callback, void *context);

uint32_t coredump_registered_count = 0;

struct kern_coredump_core *kernel_helper = NULL;
struct kern_coredump_core *sk_helper = NULL;

static struct kern_coredump_core *
kern_register_coredump_helper_internal(int kern_coredump_config_vers, const kern_coredump_callback_config *kc_callbacks,
    void *refcon, const char *core_description, kern_coredump_type_t type, boolean_t is64bit,
    uint32_t mh_magic, cpu_type_t cpu_type, cpu_subtype_t cpu_subtype)
{
	struct kern_coredump_core *core_helper = NULL;
	kern_coredump_callback_config *core_callbacks = NULL;

	if (kern_coredump_config_vers < KERN_COREDUMP_MIN_CONFIG_VERSION) {
		return NULL;
	}
	if (kc_callbacks == NULL) {
		return NULL;
	}
	;
	if (core_description == NULL) {
		return NULL;
	}

	if (kc_callbacks->kcc_coredump_get_summary == NULL ||
	    kc_callbacks->kcc_coredump_save_segment_descriptions == NULL ||
	    kc_callbacks->kcc_coredump_save_segment_data == NULL ||
	    kc_callbacks->kcc_coredump_save_thread_state == NULL) {
		return NULL;
	}

#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
	legacy_sw_vers_registered_cb legacy_vers_callback = kc_callbacks->kcc_coredump_save_sw_vers;
#pragma clang diagnostic pop

	if (kern_coredump_config_vers >= KERN_COREDUMP_MIN_CONFIG_NOTES) {
		if (legacy_vers_callback == NULL &&
		    kc_callbacks->kcc_coredump_save_sw_vers_detail == NULL) {
			return NULL;
		}
	} else {
		if (legacy_vers_callback == NULL) {
			return NULL;
		}
	}


	if (kern_coredump_config_vers >= KERN_COREDUMP_MIN_CONFIG_NOTES) {
		/* Either all note related callbacks should be set or none should be set */
		if ((kc_callbacks->kcc_coredump_save_note_summary == NULL) != (kc_callbacks->kcc_coredump_save_note_descriptions == NULL)) {
			return NULL;
		}
		if ((kc_callbacks->kcc_coredump_save_note_descriptions == NULL) != (kc_callbacks->kcc_coredump_save_note_data == NULL)) {
			return NULL;
		}
	}


#if !defined(__LP64__)
	/* We don't support generating 64-bit cores on 32-bit platforms */
	if (is64bit) {
		return NULL;
	}
#endif

	core_helper = zalloc_permanent_type(struct kern_coredump_core);
	core_helper->kcc_next = NULL;
	core_helper->kcc_refcon = refcon;
	if (type == XNU_COREDUMP || type == USERSPACE_COREDUMP || type == SECURE_COREDUMP) {
		snprintf((char *)&core_helper->kcc_corename, MACH_CORE_FILEHEADER_NAMELEN, "%s", core_description);
	} else {
		assert(type == COPROCESSOR_COREDUMP);
		/* Make sure there's room for the -cp suffix (16 - NULL char - strlen(-cp)) */
		snprintf((char *)&core_helper->kcc_corename, MACH_CORE_FILEHEADER_NAMELEN, "%.12s-cp", core_description);
	}
	core_helper->kcc_is64bit = is64bit;
	core_helper->kcc_mh_magic = mh_magic;
	core_helper->kcc_cpu_type = cpu_type;
	core_helper->kcc_cpu_subtype = cpu_subtype;
	core_callbacks = &core_helper->kcc_cb;

	core_callbacks->kcc_coredump_init = kc_callbacks->kcc_coredump_init;
	core_callbacks->kcc_coredump_get_summary = kc_callbacks->kcc_coredump_get_summary;
	core_callbacks->kcc_coredump_save_segment_descriptions = kc_callbacks->kcc_coredump_save_segment_descriptions;
	core_callbacks->kcc_coredump_save_segment_data = kc_callbacks->kcc_coredump_save_segment_data;
	core_callbacks->kcc_coredump_save_thread_state = kc_callbacks->kcc_coredump_save_thread_state;
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
	core_callbacks->kcc_coredump_save_sw_vers = kc_callbacks->kcc_coredump_save_sw_vers;
#pragma clang diagnostic pop


	if (kern_coredump_config_vers >= KERN_COREDUMP_MIN_CONFIG_NOTES) {
		core_callbacks->kcc_coredump_save_note_summary = kc_callbacks->kcc_coredump_save_note_summary;
		core_callbacks->kcc_coredump_save_note_descriptions = kc_callbacks->kcc_coredump_save_note_descriptions;
		core_callbacks->kcc_coredump_save_note_data = kc_callbacks->kcc_coredump_save_note_data;
		core_callbacks->kcc_coredump_save_sw_vers_detail = kc_callbacks->kcc_coredump_save_sw_vers_detail;
	}

	if (type == XNU_COREDUMP) {
		assert(kernel_helper == NULL);
		kernel_helper = core_helper;
	} else if (type == SECURE_COREDUMP) {
		assert(sk_helper == NULL);
		sk_helper = core_helper;
	} else if (type == USERSPACE_COREDUMP) {
		lck_mtx_lock(&kern_userspace_coredump_core_list_lock);
		core_helper->kcc_next = kern_userspace_coredump_core_list;
		kern_userspace_coredump_core_list = core_helper;
		lck_mtx_unlock(&kern_userspace_coredump_core_list_lock);
	} else {
		assert(type == COPROCESSOR_COREDUMP);
		do {
			core_helper->kcc_next = kern_coredump_core_list;
		} while (!OSCompareAndSwapPtr(kern_coredump_core_list, core_helper, &kern_coredump_core_list));
	}

