/*
* Copyright (c) 2000-2013 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
This file contains x86_64 hand optimized implementation of WKdm memory page compressor.
int WKdm_compress (WK_word* src_buf, WK_word* dest_buf, WK_word* scratch, unsigned int bytes_budget);
input :
src_buf : address of input page (length = 1024 words)
dest_buf : address of output buffer (may not be 16-byte aligned)
scratch : a 16-byte aligned 4k bytes scratch memory provided by the caller,
bytes_budget : a given byte target in compression
output :
if the input buffer can be compressed within the given byte budget, the dest_buf is written with compressed data and the function returns with number of bytes for the compressed data
o.w., the function returns -1 to signal that the input data can not be compressed with the given byte budget.
During the scan and tag process, each word that can not be compressed will be written to dest_buf, followed by a 12-bytes header + 256-bytes tag area.
When the functions returns -1, dest_buf is filled with all those words that can not be compressed and should be considered undefined.
The worst-case scenario is that all words can not be compressed. Hence, the minimum size requirement for dest_buf should be 12+256+4096 = 4364 bytes to prevent from memory fault.
The 4th argument bytes_budget is the target compress budget in bytes.
Should the input page can be compressed within the budget, the compressed data is written to *dest_buf, and the function returns the number of compressed bytes.
Otherwise, the function returns -1 (to signal to the caller that the page can not be compressed).
WKdm Compression algorithm is briefly stated as follows:
There is a dynamically updated dictionary consisting of 16 words. Each dictionary word is initialized to 1 at the point of entry to the function.
For a nonzero input word x, its 8-bits (10-bits scaled up) is used to determine a corresponding word from the dictionary, represented by dict_index (4-bits) and dict_word (32-bits).
a. k = (x>>10)&255; // 8-bit hash table index
b. dict_index = hashTable[k]; // 4-bit dictionary index, hashTable[] is fixed
c. dict_word = dictionary[dict_index]; // 32-bit dictionary word, dictionary[] is dynamically updated
Each input word x is classified/tagged into 4 classes :
0 : x = 0
1 : (x>>10) == (dict_word>>10), bits 10:31 of the input word match a dictionary word
2 : (x>>10) != (dict_word>>10), the above condition (22 higher bits matched) is not met, meaning a dictionary miss
3 : (x == dict_word), the exact input word is in the dictionary
For each class, different numbers of bits are needed for the decompressor to reproduce the original input word.
0 : 2-bits tag (32->2 compression)
1 : 2-bits tag + 4-bits dict_index + 10-bits lower bits (32->16 compression)
2 : 2-bits tag + 32-bits new word (32->34 expansion)
3 : 2-bits tag + 4-bits dict_index (32->6 compression)
It is obvious now that WKdm compress algorithm works well for pages where there are lots of zero words (32->2) and/or there are freqeunt repeats of some word patterns (32->6).
the output bit stream (*dest_buf) consists of
a. 12 bytes header
b. 256 bytes for 1024 packed tags
c. (varying number of) words for new words not matched to dictionary word.
d. (varying number of) 32-bit words for packed 4-bit dict_indices (for class 1 and 3)
e. (varying number of) 32-bit words for packed 10-bit low bits (for class 1)
the header is actually of 3 words that specify the ending offset (in 32-bit words) from the start of the bit stream of c,d,e, respectively.
Note that there might be padding bits in d (if the number of dict_indices does not divide by 8), and there are 2/12/22 padding bits for packing 3/2/1 low 10-bits in a 32-bit word.
The WKdm compress algorithm 1st runs a scan and classification pass, tagging and write unpacked data into temporary buffers. It follows by packing those data into the output buffer.
The temp buffers are
uint8_t tempTagsArray[1024]; // temporary saving for tags before final packing
uint8_t tempQPosArray[1024]; // temporary saving for dict_indices before final packing
uint16_t tempLowBitsArray[1024]; // temporary saving for partially matched lower 10 bits before final packing
Since the new words (that can not matched fully or partially to the dictionary) are stored right after the header and the tags section and need no packing, we directly write them to
the destination buffer.
uint32_t *new_word = dest_buf+3+64; // 3 words for header, 64 words for tags, new words come right after the tags.
