This is xnu-11215.1.10. See this file in:
#include <darwintest.h>
#include <darwintest_utils.h>
#include <stdio.h>
#include <assert.h>
#include <setjmp.h>
#include <os/tsd.h>
#define DEVELOPMENT 1
#define DEBUG 0
#define XNU_KERNEL_PRIVATE 1
#define OS_REFCNT_DEBUG 1
#define STRESS_TESTS 0
#define __zpercpu
#pragma clang diagnostic ignored "-Watomic-implicit-seq-cst"
#pragma clang diagnostic ignored "-Wc++98-compat"
__abortlike
void handle_panic(const char *func, char *str, ...);
#define panic(...) handle_panic(__func__, __VA_ARGS__)
#define ZPERCPU_STRIDE 128
static inline int
zpercpu_count(void)
{
static int n;
if (__improbable(n == 0)) {
n = dt_ncpu();
}
return n;
}
static inline void
thread_wakeup(void *event)
{
abort();
}
#define zalloc_percpu(zone, flags) \
(uint64_t _Atomic *)calloc((size_t)zpercpu_count(), ZPERCPU_STRIDE)
#define zfree_percpu(zone, ptr) \
free(ptr)
static inline uint64_t _Atomic *
zpercpu_get_cpu(uint64_t _Atomic *ptr, int cpu)
{
return (uint64_t _Atomic *)((uintptr_t)ptr + (uintptr_t)cpu * ZPERCPU_STRIDE);
}
#define zpercpu_get(ptr) zpercpu_get_cpu(ptr, 0)
#define zpercpu_foreach_cpu(cpu) \
for (int cpu = 0, __n = zpercpu_count(); cpu < __n; cpu++)
#define zpercpu_foreach(cpu) \
for (int cpu = 0, __n = zpercpu_count(); cpu < __n; cpu++)
#define cpu_number() (int)_os_cpu_number()
#include "../libkern/os/refcnt.h"
#include "../libkern/os/refcnt.c"
T_GLOBAL_META(T_META_RUN_CONCURRENTLY(true));
/* import some of the refcnt internal state for testing */
extern bool ref_debug_enable;
os_refgrp_decl_extern(global_ref_group);
T_GLOBAL_META(
T_META_NAMESPACE("os_refcnt"),
T_META_CHECK_LEAKS(false)
);
T_DECL(os_refcnt, "Basic atomic refcount")
{
struct os_refcnt rc;
os_ref_init(&rc, NULL);
T_ASSERT_EQ_UINT(os_ref_get_count(&rc), 1, "refcount correctly initialized");
os_ref_retain(&rc);
os_ref_retain(&rc);
T_ASSERT_EQ_UINT(os_ref_get_count(&rc), 3, "retain increased count");
os_ref_count_t x = os_ref_release(&rc);
T_ASSERT_EQ_UINT(os_ref_get_count(&rc), 2, "release decreased count");
T_ASSERT_EQ_UINT(x, 2, "release returned correct count");
os_ref_release_live(&rc);
T_ASSERT_EQ_UINT(os_ref_get_count(&rc), 1, "release_live decreased count");
x = os_ref_release(&rc);
T_ASSERT_EQ_UINT(os_ref_get_count(&rc), 0, "released");
T_ASSERT_EQ_UINT(x, 0, "returned released");
os_ref_init(&rc, NULL);
T_ASSERT_TRUE(os_ref_retain_try(&rc), "try retained");
(void)os_ref_release(&rc);
(void)os_ref_release(&rc);
T_QUIET; T_ASSERT_EQ_UINT(os_ref_get_count(&rc), 0, "release");
T_ASSERT_FALSE(os_ref_retain_try(&rc), "try failed");
}
T_DECL(os_pcpu_refcnt, "Basic atomic refcount")
{
dispatch_queue_t rq = dispatch_get_global_queue(QOS_CLASS_USER_INITIATED, 0);
dispatch_group_t g = dispatch_group_create();
os_pcpu_ref_t rc;
os_pcpu_ref_init(&rc, NULL);
T_ASSERT_EQ_UINT(os_pcpu_ref_count(rc), OS_REFCNT_MAX_COUNT,
"refcount correctly initialized");
dispatch_group_async(g, rq, ^{
os_pcpu_ref_retain(rc, NULL);
});
dispatch_group_async(g, rq, ^{
T_ASSERT_TRUE(os_pcpu_ref_retain_try(rc, NULL), "try succeeded");