	OSAddAtomic(1, &coredump_registered_count);
	kprintf("Registered coredump handler for %s\n", core_description);

	return core_helper;
}

kern_return_t
kern_register_coredump_helper(int kern_coredump_config_vers, const kern_coredump_callback_config *kc_callbacks,
    void *refcon, const char *core_description, boolean_t is64bit, uint32_t mh_magic,
    cpu_type_t cpu_type, cpu_subtype_t cpu_subtype)
{
	if (coredump_registered_count >= KERN_COREDUMP_MAX_CORES) {
		return KERN_RESOURCE_SHORTAGE;
	}

	if (kern_register_coredump_helper_internal(kern_coredump_config_vers, kc_callbacks, refcon, core_description, COPROCESSOR_COREDUMP,
	    is64bit, mh_magic, cpu_type, cpu_subtype) == NULL) {
		return KERN_INVALID_ARGUMENT;
	}

	return KERN_SUCCESS;
}

kern_return_t
kern_register_xnu_coredump_helper(kern_coredump_callback_config *kc_callbacks)
{
#if defined(__LP64__)
	boolean_t is64bit = TRUE;
#else
	boolean_t is64bit = FALSE;
#endif

	if (kern_register_coredump_helper_internal(KERN_COREDUMP_CONFIG_VERSION, kc_callbacks, NULL, "kernel", XNU_COREDUMP, is64bit,
	    _mh_execute_header.magic, _mh_execute_header.cputype, _mh_execute_header.cpusubtype) == NULL) {
		return KERN_FAILURE;
	}

	return KERN_SUCCESS;
}

kern_return_t
kern_register_sk_coredump_helper(kern_coredump_callback_config *sk_callbacks, void *refcon)
{
	if (kern_register_coredump_helper_internal(KERN_COREDUMP_CONFIG_VERSION, sk_callbacks,
	    refcon, "secure-kernel", SECURE_COREDUMP, TRUE, _mh_execute_header.magic,
	    _mh_execute_header.cputype, _mh_execute_header.cpusubtype) == NULL) {
		return KERN_FAILURE;
	}

	return KERN_SUCCESS;
}

extern cpu_type_t
process_cpu_type(void * bsd_info);

extern cpu_type_t
process_cpu_subtype(void * bsd_info);

extern char     *proc_name_address(void *p);

kern_return_t
kern_register_userspace_coredump(task_t task, const char * name)
{
	kern_return_t result;
	struct kern_userspace_coredump_context * context = NULL;
	boolean_t is64bit;
	uint32_t mh_magic;
	uint32_t mh_cputype;
	uint32_t mh_cpusubtype;
	kern_coredump_callback_config userkc_callbacks;

	is64bit = task_has_64Bit_addr(task);
	mh_magic = is64bit ? MH_MAGIC_64 : MH_MAGIC;
	mh_cputype = process_cpu_type(get_bsdtask_info(task));
	mh_cpusubtype = process_cpu_subtype(get_bsdtask_info(task));


	context = kalloc_type(struct kern_userspace_coredump_context, (zalloc_flags_t)(Z_WAITOK | Z_ZERO));
	context->task = task;

	userkc_callbacks.kcc_coredump_init = user_dump_init;
	userkc_callbacks.kcc_coredump_get_summary = user_dump_save_summary;
	userkc_callbacks.kcc_coredump_save_segment_descriptions = user_dump_save_seg_descriptions;
	userkc_callbacks.kcc_coredump_save_thread_state = user_dump_save_thread_state;
	userkc_callbacks.kcc_coredump_save_sw_vers_detail = user_dump_save_sw_vers_detail;
	userkc_callbacks.kcc_coredump_save_segment_data = user_dump_save_segment_data;
	userkc_callbacks.kcc_coredump_save_note_summary = user_dump_save_note_summary;
	userkc_callbacks.kcc_coredump_save_note_descriptions = user_dump_save_note_descriptions;
	userkc_callbacks.kcc_coredump_save_note_data = user_dump_save_note_data;

	if (kern_register_coredump_helper_internal(KERN_COREDUMP_CONFIG_VERSION, &userkc_callbacks, context, name, USERSPACE_COREDUMP, is64bit,
	    mh_magic, mh_cputype, mh_cpusubtype) == NULL) {
		result = KERN_FAILURE;
		goto finish;
	}

	result = KERN_SUCCESS;

finish:
	if (result != KERN_SUCCESS && context != NULL) {
		kfree_type(struct kern_userspace_coredump_context, context);
	}

	return result;
}

kern_return_t
kern_unregister_userspace_coredump(task_t task)
{
	struct kern_coredump_core * current_core = NULL;
	struct kern_coredump_core * previous_core = NULL;

	lck_mtx_lock(&kern_userspace_coredump_core_list_lock);
	current_core = kern_userspace_coredump_core_list;
	while (current_core) {
		struct kern_userspace_coredump_context * context = (struct kern_userspace_coredump_context *)current_core->kcc_refcon;
		assert(context != NULL);
		if (context->task == task) {
			/* remove current_core from the list */
			if (previous_core == NULL) {
				kern_userspace_coredump_core_list = current_core->kcc_next;
			} else {
				previous_core->kcc_next = current_core->kcc_next;
			}
			break;
		}
		previous_core = current_core;
		current_core = current_core->kcc_next;
	}
	lck_mtx_unlock(&kern_userspace_coredump_core_list_lock);

	if (current_core) {
		kfree_type(struct kern_userspace_coredump_context, current_core->kcc_refcon);
		OSAddAtomic(-1, &coredump_registered_count);
		return KERN_SUCCESS;
	}

	return KERN_NOT_FOUND;
}

/*
 * Save LC_NOTE metadata about the core we are going to write before we write the mach header
 */
static int
coredump_save_note_summary(uint64_t core_note_count, uint64_t core_note_byte_count, void *context)
{
	processor_core_context *core_context = (processor_core_context *)context;

	if (!core_note_count || !core_note_byte_count || !context) {
		return KERN_INVALID_ARGUMENT;
	}

	core_context->core_note_count = core_context->core_notes_remaining = core_note_count;
	core_context->core_note_bytes_total = core_context->core_note_bytes_remaining = core_note_byte_count;

	return KERN_SUCCESS;
}

/*
 * Save metadata about the core we're about to write, write out the mach header
 */
static int
coredump_save_summary(uint64_t core_segment_count, uint64_t core_byte_count,
    uint64_t thread_count, uint64_t thread_state_size,
    __unused uint64_t misc_bytes_count, void *context)
{
	processor_core_context *core_context = (processor_core_context *)context;
	uint32_t sizeofcmds = 0, numcmds = 0;
	bool should_skip = false;
	int ret = 0;

	if (!core_segment_count || !core_byte_count
	    || (thread_state_size > KERN_COREDUMP_THREADSIZE_MAX)) {
		return KERN_INVALID_ARGUMENT;
	}