Now since we are given a byte budget for this compressor, we can monitor the byte usage on the fly in the scanning and tagging pass.
bytes_budget -= 12 + 256; // header and tags (1024 * 2 /8 = 256 bytes)
whenever an input word is classified as class
2 : bytes_budget-=4; if (bytes_budget<=0) exit -1;
when writing the 8 4-bits/3 10-bits, monitor bytes_budget and exit -1 when byte_budget <=0;
without showing the bit budget management, the pseudo code is given as follows:
uint8_t *tags=tempTagsArray;
uint8_t *dict=tempQPosArray;
uint8_t *partial=tempLowBitsArray;
for (i=0;i<1024;i++) {
x = *src_buf++;
if (x == 0) { // zero, 2-bits tag
*tags++ = 0;
} else {
// find dict_index and dict_word from x
k = (x>>10)&255;
dict_index = hashTable[k];
dict_word = dictionary[dict_index];
if (dict_word == x) { // exactly match
// 2-bits tag + 4-bits table index
*tags++ = 3;
*dict++ = dict_index;
} else if (((x^dict_word)>>10)==0) { // 22 higher bits matched
// 2-bits tag + 4-bits table index + 10-bits lower partial
*tags++ = 1;
*dict++ = dict_index;
*partial++ = x &0x3ff;
dictionary[dict_index] = x;
} else { // not matched
// 2-bits tag + 32-bits new word
*tags++ = 2;
*new_word++ = x;
dictionary[dict_index] = x;
}
}
}
after this classification/tagging pass is completed, the 3 temp buffers are packed into the output *dest_buf:
1. 1024 tags are packed into 256 bytes right after the 12-bytes header
2. dictionary indices (4-bits each) are packed into are right after the new words section
3. 3 low 10-bits are packed into a 32-bit word, this is after the dictionary indices section.
cclee, 11/30/12
Added zero page, single value page, sparse page, early abort optimizations
rsrini, 09/14/14
*/
.text
.align 4,0x90
#define SV_RETURN $0 // return value when SV, ZV page is found
#define MZV_MAGIC $17185 // magic value used to identify MZV page encoding
#define CHKPT_BYTES 416 // for early aborts: checkpoint after processing this many bytes. Must be in range [4..4096]
#define CHKPT_TAG_BYTES (CHKPT_BYTES/16) // size of the tags for CHKPT_BYTES of data
#define CHKPT_SHRUNK_BYTES 426 // for early aborts: max size of compressed stream to allow further processing ..
// .. to disable early aborts, set CHKPT_SHRUNK_BYTES to 4096
#if CHKPT_BYTES > 4096
#error CHKPT_BYTES must be <= 4096
#endif
#if CHKPT_BYTES < 4
#error CHKPT_BYTES must be >= 4
#endif
.globl _WKdm_compress_new
_WKdm_compress_new:
pushq %rbp
movq %rsp, %rbp
pushq %r15
pushq %r14
pushq %r13
pushq %r12
pushq %rbx
subq $(48+64), %rsp
#define tempTagsArray 64(%rsp)
#define tempLowBitsArray 72(%rsp)
#define start_next_full_patt 80(%rsp)
#define start_next_input_word 88(%rsp)
#define byte_budget 96(%rsp)
#define start_next_qp tempQPosArray
#define start_next_low_bits tempLowBitsArray
#define next_tag %r8
#define next_input_word %rdi
#define end_of_input %r13
#define next_full_patt %rbx
#define dict_location %rcx
#define next_qp %r10