});
dispatch_group_wait(g, DISPATCH_TIME_FOREVER);
T_ASSERT_EQ_UINT(os_pcpu_ref_count(rc), OS_REFCNT_MAX_COUNT,
"retain increased count");
T_ASSERT_EQ_UINT(os_pcpu_ref_kill(rc, NULL), 2,
"kill decreased count");
T_ASSERT_EQ_UINT(os_pcpu_ref_count(rc), 2,
"kill decreased count");
T_ASSERT_FALSE(os_pcpu_ref_retain_try(rc, NULL), "try failed");
os_pcpu_ref_release_live(rc, NULL);
T_ASSERT_EQ_UINT(os_pcpu_ref_count(rc), 1, "release_live decreased count");
T_ASSERT_EQ_UINT(os_pcpu_ref_release(rc, NULL), 0, "returned released");
T_ASSERT_EQ_UINT(os_pcpu_ref_count(rc), 0, "released");
os_pcpu_ref_destroy(&rc, NULL);
}
T_DECL(refcnt_raw, "Raw refcount")
{
os_ref_atomic_t rc;
os_ref_init_raw(&rc, NULL);
T_ASSERT_EQ_UINT(os_ref_get_count_raw(&rc), 1, "refcount correctly initialized");
os_ref_retain_raw(&rc, NULL);
os_ref_retain_raw(&rc, NULL);
T_ASSERT_EQ_UINT(os_ref_get_count_raw(&rc), 3, "retain increased count");
os_ref_count_t x = os_ref_release_raw(&rc, NULL);
T_ASSERT_EQ_UINT(os_ref_get_count_raw(&rc), 2, "release decreased count");
T_ASSERT_EQ_UINT(x, 2, "release returned correct count");
os_ref_release_live_raw(&rc, NULL);
T_ASSERT_EQ_UINT(os_ref_get_count_raw(&rc), 1, "release_live decreased count");
x = os_ref_release_raw(&rc, NULL);
T_ASSERT_EQ_UINT(os_ref_get_count_raw(&rc), 0, "released");
T_ASSERT_EQ_UINT(x, 0, "returned released");
os_ref_init_raw(&rc, NULL);
T_ASSERT_TRUE(os_ref_retain_try_raw(&rc, NULL), "try retained");
(void)os_ref_release_raw(&rc, NULL);
(void)os_ref_release_raw(&rc, NULL);
T_QUIET; T_ASSERT_EQ_UINT(os_ref_get_count_raw(&rc), 0, "release");
T_ASSERT_FALSE(os_ref_retain_try_raw(&rc, NULL), "try failed");
}
T_DECL(refcnt_locked, "Locked refcount")
{
struct os_refcnt rc;
os_ref_init(&rc, NULL);
os_ref_retain_locked(&rc);
os_ref_retain_locked(&rc);
T_ASSERT_EQ_UINT(os_ref_get_count(&rc), 3, "retain increased count");
os_ref_count_t x = os_ref_release_locked(&rc);
T_ASSERT_EQ_UINT(os_ref_get_count(&rc), 2, "release decreased count");
T_ASSERT_EQ_UINT(x, 2, "release returned correct count");
(void)os_ref_release_locked(&rc);
x = os_ref_release_locked(&rc);
T_ASSERT_EQ_UINT(os_ref_get_count(&rc), 0, "released");
T_ASSERT_EQ_UINT(x, 0, "returned released");
}
T_DECL(refcnt_raw_locked, "Locked raw refcount")
{
os_ref_atomic_t rc;
os_ref_init_raw(&rc, NULL);
os_ref_retain_locked_raw(&rc, NULL);
os_ref_retain_locked_raw(&rc, NULL);
T_ASSERT_EQ_UINT(os_ref_get_count_raw(&rc), 3, "retain increased count");
os_ref_count_t x = os_ref_release_locked_raw(&rc, NULL);
T_ASSERT_EQ_UINT(os_ref_get_count_raw(&rc), 2, "release decreased count");
T_ASSERT_EQ_UINT(x, 2, "release returned correct count");
(void)os_ref_release_locked_raw(&rc, NULL);
x = os_ref_release_locked_raw(&rc, NULL);
T_ASSERT_EQ_UINT(os_ref_get_count_raw(&rc), 0, "released");
T_ASSERT_EQ_UINT(x, 0, "returned released");
}
static void
do_bitwise_test(const os_ref_count_t bits)
{
os_ref_atomic_t rc;
os_ref_count_t reserved = 0xaaaaaaaaU & ((1U << bits) - 1);
T_LOG("do_bitwise_test(nbits:%d, reserved:%#x)", bits, reserved);