	/*
	 * secure coredumps and coprocessor coredumps aren't required to contain any thread state,
	 * because it's reconstructed during the lldb session
	 */
	if (core_context->core_type != SECURE_COREDUMP && core_context->core_type != COPROCESSOR_COREDUMP
	    && (!thread_count || !thread_state_size)) {
		return KERN_INVALID_ARGUMENT;
	}

	/* Initialize core_context */
	core_context->core_segments_remaining = core_context->core_segment_count = core_segment_count;
	core_context->core_segment_bytes_remaining = core_context->core_segment_byte_total = core_byte_count;
	core_context->core_threads_remaining = core_context->core_thread_count = thread_count;
	core_context->core_thread_state_size = thread_state_size;

	/* Account for the LC_NOTE needed to store version/load information */
	core_context->core_note_count = core_context->core_notes_remaining = (core_context->core_note_count + 1);
	size_t vers_note_length = sizeof(main_bin_spec_note_t);
	if (core_context->core_config->kcc_coredump_save_sw_vers_detail == NULL) {
		vers_note_length = sizeof(legacy_bin_spec);
	}
	core_context->core_note_bytes_total = core_context->core_note_bytes_remaining = (core_context->core_note_bytes_total + vers_note_length);

#if defined(__LP64__)
	if (core_context->core_is64bit) {
		sizeofcmds = (uint32_t)(core_context->core_segment_count * sizeof(struct segment_command_64) +
		    (core_context->core_threads_remaining * core_context->core_thread_state_size) +
		    (core_context->core_note_count * sizeof(struct note_command)));
		core_context->core_header_size = sizeofcmds + sizeof(struct mach_header_64);
	} else
#endif /* defined(__LP64__) */
	{
		sizeofcmds = (uint32_t)(core_context->core_segment_count * sizeof(struct segment_command) +
		    (core_context->core_threads_remaining * core_context->core_thread_state_size) +
		    (core_context->core_note_count * sizeof(struct note_command)));
		core_context->core_header_size = sizeofcmds + sizeof(struct mach_header);
	}


	core_context->core_total_bytes = core_context->core_header_size + core_context->core_segment_byte_total + core_context->core_note_bytes_total;
	core_context->core_file_length = round_page(core_context->core_header_size) + core_context->core_segment_byte_total + core_context->core_note_bytes_total;
	core_context->core_cur_foffset = round_page(core_context->core_header_size);

	numcmds = (uint32_t)(core_context->core_segment_count + core_context->core_thread_count + core_context->core_note_count);

	/*
	 * Reset the zstream and other output context before writing any data out. We do this here
	 * to update the total file length on the outvars before we start writing out.
	 */
	ret = kdp_reset_output_vars(core_context->core_outvars, core_context->core_file_length, true, &should_skip);
	if (ret != KERN_SUCCESS) {
		kern_coredump_log(context, "%s() : failed to reset the out vars : kdp_reset_output_vars(%p, %llu, true, %p) returned error 0x%x\n",
		    __func__, core_context->core_outvars, core_context->core_file_length, &should_skip, ret);
		return ret;
	}

	if (should_skip) {
		core_context->core_should_be_skipped = TRUE;
		return KERN_SUCCESS;
	}

	/* Construct core file header */
#if defined(__LP64__)
	if (core_context->core_is64bit) {
		struct mach_header_64 core_header = { };

		core_header.magic = core_context->core_mh_magic;
		core_header.cputype = core_context->core_cpu_type;
		core_header.cpusubtype = core_context->core_cpu_subtype;
		core_header.filetype = MH_CORE;
		core_header.ncmds = numcmds;
		core_header.sizeofcmds = sizeofcmds;
		core_header.flags = 0;

		/* Send the core_header to the output procedure */
		ret =  kdp_core_output(core_context->core_outvars, sizeof(core_header), (caddr_t)&core_header);
		if (ret != KERN_SUCCESS) {
			kern_coredump_log(context, "%s() : failed to write mach header : kdp_core_output(%p, %lu, %p) returned error 0x%x\n",
			    __func__, core_context->core_outvars, sizeof(core_header), &core_header, ret);
			return ret;
		}

		core_context->core_cur_hoffset += sizeof(core_header);
	} else
#endif /* defined(__LP64__) */
	{
		struct mach_header core_header = { };

		core_header.magic = core_context->core_mh_magic;
		core_header.cputype = core_context->core_cpu_type;
		core_header.cpusubtype = core_context->core_cpu_subtype;
		core_header.filetype = MH_CORE;
		core_header.ncmds = numcmds;
		core_header.sizeofcmds = sizeofcmds;
		core_header.flags = 0;