#define checkpoint %r11
#define dictionary %rsp
#define dest_buf %r12
#define hashTable %r14
#define tempQPosArray %r15
#define next_low_bits %rsi
#define byte_count %r9d
movq %rsi, %r12 // dest_buf
movq %rdx, tempTagsArray // &tempTagsArray[0]
movq %rdx, next_tag // next_tag always points to the one following the current tag
leaq 1024(%rdx), tempQPosArray // &tempQPosArray[0]
movq tempQPosArray, next_qp // next_qp
leaq CHKPT_BYTES(%rdi), checkpoint // checkpoint = src_buf + CHKPT_BYTES
leaq 4096(%rdi), end_of_input // end_of_input = src_buf + num_input_words
leaq 268(%rsi), %rbx // dest_buf + [TAGS_AREA_OFFSET + (num_input_words / 16)]*4
movl %ecx, byte_count
subl $(12+256), byte_count // header + tags
jle L_budgetExhausted
// NOTE: ALL THE DICTIONARY VALUES MUST BE INITIALIZED TO ZERO
// THIS IS NEEDED TO EFFICIENTLY DETECT SINGLE VALUE PAGES
// PRELOAD_DICTIONARY;
movl $0, 0(dictionary)
movl $0, 4(dictionary)
movl $0, 8(dictionary)
movl $0, 12(dictionary)
movl $0, 16(dictionary)
movl $0, 20(dictionary)
movl $0, 24(dictionary)
movl $0, 28(dictionary)
movl $0, 32(dictionary)
movl $0, 36(dictionary)
movl $0, 40(dictionary)
movl $0, 44(dictionary)
movl $0, 48(dictionary)
movl $0, 52(dictionary)
movl $0, 56(dictionary)
movl $0, 60(dictionary)
leaq 2048(%rdx), %rax // &tempLowBitsArray[0]
movq %rax, tempLowBitsArray // save for later reference
movq %rax, next_low_bits // next_low_bits
leaq _hashLookupTable_new(%rip), hashTable // hash look up table
movq next_full_patt, start_next_full_patt
movq next_input_word, start_next_input_word
movl %ecx, byte_budget // save the byte budget
jmp L_scan_loop
.align 4,0x90
L_RECORD_ZERO:
movb $0, -1(next_tag) // *next_tag = ZERO;
addq $4, next_input_word // next_input_word++;
cmpq next_input_word, checkpoint // checkpoint time?
je CHECKPOINT
L_scan_loop:
movl (next_input_word), %edx
incq next_tag // next_tag++
testl %edx, %edx
je L_RECORD_ZERO // if (input_word==0) RECORD_ZERO
movl %edx, %eax // a copy of input_word
shrl $10, %eax // input_high_bits = HIGH_BITS(input_word);
movzbl %al, %eax // 8-bit index to the Hash Table
movsbq (hashTable,%rax),%rax // HASH_TO_DICT_BYTE_OFFSET(input_word)
leaq (dictionary, %rax), dict_location // ((char*) dictionary) + HASH_TO_DICT_BYTE_OFFSET(input_word));
movl (dict_location), %eax // dict_word = *dict_location;
addq $4, next_input_word // next_input_word++
cmpl %eax, %edx // dict_word vs input_word
je L_RECORD_EXACT // if identical, RECORD_EXACT
xorl %edx, %eax
shrl $10, %eax // HIGH_BITS(dict_word)
je L_RECORD_PARTIAL // if identical, RECORD_PARTIAL
L_RECORD_MISS:
movl %edx, (next_full_patt) // *next_full_patt = input_word;
addq $4, next_full_patt // next_full_patt++
movl %edx, (dict_location) // *dict_location = input_word
movb $2, -1(next_tag) // *next_tag = 2 for miss
subl $4, byte_count // fill in a new 4-bytes word
jle L_budgetExhausted
cmpq next_input_word, checkpoint // checkpoint time?