os_ref_init_count_mask(&rc, bits, NULL, 1, reserved);
T_ASSERT_EQ_UINT(os_ref_get_count_mask(&rc, bits), 1, "[%u bits] refcount initialized", bits);
os_ref_retain_mask(&rc, bits, NULL);
os_ref_retain_mask(&rc, bits, NULL);
T_ASSERT_EQ_UINT(os_ref_get_count_mask(&rc, bits), 3, "retain increased count");
os_ref_count_t x = os_ref_release_mask(&rc, bits, NULL);
T_ASSERT_EQ_UINT(x, 2, "release returned correct count");
os_ref_release_live_mask(&rc, bits, NULL);
T_ASSERT_EQ_UINT(os_ref_get_count_mask(&rc, bits), 1, "release_live decreased count");
x = os_ref_release_mask(&rc, bits, NULL);
T_ASSERT_EQ_UINT(os_ref_get_count_mask(&rc, bits), 0, "released");
T_ASSERT_EQ_UINT(x, 0, "returned released");
T_ASSERT_EQ_UINT(rc & ((1U << bits) - 1), reserved, "Reserved bits not modified");
os_ref_init_count_mask(&rc, bits, NULL, 1, reserved);
T_ASSERT_TRUE(os_ref_retain_try_mask(&rc, bits, 0, NULL), "try retained");
if (reserved) {
T_ASSERT_FALSE(os_ref_retain_try_mask(&rc, bits, reserved, NULL), "try reject");
}
(void)os_ref_release_mask(&rc, bits, NULL);
(void)os_ref_release_mask(&rc, bits, NULL);
T_QUIET; T_ASSERT_EQ_UINT(os_ref_get_count_mask(&rc, bits), 0, "release");
T_ASSERT_FALSE(os_ref_retain_try_mask(&rc, bits, 0, NULL), "try fail");
T_ASSERT_EQ_UINT(os_ref_get_bits_mask(&rc, bits), reserved, "Reserved bits not modified");
}
T_DECL(refcnt_bitwise, "Bitwise refcount")
{
do_bitwise_test(0);
do_bitwise_test(1);
do_bitwise_test(8);
do_bitwise_test(26);
os_ref_atomic_t rc = 0xaaaaaaaa;
const os_ref_count_t nbits = 3;
const os_ref_count_t count = 5;
const os_ref_count_t bits = 7;
os_ref_init_count_mask(&rc, nbits, NULL, count, bits);
os_ref_count_t mask = (1U << nbits) - 1;
T_ASSERT_EQ_UINT(rc & mask, bits, "bits correctly initialized");
T_ASSERT_EQ_UINT(rc >> nbits, count, "count correctly initialized");
}
os_refgrp_decl(static, g1, "test group", NULL);
os_refgrp_decl_extern(g1);
T_DECL(refcnt_groups, "Group accounting")
{
#if OS_REFCNT_DEBUG
ref_debug_enable = true;
struct os_refcnt rc;
os_ref_init(&rc, &g1);
T_ASSERT_EQ_UINT(g1.grp_children, 1, "group attached");
T_ASSERT_EQ_UINT(global_ref_group.grp_children, 1, "global group attached");
T_ASSERT_EQ_UINT(g1.grp_count, 1, "group count");
T_ASSERT_EQ_ULLONG(g1.grp_retain_total, 1ULL, "group retains");
T_ASSERT_EQ_ULLONG(g1.grp_release_total, 0ULL, "group releases");
os_ref_retain(&rc);
os_ref_retain(&rc);
os_ref_release_live(&rc);
os_ref_release_live(&rc);
T_EXPECT_EQ_ULLONG(g1.grp_retain_total, 3ULL, "group retains");
T_EXPECT_EQ_ULLONG(g1.grp_release_total, 2ULL, "group releases");
os_ref_count_t x = os_ref_release(&rc);
T_QUIET; T_ASSERT_EQ_UINT(x, 0, "released");
T_ASSERT_EQ_UINT(g1.grp_children, 0, "group detatched");
T_ASSERT_EQ_UINT(g1.grp_count, 0, "group count");
#else
T_SKIP("Refcount debugging disabled");
#endif
}
enum {
OSREF_UNDERFLOW = 1,
OSREF_OVERFLOW = 2,
OSREF_RETAIN = 3,
OSREF_DEALLOC_LIVE = 4,
};
static jmp_buf jb;
static bool expect_panic = false;
void
handle_panic(const char *func, char *__unused str, ...)