		/* Send the core_header to the output procedure */
		ret =  kdp_core_output(core_context->core_outvars, sizeof(core_header), (caddr_t)&core_header);
		if (ret != KERN_SUCCESS) {
			kern_coredump_log(context, "%s() : failed to write mach header : kdp_core_output(%p, %lu, %p) returned error 0x%x\n",
			    __func__, core_context->core_outvars, sizeof(core_header), &core_header, ret);
			return ret;
		}

		core_context->core_cur_hoffset += sizeof(core_header);
	}

	return KERN_SUCCESS;
}

/*
 * Construct a segment command for the specified segment.
 */
static int
coredump_save_segment_descriptions(uint64_t seg_start, uint64_t seg_end,
    void *context)
{
	processor_core_context *core_context = (processor_core_context *)context;
	int ret;
	uint64_t size = seg_end - seg_start;

	if (seg_end <= seg_start) {
		kern_coredump_log(context, "%s(0x%llx, 0x%llx, %p) : called with invalid addresses : start 0x%llx >= end 0x%llx\n",
		    __func__, seg_start, seg_end, context, seg_start, seg_end);
		return KERN_INVALID_ARGUMENT;
	}

	if (core_context->core_segments_remaining == 0) {
		kern_coredump_log(context, "%s(0x%llx, 0x%llx, %p) : coredump_save_segment_descriptions() called too many times, %llu segment descriptions already recorded\n",
		    __func__, seg_start, seg_end, context, core_context->core_segment_count);
		return KERN_INVALID_ARGUMENT;
	}

	/* Construct segment command */
#if defined(__LP64__)
	if (core_context->core_is64bit) {
		struct segment_command_64 seg_command = { };

		if (core_context->core_cur_hoffset + sizeof(seg_command) > core_context->core_header_size) {
			kern_coredump_log(context, "%s(0x%llx, 0x%llx, %p) : ran out of space to save commands with %llu of %llu remaining\n",
			    __func__, seg_start, seg_end, context, core_context->core_segments_remaining, core_context->core_segment_count);
			return KERN_NO_SPACE;
		}

		seg_command.cmd = LC_SEGMENT_64;
		seg_command.cmdsize = sizeof(seg_command);
		seg_command.segname[0] = 0;
		seg_command.vmaddr = seg_start;
		seg_command.vmsize = size;
		seg_command.fileoff = core_context->core_cur_foffset;
		seg_command.filesize = size;
		seg_command.maxprot = VM_PROT_READ;
		seg_command.initprot = VM_PROT_READ;

		/* Flush new command to output */
		ret = kdp_core_output(core_context->core_outvars, sizeof(seg_command), (caddr_t)&seg_command);
		if (ret != KERN_SUCCESS) {
			kern_coredump_log(context, "%s(0x%llx, 0x%llx, %p) : failed to write segment %llu of %llu. kdp_core_output(%p, %lu, %p) returned error %d\n",
			    __func__, seg_start, seg_end, context, core_context->core_segment_count - core_context->core_segments_remaining,
			    core_context->core_segment_count, core_context->core_outvars, sizeof(seg_command), &seg_command, ret);
			return ret;
		}

		core_context->core_cur_hoffset += sizeof(seg_command);
	} else
#endif /* defined(__LP64__) */
	{
		struct segment_command seg_command = { };

		if (seg_start > UINT32_MAX || seg_end > UINT32_MAX) {
			kern_coredump_log(context, "%s(0x%llx, 0x%llx, %p) : called with invalid addresses for 32-bit : start 0x%llx, end 0x%llx\n",
			    __func__, seg_start, seg_end, context, seg_start, seg_end);
			return KERN_INVALID_ARGUMENT;
		}

		if (core_context->core_cur_hoffset + sizeof(seg_command) > core_context->core_header_size) {
			kern_coredump_log(context, "%s(0x%llx, 0x%llx, %p) : ran out of space to save commands with %llu of %llu remaining\n",
			    __func__, seg_start, seg_end, context, core_context->core_segments_remaining, core_context->core_segment_count);
			return KERN_NO_SPACE;
		}

		seg_command.cmd = LC_SEGMENT;
		seg_command.cmdsize = sizeof(seg_command);
		seg_command.segname[0] = 0;
		seg_command.vmaddr = (uint32_t) seg_start;
		seg_command.vmsize = (uint32_t) size;
		seg_command.fileoff = (uint32_t) core_context->core_cur_foffset;
		seg_command.filesize = (uint32_t) size;
		seg_command.maxprot = VM_PROT_READ;
		seg_command.initprot = VM_PROT_READ;

		/* Flush new command to output */
		ret = kdp_core_output(core_context->core_outvars, sizeof(seg_command), (caddr_t)&seg_command);
		if (ret != KERN_SUCCESS) {
			kern_coredump_log(context, "%s(0x%llx, 0x%llx, %p) : failed to write segment %llu of %llu : kdp_core_output(%p, %lu, %p) returned  error 0x%x\n",
			    __func__, seg_start, seg_end, context, core_context->core_segment_count - core_context->core_segments_remaining,
			    core_context->core_segment_count, core_context->core_outvars, sizeof(seg_command), &seg_command, ret);
			return ret;
		}

		core_context->core_cur_hoffset += sizeof(seg_command);
	}

	/* Update coredump context */
	core_context->core_segments_remaining--;
	core_context->core_cur_foffset += size;

	return KERN_SUCCESS;
}

/*
 * Construct a LC_NOTE command for the specified note
 */
static int
coredump_save_note_description(const char * data_owner, uint64_t length, void *context)
{
	processor_core_context *core_context = (processor_core_context *)context;
	int ret;

	if (data_owner == NULL || (strlen(data_owner) == 0)) {
		kern_coredump_log(context, "%s() called with invalid data_owner\n", __func__);
		return KERN_INVALID_ARGUMENT;
	}

	if (core_context->core_notes_remaining == 0) {
		kern_coredump_log(context, "%s() called too many times, %llu note descriptions already recorded\n",
		    __func__, core_context->core_note_count);
		return KERN_INVALID_ARGUMENT;
	}

	struct note_command note = { .cmd = LC_NOTE,
		                     .cmdsize = sizeof(struct note_command),
		                     .offset = core_context->core_cur_foffset,
		                     .size = length, };
	strlcpy((char *) &note.data_owner, data_owner, sizeof(note.data_owner));

	/* Flush new command to output */
	ret = kdp_core_output(core_context->core_outvars, sizeof(note), (caddr_t)&note);
	if (ret != KERN_SUCCESS) {
		kern_coredump_log(context, "%s() : failed to write note %llu of %llu : kdp_core_output() returned  error 0x%x\n",
		    __func__, core_context->core_note_count - core_context->core_notes_remaining,
		    core_context->core_note_count, ret);
		return ret;
	}