jne L_scan_loop
jmp CHECKPOINT
L_done_search:
// SET_QPOS_AREA_START(dest_buf,next_full_patt);
movq next_full_patt, %rax // next_full_patt
subq dest_buf, %rax // next_full_patt - dest_buf
sarq $2, %rax // offset in 4-bytes
movl %eax, %r13d // r13d = (next_full_patt - dest_buf)
movl %eax, 0(dest_buf) // dest_buf[0] = next_full_patt - dest_buf
decq next_tag
cmpq next_tag, tempTagsArray // &tempTagsArray[0] vs next_tag
jae L13 // if (&tempTagsArray[0] >= next_tag), skip the following
// boundary_tmp = WK_pack_2bits(tempTagsArray, (WK_word *) next_tag, dest_buf + HEADER_SIZE_IN_WORDS);
movq dest_buf, %rdi // dest_buf
movq tempTagsArray, %rcx // &tempTagsArray[0]
.align 4,0x90
L_pack_2bits:
movq 8(%rcx), %rax // w3
addq $16, %rcx // tempTagsArray += 16;
shlq $4, %rax
addq $4, %rdi // dest_buf += 4;
orq -16(%rcx), %rax // w3
movq %rax, %rdx
shrq $30, %rax
orl %edx, %eax
cmpq %rcx, next_tag // cmp next_tag vs dest_buf
movl %eax, 8(%rdi) // save at *(dest_buf + HEADER_SIZE_IN_WORDS)
ja L_pack_2bits // if (next_tag > dest_buf) repeat L_pack_2bits
/* Pack the queue positions into the area just after the full words. */
L13:
mov next_qp, %rax // next_qp
sub tempQPosArray, %rax // num_bytes_to_pack = next_qp - (char *) tempQPosArray;
addl $7, %eax // num_bytes_to_pack+7
shrl $3, %eax // num_packed_words = (num_bytes_to_pack + 7) >> 3
shll $2, %eax // turn into bytes
subl %eax, byte_count //
jl L_budgetExhausted
shrl $1, %eax // num_source_words = num_packed_words * 2;
leaq (tempQPosArray,%rax,4), %rcx // endQPosArray = tempQPosArray + num_source_words
cmpq %rcx, next_qp // next_qp vs endQPosArray
jae L16 // if (next_qp >= endQPosArray) skip the following zero paddings
movq %rcx, %rax
subq next_qp, %rax
subl $4, %eax
jl 1f
.align 4,0x90
0: movl $0, (next_qp)
addq $4, next_qp
subl $4, %eax
jge 0b
1: testl $2, %eax
je 1f
movw $0, (next_qp)
addq $2, next_qp
1: testl $1, %eax
je 1f
movb $0, (next_qp)
addq $1, next_qp
1:
L16:
movq next_full_patt, %rdi // next_full_patt
cmpq tempQPosArray, %rcx // endQPosArray vs tempQPosArray
jbe L20 // if (endQPosArray <= tempQPosArray) skip the following
movq tempQPosArray, %rdx // tempQPosArray
/* byte_count -= (rcx - tempQPosArray)/2 */
.align 4,0x90
L_pack_4bits:
movl 4(%rdx), %eax // src_next[1]
addq $8, %rdx // src_next += 2;
sall $4, %eax // (src_next[1] << 4)
addq $4, %rdi // dest_next++;
orl -8(%rdx), %eax // temp = src_next[0] | (src_next[1] << 4)
cmpq %rdx, %rcx // source_end vs src_next
movl %eax, -4(%rdi) // dest_next[0] = temp;
ja L_pack_4bits // while (src_next < source_end) repeat the loop
// SET_LOW_BITS_AREA_START(dest_buf,boundary_tmp);
movq %rdi, %rax // boundary_tmp
subq dest_buf, %rax // boundary_tmp - dest_buf
movq %rax, %r13 // boundary_tmp - dest_buf
shrq $2, %r13 // boundary_tmp - dest_buf in words
L20:
movl %r13d, 4(dest_buf) // dest_buf[1] = boundary_tmp - dest_buf
movq tempLowBitsArray, %rcx // tempLowBitsArray
movq next_low_bits, %rbx // next_low_bits
subq %rcx, %rbx // next_low_bits - tempLowBitsArray (in bytes)
sarq $1, %rbx // num_tenbits_to_pack (in half-words)
#define size %ebx
subl $3, size // pre-decrement num_tenbits_to_pack by 3
jl 1f // if num_tenbits_to_pack < 3, skip the following loop
.align 4,0x90
0:
movzwl 4(%rcx), %eax // w2
addq $6, %rcx // next w0/w1/w2 triplet
sall $10, %eax // w1 << 10
or -4(%rcx), %ax // w1
addq $4, %rdi // dest_buf++
sall $10, %eax // w1 << 10
or -6(%rcx), %ax // (w0) | (w1<<10) | (w2<<20)
subl $4, byte_count // fill in a new 4-bytes word
jle L_budgetExhausted
subl $3, size // num_tenbits_to_pack-=3
movl %eax, -4(%rdi) // pack w0,w1,w2 into 1 dest_buf word
jge 0b // if no less than 3 elements, back to loop head
1: addl $3, size // post-increment num_tenbits_to_pack by 3
je 3f // if num_tenbits_to_pack is a multiple of 3, skip the following
movzwl (%rcx), %eax // w0
subl $1, size // num_tenbits_to_pack--
je 2f //
movzwl 2(%rcx), %edx // w1
sall $10, %edx // w1 << 10
orl %edx, %eax // w0 | (w1<<10)
2:
subl $4, byte_count // fill in a new 4-bytes word
jle L_budgetExhausted
movl %eax, (%rdi) // write the final dest_buf word
addq $4, %rdi // dest_buf++
3: movq %rdi, %rax // boundary_tmp
subq dest_buf, %rax // boundary_tmp - dest_buf
shrq $2, %rax // boundary_tmp - dest_buf in terms of words
movl %eax, 8(dest_buf) // SET_LOW_BITS_AREA_END(dest_buf,boundary_tmp)
shlq $2, %rax // boundary_tmp - dest_buf in terms of bytes
L_done:
// restore registers and return
addq $(48+64), %rsp
popq %rbx
popq %r12
popq %r13
popq %r14
popq %r15
leave
ret
.align 4
L_budgetExhausted:
mov $-1, %rax
jmp L_done
.align 4,0x90
L_RECORD_EXACT:
subq dictionary, %rcx // dict_location - dictionary
sarq $2, %rcx // divide by 4 for word offset
movb $3, -1(next_tag) // *next_tag = 3 for exact
movb %cl, (next_qp) // *next_qp = word offset (4-bit)
incq next_qp // next_qp++
cmpq next_input_word, checkpoint // checkpoint time?
jne L_scan_loop
jmp CHECKPOINT
.align 4,0x90
L_RECORD_PARTIAL:
movq %rcx, %rax // dict_location
movb $1, -1(next_tag) // *next_tag = 1 for partial matched
subq dictionary, %rax // dict_location - dictionary
movl %edx, (%rcx) // *dict_location = input_word;
sarq $2, %rax // offset in 32-bit word
movb %al, (next_qp) // update *next_qp
andl $1023, %edx // lower 10 bits
incq next_qp // next_qp++
mov %dx, (next_low_bits) // save next_low_bits
addq $2, next_low_bits // next_low_bits++
cmpq next_input_word, checkpoint // checkpoint time?
jne L_scan_loop
CHECKPOINT:
cmpq end_of_input, checkpoint // end of buffer or compression ratio check?
jne L_check_compression_ratio
L_check_zero_page:
// check if any dictionary misses in page
cmpq start_next_full_patt, next_full_patt
jne L_check_single_value_page
cmpq start_next_qp, next_qp // check if any partial or exact dictionary matches
jne L_check_single_value_page
mov SV_RETURN, %rax // Magic return value
jmp L_done
L_check_single_value_page:
movq next_full_patt, %rax // get # dictionary misses
subq start_next_full_patt, %rax
shrq $2, %rax
movq next_qp, %r11 // get # dictionary hits (exact + partial)
subq start_next_qp, %r11
movq next_low_bits, %r13 // get # dictionary partial hits
subq start_next_low_bits, %r13
shrq $1, %r13
movq tempTagsArray, %r14 // get the address of the first tag
// Single value page if one of the follwoing is true:
// partial == 0 AND hits == 1023 AND miss == 1 AND tag[0] == 2 (i.e. miss)
// partial == 1 AND hits == 1024 AND tag[0] == 1 (i.e. partial)
//
cmpq $0, %r13 // were there 0 partial hits?