{
int ret = -1;
if (!expect_panic) {
T_FAIL("unexpected panic from %s", func);
T_LOG("corrupt program state, aborting");
abort();
}
expect_panic = false;
if (strcmp(func, "os_ref_panic_underflow") == 0) {
ret = OSREF_UNDERFLOW;
} else if (strcmp(func, "os_ref_panic_overflow") == 0) {
ret = OSREF_OVERFLOW;
} else if (strcmp(func, "os_ref_panic_retain") == 0) {
ret = OSREF_RETAIN;
} else if (strcmp(func, "os_ref_panic_live") == 0) {
ret = OSREF_DEALLOC_LIVE;
} else {
T_LOG("unexpected panic from %s", func);
}
longjmp(jb, ret);
}
T_DECL(refcnt_underflow, "Underflow")
{
os_ref_atomic_t rc;
os_ref_init_raw(&rc, NULL);
(void)os_ref_release_raw(&rc, NULL);
int x = setjmp(jb);
if (x == 0) {
expect_panic = true;
(void)os_ref_release_raw(&rc, NULL);
T_FAIL("underflow not caught");
} else {
T_ASSERT_EQ_INT(x, OSREF_UNDERFLOW, "underflow caught");
}
}
T_DECL(refcnt_overflow, "Overflow")
{
os_ref_atomic_t rc;
os_ref_init_count_raw(&rc, NULL, 0x0fffffffU);
int x = setjmp(jb);
if (x == 0) {
expect_panic = true;
(void)os_ref_retain_raw(&rc, NULL);
T_FAIL("overflow not caught");
} else {
T_ASSERT_EQ_INT(x, OSREF_RETAIN, "overflow caught");
}
}
T_DECL(refcnt_resurrection, "Resurrection")
{
os_ref_atomic_t rc;
os_ref_init_raw(&rc, NULL);
os_ref_count_t n = os_ref_release_raw(&rc, NULL);
T_QUIET; T_EXPECT_EQ_UINT(n, 0, "reference not released");
int x = setjmp(jb);
if (x == 0) {
expect_panic = true;
(void)os_ref_retain_raw(&rc, NULL);
T_FAIL("resurrection not caught");
} else {
T_ASSERT_EQ_INT(x, OSREF_RETAIN, "resurrection caught");
}
}
T_DECL(refcnt_dealloc_live, "Dealloc expected live object")
{
os_ref_atomic_t rc;
os_ref_init_raw(&rc, NULL);
expect_panic = true;
int x = setjmp(jb);
if (x == 0) {
expect_panic = true;
os_ref_release_live_raw(&rc, NULL);
T_FAIL("dealloc live not caught");
} else {
T_ASSERT_EQ_INT(x, OSREF_DEALLOC_LIVE, "dealloc live caught");
}
}
T_DECL(refcnt_initializer, "Static intializers")
{
struct os_refcnt rc = OS_REF_INITIALIZER;
os_ref_atomic_t rca = OS_REF_ATOMIC_INITIALIZER;
T_ASSERT_EQ_INT(0, os_ref_retain_try(&rc), NULL);
T_ASSERT_EQ_INT(0, os_ref_get_count_raw(&rca), NULL);
}
#if STRESS_TESTS
static unsigned pcpu_perf_step = 0;
static void
worker_ref(os_ref_atomic_t *rc, unsigned long *count)
{
unsigned long n = 0;
while (os_atomic_load(&pcpu_perf_step, relaxed) == 0) {
}
while (os_atomic_load(&pcpu_perf_step, relaxed) == 1) {
os_ref_retain_raw(rc, NULL);
os_ref_release_live_raw(rc, NULL);
n++;
}
os_atomic_add(count, n, relaxed);
}
static void
worker_pcpu_ref(os_pcpu_ref_t rc, unsigned long *count)
{
unsigned long n = 0;
while (os_atomic_load(&pcpu_perf_step, relaxed) == 0) {
}
while (os_atomic_load(&pcpu_perf_step, relaxed) == 1) {
os_pcpu_ref_retain(rc, NULL);
os_pcpu_ref_release_live(rc, NULL);
n++;
}
os_atomic_add(count, n, relaxed);
}
#define PCPU_BENCH_LEN 2
static void