	/* Update coredump context */
	core_context->core_cur_foffset += length;
	core_context->core_cur_hoffset += sizeof(note);
	core_context->core_notes_remaining--;

	return KERN_SUCCESS;
}

/*
 * Save thread state.
 *
 * Passed thread_state is expected to be a struct thread_command
 */
static int
coredump_save_thread_state(void *thread_state, void *context)
{
	processor_core_context *core_context = (processor_core_context *)context;
	struct thread_command *tc = (struct thread_command *)thread_state;
	int ret;

	if (tc->cmd != LC_THREAD) {
		kern_coredump_log(context, "%s() : found %d expected LC_THREAD (%d)\n", __func__, tc->cmd, LC_THREAD);
		return KERN_INVALID_ARGUMENT;
	}

	if (core_context->core_cur_hoffset + core_context->core_thread_state_size > core_context->core_header_size) {
		kern_coredump_log(context, "%s() : ran out of space to save threads with %llu of %llu remaining\n", __func__,
		    core_context->core_threads_remaining, core_context->core_thread_count);
		return KERN_NO_SPACE;
	}

	ret = kdp_core_output(core_context->core_outvars, core_context->core_thread_state_size, (caddr_t)thread_state);
	if (ret != KERN_SUCCESS) {
		kern_coredump_log(context, "%s() : failed to write thread data : kdp_core_output() returned 0x%x\n", __func__, ret);
		return ret;
	}

	core_context->core_threads_remaining--;
	core_context->core_cur_hoffset += core_context->core_thread_state_size;

	return KERN_SUCCESS;
}

static int
coredump_save_segment_data(void *seg_data, uint64_t length, void *context)
{
	int ret;
	processor_core_context *core_context = (processor_core_context *)context;

	if (length > core_context->core_segment_bytes_remaining) {
		kern_coredump_log(context, "%s(%p, %llu, %p) : called with too much data, %llu written, %llu left\n", __func__,
		    seg_data, length, context, core_context->core_segment_byte_total - core_context->core_segment_bytes_remaining,
		    core_context->core_segment_bytes_remaining);
		return KERN_INVALID_ARGUMENT;
	}

	ret = kdp_core_output(core_context->core_outvars, length, (caddr_t)seg_data);
	if (ret != KERN_SUCCESS) {
		kern_coredump_log(context, "%s() : failed to write data (%llu bytes remaining) :%d\n", __func__,
		    core_context->core_segment_bytes_remaining, ret);
		return ret;
	}

	core_context->core_segment_bytes_remaining -= length;
	core_context->core_cur_foffset += length;

	return KERN_SUCCESS;
}

static int
coredump_save_note_data(void *note_data, uint64_t length, void *context)
{
	int ret;
	processor_core_context *core_context = (processor_core_context *)context;

	if (length > core_context->core_note_bytes_remaining) {
		kern_coredump_log(context, "%s(%p, %llu, %p) : called with too much data, %llu written, %llu left\n", __func__,
		    note_data, length, context, core_context->core_note_bytes_total - core_context->core_note_bytes_remaining,
		    core_context->core_note_bytes_remaining);
		return KERN_INVALID_ARGUMENT;
	}

	ret = kdp_core_output(core_context->core_outvars, length, (caddr_t)note_data);
	if (ret != KERN_SUCCESS) {
		kern_coredump_log(context, "%s() : failed to write data (%llu bytes remaining) :%d\n", __func__,
		    core_context->core_note_bytes_remaining, ret);
		return ret;
	}

	core_context->core_note_bytes_remaining -= length;
	core_context->core_cur_foffset += length;

	return KERN_SUCCESS;
}

static int
coredump_save_sw_vers_legacy(void *sw_vers, uint64_t length, void *context)
{
	processor_core_context *core_context = (processor_core_context *)context;
	int ret;

	if (length > KERN_COREDUMP_VERSIONSTRINGMAXSIZE || !length) {
		kern_coredump_log(context, "%s(%p, %llu, %p) : called with invalid length %llu\n", __func__,
		    sw_vers, length, context, length);
		return KERN_INVALID_ARGUMENT;
	}

	uint32_t version = LEGACY_BIN_SPEC_VERSION;
	ret = coredump_save_note_data(&version, sizeof(version), context);
	if (ret != KERN_SUCCESS) {
		kern_coredump_log(context, "%s() : failed to write legacy bin spec version : coredump_save_note_data() returned 0x%x\n",
		    __func__, ret);
		return ret;
	}

	ret = coredump_save_note_data(sw_vers, length, context);
	if (ret != KERN_SUCCESS) {
		kern_coredump_log(context, "%s() : failed to write sw_vers string : coredump_save_note_data() returned 0x%x\n",
		    __func__, ret);
		return ret;
	}

	if (length < KERN_COREDUMP_VERSIONSTRINGMAXSIZE) {
		/* Zero fill to the full size */
		uint64_t length_to_zero = (KERN_COREDUMP_VERSIONSTRINGMAXSIZE - length);
		ret = kdp_core_output(core_context->core_outvars, length_to_zero, NULL);
		if (ret != KERN_SUCCESS) {
			kern_coredump_log(context, "%s() : failed to write zero fill padding : kdp_core_output(%p, %llu, NULL) returned 0x%x\n",
			    __func__, core_context->core_outvars, length_to_zero, ret);
			return ret;
		}

		core_context->core_note_bytes_remaining -= length_to_zero;
		core_context->core_cur_foffset += length_to_zero;
	}

	return KERN_SUCCESS;
}

static int
coredump_save_sw_vers(uint64_t address, uuid_t uuid, uint32_t log2_pagesize, void *context)
{
	processor_core_context *core_context = (processor_core_context *)context;
	int ret;