jne 1f
cmpq $1023, %r11 // were there 1023 dictionary hits
jne 1f
cmpq $1, %rax // was there exacly 1 dictionary miss?
jne 1f
cmpb $2, 0(%r14) // was the very 1st tag a miss?
je L_is_single_value_page
1:
cmpq $1, %r13 // was there 1 partial hit?
jne L_check_mostly_zero
cmpq $1024, %r11 // were there 1024 dictionary hits
jne L_check_mostly_zero
cmpb $1, 0(%r14) // was the very 1st tag a partial?
jne L_check_mostly_zero
L_is_single_value_page:
mov SV_RETURN, %rax // Magic return value
jmp L_done
L_check_mostly_zero:
// how much space will the sparse packer take?
addq %r11, %rax // rax += (next_qp - start_next_qp)
movq $6, %rdx
mulq %rdx // rax *= 6 (i.e. 4 byte word + 2 byte offset)
addq $4, %rax // rax += 4 byte for header
movq %rax, %r11
// how much space will the defaut packer take?
movq next_low_bits, %rax
subq start_next_low_bits, %rax // get bytes consumed by lower-10 bits
movq $1365, %rdx
mulq %rdx
shrq $11, %rax // rax = 2/3*(next_low_bits - start_next_low_bits)
movq next_full_patt, %rdx
subq start_next_full_patt, %rdx // get bytes consumed by dictionary misses
addq %rdx, %rax // rax += (next_full_patt - start_next_full_patt)
movq next_qp, %rdx
subq start_next_qp, %rdx
shrq $1, %rdx // get bytes consumed by dictionary hits
addq %rdx, %rax // rax += (next_qp - start_next_qp)/2
addq $(12+256), %rax // rax += bytes taken by the header + tags
cmpq %r11, %rax // is default packer the better option?
jb L_done_search
cmpl byte_budget, %r11d // can the sparse packer fit into the given budget?
ja L_budgetExhausted
L_sparse_packer:
movl MZV_MAGIC, 0(dest_buf) // header to indicate a sparse packer
addq $4, dest_buf
movq $0, %rdx // rdx = byte offset in src of non-0 word
movq start_next_input_word, %r8
1:
movq 0(%r8, %rdx), %rax // rax = read dword
testq %rax, %rax // is dword == 0
jne 5f
3:
addq $8, %rdx // 8 more bytes have been processed
4:
cmpq $4096, %rdx
jne 1b
movq %r11, %rax // store the size of the compressed stream
jmp L_done
5:
testl %eax, %eax // is lower word == 0
je 6f
movl %eax, 0(dest_buf) // store the non-0 word in the dest buffer
mov %dx, 4(dest_buf) // store the byte index
addq $6, dest_buf
6:
shrq $32, %rax // get the upper word into position
testl %eax, %eax // is upper word == 0
je 3b
addq $4, %rdx
movl %eax, 0(dest_buf) // store the word in the dest buffer
mov %dx, 4(dest_buf) // store the byte index
addq $6, dest_buf
addq $4, %rdx
jmp 4b
L_check_compression_ratio:
movq end_of_input, checkpoint // checkpoint = end of buffer
movq next_low_bits, %rax
subq start_next_low_bits, %rax // get bytes consumed by lower-10 bits
movq $1365, %rdx
mulq %rdx
shrq $11, %rax // rax = 2/3*(next_low_bits - start_next_low_bits)
movq next_full_patt, %rdx
subq start_next_full_patt, %rdx // get bytes consumed by dictionary misses
addq %rdx, %rax // rax += (next_full_patt - start_next_full_patt)
movq next_qp, %rdx
subq start_next_qp, %rdx
shrq $1, %rdx
addq %rdx, %rax // rax += (next_qp - start_next_qp)/2
addq $CHKPT_TAG_BYTES, %rax // rax += bytes taken by the tags
cmpq $CHKPT_SHRUNK_BYTES, %rax
ja L_budgetExhausted // compressed size exceeds budget
jmp L_scan_loop