warmup_thread_pool(dispatch_group_t g, dispatch_queue_t rq)
{
os_atomic_store(&pcpu_perf_step, 1, relaxed);
zpercpu_foreach_cpu(cpu) {
dispatch_group_async(g, rq, ^{
while (os_atomic_load(&pcpu_perf_step, relaxed) == 1) {
}
});
}
os_atomic_store(&pcpu_perf_step, 0, relaxed);
dispatch_group_wait(g, DISPATCH_TIME_FOREVER);
}
T_DECL(pcpu_perf, "Performance per-cpu")
{
os_ref_atomic_t rc;
os_pcpu_ref_t prc;
__block unsigned long count = 0;
double scale = PCPU_BENCH_LEN * 1e6;
dispatch_queue_t rq = dispatch_get_global_queue(QOS_CLASS_USER_INITIATED, 0);
dispatch_group_t g = dispatch_group_create();
os_ref_init_raw(&rc, NULL);
os_pcpu_ref_init(&prc, NULL);
T_LOG("uncontended benchmark");
dispatch_group_async(g, rq, ^{
worker_ref(&rc, &count);
});
count = 0;
os_atomic_store(&pcpu_perf_step, 1, relaxed);
sleep(PCPU_BENCH_LEN);
os_atomic_store(&pcpu_perf_step, 0, relaxed);
dispatch_group_wait(g, DISPATCH_TIME_FOREVER);
T_PASS("%.2fM rounds per thread per second (atomic)", count / scale);
dispatch_group_async(g, rq, ^{
worker_pcpu_ref(prc, &count);
});
count = 0;
os_atomic_store(&pcpu_perf_step, 1, relaxed);
sleep(PCPU_BENCH_LEN);
os_atomic_store(&pcpu_perf_step, 0, relaxed);
dispatch_group_wait(g, DISPATCH_TIME_FOREVER);
T_PASS("%.2fM rounds per thread per second (pcpu)", count / scale);
T_LOG("contended benchmark");
warmup_thread_pool(g, rq);
zpercpu_foreach_cpu(cpu) {
dispatch_group_async(g, rq, ^{
worker_ref(&rc, &count);
});
}
count = 0;
os_atomic_store(&pcpu_perf_step, 1, relaxed);
sleep(PCPU_BENCH_LEN);
os_atomic_store(&pcpu_perf_step, 0, relaxed);
dispatch_group_wait(g, DISPATCH_TIME_FOREVER);
T_PASS("%.2fM rounds per thread per second (atomic)", count / (zpercpu_count() * scale));
warmup_thread_pool(g, rq);
zpercpu_foreach_cpu(cpu) {
dispatch_group_async(g, rq, ^{
worker_pcpu_ref(prc, &count);
});
}
count = 0;
os_atomic_store(&pcpu_perf_step, 1, relaxed);
sleep(PCPU_BENCH_LEN);
os_atomic_store(&pcpu_perf_step, 0, relaxed);
dispatch_group_wait(g, DISPATCH_TIME_FOREVER);
T_PASS("%.2fM rounds per thread per second (pcpu)", count / (zpercpu_count() * scale));
(void)os_pcpu_ref_kill(prc, NULL);
os_pcpu_ref_destroy(&prc, NULL);
}
static const unsigned long iters = 1024 * 1024 * 32;
static void *
func(void *_rc)
{
struct os_refcnt *rc = _rc;
for (unsigned long i = 0; i < iters; i++) {
os_ref_retain(rc);
os_ref_release_live(rc);
}
return NULL;
}
T_DECL(refcnt_stress, "Stress test")
{
pthread_t th1, th2;
struct os_refcnt rc;
os_ref_init(&rc, NULL);
T_ASSERT_POSIX_ZERO(pthread_create(&th1, NULL, func, &rc), "pthread_create");
T_ASSERT_POSIX_ZERO(pthread_create(&th2, NULL, func, &rc), "pthread_create");
void *r1, *r2;
T_ASSERT_POSIX_ZERO(pthread_join(th1, &r1), "pthread_join");
T_ASSERT_POSIX_ZERO(pthread_join(th2, &r2), "pthread_join");
os_ref_count_t x = os_ref_release(&rc);
T_ASSERT_EQ_INT(x, 0, "Consistent refcount");
}
#endif