	uint32_t type = bin_spec_map[core_context->core_type];
	main_bin_spec_note_t spec = {
		.version = MAIN_BIN_SPEC_VERSION,
		.type = type,
		.address = address,
		.log2_pagesize = log2_pagesize,
	};
	uuid_copy(*((uuid_t *)&spec.uuid), uuid);

	ret = coredump_save_note_data(&spec, sizeof(spec), context);
	if (ret != KERN_SUCCESS) {
		kern_coredump_log(context, "%s() : failed to write main bin spec structure : coredump_save_note_data() returned 0x%x\n", __func__, ret);
		return ret;
	}

	return KERN_SUCCESS;
}

static kern_return_t
kern_coredump_routine(void *core_outvars, struct kern_coredump_core *current_core, uint64_t core_begin_offset, uint64_t *core_file_length, boolean_t *header_update_failed, kern_coredump_type_t type, uint64_t details_flags)
{
#if CONFIG_CPU_COUNTERS
	uint64_t start_cycles;
	uint64_t end_cycles;
#endif // CONFIG_CPU_COUNTERS
	kern_return_t ret;
	processor_core_context context = { };
	*core_file_length = 0;
	*header_update_failed = FALSE;

#if CONFIG_CPU_COUNTERS
	start_cycles = mt_cur_cpu_cycles();
#endif // CONFIG_CPU_COUNTERS

	/* Setup the coredump context */
	context.core_outvars = core_outvars;
	context.core_config = &current_core->kcc_cb;
	context.core_refcon = current_core->kcc_refcon;
	context.core_is64bit = current_core->kcc_is64bit;
	context.core_mh_magic = current_core->kcc_mh_magic;
	context.core_cpu_type = current_core->kcc_cpu_type;
	context.core_cpu_subtype = current_core->kcc_cpu_subtype;
	context.core_type = type;

	kern_coredump_log(&context, "\nBeginning coredump of %s\n", current_core->kcc_corename);

	if (current_core->kcc_cb.kcc_coredump_init != NULL) {
		ret = current_core->kcc_cb.kcc_coredump_init(context.core_refcon, &context);
		if (ret == KERN_NODE_DOWN) {
			kern_coredump_log(&context, "coredump_init returned KERN_NODE_DOWN, skipping this core\n");
			return KERN_SUCCESS;
		} else if (ret != KERN_SUCCESS) {
			kern_coredump_log(&context, "(%s) : coredump_init failed with %d\n", __func__, ret);
			return ret;
		}
	}

	/* Retrieve information about LC_NOTE data we will write out as part of the core before we populate the general header */
	if (current_core->kcc_cb.kcc_coredump_save_note_summary != NULL) {
		ret = current_core->kcc_cb.kcc_coredump_save_note_summary(context.core_refcon, coredump_save_note_summary, &context);
		if (ret != KERN_SUCCESS) {
			kern_coredump_log(&context, "(%s) : save_note_note_summary failed with %d\n", __func__, ret);
			return ret;
		}
	}

	/* Populate the context with metadata about the corefile (cmd info, sizes etc) */
	ret = current_core->kcc_cb.kcc_coredump_get_summary(context.core_refcon, coredump_save_summary, &context);
	if (ret != KERN_SUCCESS) {
		kern_coredump_log(&context, "(%s) : get_summary failed with %d\n", __func__, ret);
		return ret;
	}

	if (context.core_should_be_skipped) {
		kern_coredump_log(&context, "Skipping coredump\n");
		return KERN_SUCCESS;
	}

	if (context.core_header_size == 0) {
		kern_coredump_log(&context, "(%s) : header size not populated after coredump_get_summary\n", __func__);
		return KERN_FAILURE;
	}

	/* Save the segment descriptions for the segments to be included */
	ret = current_core->kcc_cb.kcc_coredump_save_segment_descriptions(context.core_refcon, coredump_save_segment_descriptions,
	    &context);
	if (ret != KERN_SUCCESS) {
		kern_coredump_log(&context, "(%s) : save_segment_descriptions failed with %d\n", __func__, ret);
		return ret;
	}

	if (context.core_segments_remaining != 0) {
		kern_coredump_log(&context, "(%s) : save_segment_descriptions returned without all segment descriptions written, %llu of %llu remaining\n",
		    __func__, context.core_segments_remaining, context.core_segment_count);
		return KERN_FAILURE;
	}

	/* write out the LC_NOTE with the binary info */
	if (current_core->kcc_cb.kcc_coredump_save_sw_vers_detail != NULL) {
		ret = coredump_save_note_description(MAIN_BIN_SPEC_DATA_OWNER, sizeof(main_bin_spec_note_t), &context);
	} else {
		ret = coredump_save_note_description(DATA_OWNER_LEGACY_BIN_SPEC, sizeof(legacy_bin_spec), &context);
	}
	if (ret != KERN_SUCCESS) {
		kern_coredump_log(&context, "(%s) : coredump_save_note_description returned %d while writing binary info LC_NOTE description", __func__, ret);
		return ret;
	}

	/* Save LC_NOTE desciptions for any additional notes to be included */
	if (current_core->kcc_cb.kcc_coredump_save_note_descriptions != NULL) {
		ret = current_core->kcc_cb.kcc_coredump_save_note_descriptions(context.core_refcon, coredump_save_note_description, &context);
		if (ret != KERN_SUCCESS) {
			kern_coredump_log(&context, "(%s) : kcc_coredump_save_note_descriptions failed with %d\n", __func__, ret);
			return ret;
		}
	}

	if (context.core_notes_remaining != 0) {
		kern_coredump_log(&context, "(%s) : save_note_descriptions returned without all note descriptions written, %llu of %llu remaining\n",
		    __func__, context.core_notes_remaining, context.core_note_count);
		return KERN_FAILURE;
	}

	/*
	 * Save the thread commands/state
	 *
	 * TODO: Should this buffer be allocated at boot rather than on the stack?
	 */
	if (context.core_thread_state_size) {
		char threadstatebuf[context.core_thread_state_size];
		ret = current_core->kcc_cb.kcc_coredump_save_thread_state(context.core_refcon, &threadstatebuf, coredump_save_thread_state,
		    &context);
		if (ret != KERN_SUCCESS) {
			kern_coredump_log(&context, "(%s) : save_thread_state failed with %d\n", __func__, ret);
			return ret;
		}
	}

	if (context.core_threads_remaining != 0) {
		kern_coredump_log(&context, "(%s) : save_thread_state returned without all thread descriptions written, %llu of %llu remaining\n",
		    __func__, context.core_threads_remaining, context.core_thread_count);
		return KERN_FAILURE;
	}
	assert(context.core_cur_hoffset == context.core_header_size);

	/* Zero fill between the end of the header and the beginning of the segment data file offset */
	ret = kdp_core_output(context.core_outvars, (round_page(context.core_header_size) - context.core_header_size), NULL);
	if (ret != KERN_SUCCESS) {
		kern_coredump_log(&context, "(kern_coredump_routine) : failed to write zero fill padding (%llu bytes remaining) : kdp_core_output(%p, %llu, NULL) returned 0x%x\n",
		    context.core_segment_bytes_remaining, context.core_outvars, (round_page(context.core_header_size) - context.core_header_size), ret);
		return ret;
	}

	/* Reset our local current file offset before we start writing out segment data */
	context.core_cur_foffset = round_page(context.core_header_size);

	ret = current_core->kcc_cb.kcc_coredump_save_segment_data(context.core_refcon, coredump_save_segment_data, &context);
	if (ret != KERN_SUCCESS) {
		kern_coredump_log(&context, "coredump_save_segment_data failed with %d\n", ret);
		return ret;
	}

	if (context.core_segment_bytes_remaining != 0) {
		kern_coredump_log(&context, "(kern_coredump_routine) : save_segment_data returned without all segment data written, %llu of %llu remaining\n",
		    context.core_segment_bytes_remaining, context.core_segment_byte_total);
		return KERN_FAILURE;
	}

	/* Save out the LC_NOTE segment data, starting with the binary info / sw vers one */
	if (current_core->kcc_cb.kcc_coredump_save_sw_vers_detail != NULL) {
		ret = current_core->kcc_cb.kcc_coredump_save_sw_vers_detail(context.core_refcon, coredump_save_sw_vers, &context);
		if (ret != KERN_SUCCESS) {
			kern_coredump_log(&context, "(%s) : kcc_coredump_save_sw_vers_detail_cb failed with 0x%x\n", __func__, ret);
			return ret;
		}
	} else {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
		ret = current_core->kcc_cb.kcc_coredump_save_sw_vers(context.core_refcon, coredump_save_sw_vers_legacy, &context);
#pragma clang diagnostic pop
		if (ret != KERN_SUCCESS) {
			kern_coredump_log(&context, "(%s) : kcc_coredump_save_sw_vers failed with 0x%x\n", __func__, ret);
			return ret;
		}
	}

	if (current_core->kcc_cb.kcc_coredump_save_note_data != NULL) {
		ret = current_core->kcc_cb.kcc_coredump_save_note_data(context.core_refcon, coredump_save_note_data, &context);
		if (ret != KERN_SUCCESS) {
			kern_coredump_log(&context, "(%s) : kcc_coredump_save_note_data failed with 0x%x\n", __func__, ret);
			return ret;
		}
	}

	if (context.core_note_bytes_remaining != 0) {
		kern_coredump_log(&context, "(%s) : kcc_coredump_save_note_data returned without all note data written, %llu of %llu remaining\n",
		    __func__, context.core_note_bytes_remaining, context.core_note_bytes_total);
		return KERN_FAILURE;
	}


	/* Flush the last data out */
	ret = kdp_core_output(context.core_outvars, 0, NULL);
	if (ret != KERN_SUCCESS) {
		kern_coredump_log(&context, "(kern_coredump_routine) : failed to flush final core data : kdp_core_output(%p, 0, NULL) returned 0x%x\n",
		    context.core_outvars, ret);
		return ret;
	}

	kern_coredump_log(&context, "Done\nCoredump complete of %s, dumped %llu segments (%llu bytes), %llu threads (%llu bytes) overall uncompressed file length %llu bytes.",
	    current_core->kcc_corename, context.core_segment_count, context.core_segment_byte_total, context.core_thread_count,
	    (context.core_thread_count * context.core_thread_state_size), context.core_file_length);

#if CONFIG_CPU_COUNTERS
	end_cycles = mt_cur_cpu_cycles();
	kern_coredump_log(&context, "\nCore dump took %llu cycles\n", end_cycles - start_cycles);
#endif // CONFIG_CPU_COUNTERS

	if (core_begin_offset) {
		/* If we're writing to disk (we have a begin offset), we need to update the header */
		ret = kern_dump_record_file(context.core_outvars, current_core->kcc_corename, core_begin_offset, &context.core_file_length_compressed, details_flags);
		if (ret != KERN_SUCCESS) {
			*header_update_failed = TRUE;
			kern_coredump_log(&context, "\n(kern_coredump_routine) : kern_dump_record_file failed with %d\n", ret);
			return ret;
		}
	}

	kern_coredump_log(&context, " Compressed file length is %llu bytes\n", context.core_file_length_compressed);

	*core_file_length = context.core_file_length_compressed;

	return KERN_SUCCESS;
}

/*
 * Collect coprocessor and userspace coredumps
 */
static kern_return_t
kern_do_auxiliary_coredump(void * core_outvars, struct kern_coredump_core * list, uint64_t * last_file_offset, uint64_t details_flags)
{
	struct kern_coredump_core *current_core = list;
	uint64_t prev_core_length = 0;
	boolean_t header_update_failed = FALSE;
	kern_coredump_type_t type = current_core == kern_userspace_coredump_core_list ? USERSPACE_COREDUMP : COPROCESSOR_COREDUMP;
	kern_return_t ret = KERN_SUCCESS;
	kern_return_t cur_ret = KERN_SUCCESS;

	if (type == USERSPACE_COREDUMP && kdp_lck_mtx_lock_spin_is_acquired(&kern_userspace_coredump_core_list_lock)) {
		// Userspace coredump list was being modified at the time of the panic. Skip collecting userspace coredumps
		kern_coredump_log(NULL, "Skipping userspace coredump, coredump list is locked\n");
		return KERN_FAILURE;
	}

	while (current_core) {
		/* Seek to the beginning of the next file */
		cur_ret = kern_dump_seek_to_next_file(core_outvars, *last_file_offset);
		if (cur_ret != KERN_SUCCESS) {
			kern_coredump_log(NULL, "Failed to seek to beginning of next core\n");
			return KERN_FAILURE;
		}

		cur_ret = kern_coredump_routine(core_outvars, current_core, *last_file_offset, &prev_core_length, &header_update_failed, type, details_flags);
		if (cur_ret != KERN_SUCCESS) {
			// As long as we didn't fail while updating the header for the raw file, we should be able to try
			// to capture other corefiles.
			if (header_update_failed) {
				// The header may be in an inconsistent state, so bail now
				return KERN_FAILURE;
			} else {
				// Try to capture other corefiles even if one failed, update the overall return
				// status though
				prev_core_length = 0;
				ret = KERN_FAILURE;
			}
		}

		/* Calculate the offset of the beginning of the next core in the raw file */
		*last_file_offset = roundup(((*last_file_offset) + prev_core_length), KERN_COREDUMP_BEGIN_FILEBYTES_ALIGN);
		prev_core_length = 0;
		current_core = current_core->kcc_next;
	}

	return ret;
}

kern_return_t
kern_do_coredump(void *core_outvars, boolean_t kernel_only, uint64_t first_file_offset, uint64_t *last_file_offset, uint64_t details_flags)
{
	uint64_t prev_core_length = 0;
	kern_return_t cur_ret = KERN_SUCCESS, ret = KERN_SUCCESS;
	boolean_t header_update_failed = FALSE;

	assert(last_file_offset != NULL);


	*last_file_offset = first_file_offset;
	cur_ret = kern_coredump_routine(core_outvars, kernel_helper, *last_file_offset, &prev_core_length, &header_update_failed, XNU_COREDUMP, details_flags);


	if (cur_ret != KERN_SUCCESS) {
		// As long as we didn't fail while updating the header for the raw file, we should be able to try
		// to capture other corefiles.
		if (header_update_failed) {
			// The header may be in an inconsistent state, so bail now
			return KERN_FAILURE;
		} else {
			prev_core_length = 0;
			ret = KERN_FAILURE;
		}
	}

	*last_file_offset = roundup(((*last_file_offset) + prev_core_length), KERN_COREDUMP_BEGIN_FILEBYTES_ALIGN);

	if (kernel_only) {
		return ret;
	}

	/* Dump secure kernel if allowed */
	if (sk_helper) {
		/* Seek to the beginning of next file. */
		cur_ret = kern_dump_seek_to_next_file(core_outvars, *last_file_offset);
		if (cur_ret != KERN_SUCCESS) {
			kern_coredump_log(NULL, "secure_core: Unable to seek to the start of file: %d\n", cur_ret);
			return KERN_FAILURE;
		}

		/* Dump the secure core to disk. */
		cur_ret = kern_coredump_routine(core_outvars, sk_helper, *last_file_offset, &prev_core_length, &header_update_failed, SECURE_COREDUMP, details_flags);
		if (cur_ret != KERN_SUCCESS) {
			if (header_update_failed) {
				return KERN_FAILURE;
			} else {
				prev_core_length = 0;
				ret = KERN_FAILURE;
			}
		}

		*last_file_offset = roundup(((*last_file_offset) + prev_core_length), KERN_COREDUMP_BEGIN_FILEBYTES_ALIGN);
	}

	// Collect coprocessor coredumps first, in case userspace coredumps fail
	ret = kern_do_auxiliary_coredump(core_outvars, kern_coredump_core_list, last_file_offset, details_flags);
	if (ret != KERN_SUCCESS) {
		kern_coredump_log(NULL, "Failed to dump coprocessor cores\n");
		return ret;
	}

	ret = kern_do_auxiliary_coredump(core_outvars, kern_userspace_coredump_core_list, last_file_offset, details_flags);
	if (ret != KERN_SUCCESS) {
		kern_coredump_log(NULL, "Failed to dump userspace process cores\n");
		return ret;
	}

	return KERN_SUCCESS;
}
#else /* CONFIG_KDP_INTERACTIVE_DEBUGGING */

kern_return_t
kern_register_coredump_helper(int kern_coredump_config_vers, const kern_coredump_callback_config *kc_callbacks, void* refcon,
    const char *core_description, boolean_t is64bit, uint32_t mh_magic,
    cpu_type_t cpu_type, cpu_subtype_t cpu_subtype)
{
#pragma unused(kern_coredump_config_vers, kc_callbacks, refcon, core_description, is64bit, mh_magic, cpu_type, cpu_subtype)
	return KERN_NOT_SUPPORTED;
}

kern_return_t
kern_register_sk_coredump_helper(__unused kern_coredump_callback_config *sk_callbacks, __unused void *refcon)
{
	return KERN_NOT_SUPPORTED;
}

kern_return_t
kern_register_userspace_coredump(task_t task, const char * name)
{
	(void)task;
	(void)name;
	return KERN_NOT_SUPPORTED;
}

kern_return_t
kern_unregister_userspace_coredump(task_t task)
{
	(void)task;
	return KERN_NOT_SUPPORTED;
}
#endif /* CONFIG_KDP_INTERACTIVE_DEBUGGING */

/*
 * Must be callable with a NULL context
 */
void
kern_coredump_log(void *context, const char *string, ...)
{
#pragma unused(context)
	va_list coredump_log_args;

	va_start(coredump_log_args, string);
	_doprnt(string, &coredump_log_args, consdebug_putc, 16);
	va_end(coredump_log_args);

#if defined(__arm64__)
	paniclog_flush();
#endif
}