This is xnu-11215.1.10. See this file in:
#include <darwintest.h>
#include <darwintest_utils.h>
#include <errno.h>
#include <mach/mach.h>
#include <mach/mach_error.h>
#include <mach/policy.h>
#include <mach/task_info.h>
#include <mach/thread_info.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/sysctl.h>
#include <unistd.h>
#include "test_utils.h"
T_GLOBAL_META(T_META_RUN_CONCURRENTLY(true), T_META_TAG_VM_PREFERRED);
/* *************************************************************************************
* Test the task_info API.
*
* This is a functional test of the following APIs:
* TASK_BASIC_INFO_32
* TASK_BASIC2_INFO_32
* TASK_BASIC_INFO_64
* TASK_BASIC_INFO_64_2
* TASK_POWER_INFO_V2
* TASK_FLAGS_INFO
* TASK_AFFINITY_TAG_INFO
* TASK_THREAD_TIMES_INFO
* TASK_ABSOLUTE_TIME_INFO
* <rdar://problem/22242021> Add tests to increase code coverage for the task_info API
* *************************************************************************************
*/
#define TESTPHYSFOOTPRINTVAL 5
#define CANARY 0x0f0f0f0f0f0f0f0fULL
#if !defined(CONFIG_EMBEDDED)
#define ABSOLUTE_MIN_USER_TIME_DIFF 150
#define ABSOLUTE_MIN_SYSTEM_TIME_DIFF 300
#endif
enum info_kind { INFO_32, INFO_64, INFO_32_2, INFO_64_2, INFO_MACH, INFO_MAX };
enum info_get { GET_SUSPEND_COUNT, GET_RESIDENT_SIZE, GET_VIRTUAL_SIZE, GET_USER_TIME, GET_SYS_TIME, GET_POLICY, GET_MAX_RES };
/*
* This function uses CPU cycles by doing a factorial computation.
*/
static void do_factorial_task(void);
void test_task_basic_info_32(void);
void test_task_basic_info_64(void);
void task_basic_info_32_debug(void);
void task_basic2_info_32_warmup(void);
void test_task_basic_info(enum info_kind kind);
uint64_t info_get(enum info_kind kind, enum info_get get, void * data);
T_DECL(task_vm_info, "tests task vm info", T_META_ASROOT(true), T_META_LTEPHASE(LTE_POSTINIT))
{
kern_return_t err;
task_vm_info_data_t vm_info;
mach_msg_type_number_t count = TASK_VM_INFO_COUNT;
err = task_info(mach_task_self(), TASK_VM_INFO_PURGEABLE, (task_info_t)&vm_info, &count);
T_ASSERT_MACH_SUCCESS(err, "verify task_info call succeeded");
T_EXPECT_NE(vm_info.virtual_size, 0ULL, "task_info return value !=0 for virtual_size\n");
T_EXPECT_NE(vm_info.phys_footprint, 0ULL, "task_info return value !=0 for phys_footprint\n");
/*
* Test the REV0 version of TASK_VM_INFO. It should not change the value of phys_footprint.
*/
count = TASK_VM_INFO_REV0_COUNT;
vm_info.phys_footprint = TESTPHYSFOOTPRINTVAL;
vm_info.min_address = CANARY;
vm_info.max_address = CANARY;
err = task_info(mach_task_self(), TASK_VM_INFO_PURGEABLE, (task_info_t)&vm_info, &count);
T_ASSERT_MACH_SUCCESS(err, "verify task_info call succeeded");
T_EXPECT_EQ(count, TASK_VM_INFO_REV0_COUNT, "task_info count(%d) is equal to TASK_VM_INFO_REV0_COUNT", count);
T_EXPECT_NE(vm_info.virtual_size, 0ULL, "task_info --rev0 call does not return 0 for virtual_size");
T_EXPECT_EQ(vm_info.phys_footprint, (unsigned long long)TESTPHYSFOOTPRINTVAL,
"task_info --rev0 call returned value %llu for vm_info.phys_footprint. Expected %u since this value should not be "
"modified by rev0",
vm_info.phys_footprint, TESTPHYSFOOTPRINTVAL);
T_EXPECT_EQ(vm_info.min_address, CANARY,
"task_info --rev0 call returned value 0x%llx for vm_info.min_address. Expected 0x%llx since this value should not "
"be modified by rev0",
vm_info.min_address, CANARY);
T_EXPECT_EQ(vm_info.max_address, CANARY,
"task_info --rev0 call returned value 0x%llx for vm_info.max_address. Expected 0x%llx since this value should not "
"be modified by rev0",
vm_info.max_address, CANARY);
/*
* Test the REV1 version of TASK_VM_INFO.
*/
count = TASK_VM_INFO_REV1_COUNT;
vm_info.phys_footprint = TESTPHYSFOOTPRINTVAL;
vm_info.min_address = CANARY;
vm_info.max_address = CANARY;
err = task_info(mach_task_self(), TASK_VM_INFO_PURGEABLE, (task_info_t)&vm_info, &count);
T_ASSERT_MACH_SUCCESS(err, "verify task_info call succeeded");
T_EXPECT_EQ(count, TASK_VM_INFO_REV1_COUNT, "task_info count(%d) is equal to TASK_VM_INFO_REV1_COUNT", count);
T_EXPECT_NE(vm_info.virtual_size, 0ULL, "task_info --rev1 call does not return 0 for virtual_size");
T_EXPECT_NE(vm_info.phys_footprint, (unsigned long long)TESTPHYSFOOTPRINTVAL,
"task_info --rev1 call returned value %llu for vm_info.phys_footprint. Expected value is anything other than %u "
"since this value should not be modified by rev1",
vm_info.phys_footprint, TESTPHYSFOOTPRINTVAL);
T_EXPECT_EQ(vm_info.min_address, CANARY,
"task_info --rev1 call returned value 0x%llx for vm_info.min_address. Expected 0x%llx since this value should not "
"be modified by rev1",
vm_info.min_address, CANARY);
T_EXPECT_EQ(vm_info.max_address, CANARY,
"task_info --rev1 call returned value 0x%llx for vm_info.max_address. Expected 0x%llx since this value should not "
"be modified by rev1",
vm_info.max_address, CANARY);
/*
* Test the REV2 version of TASK_VM_INFO.
*/
count = TASK_VM_INFO_REV2_COUNT;
vm_info.phys_footprint = TESTPHYSFOOTPRINTVAL;
vm_info.min_address = CANARY;
vm_info.max_address = CANARY;
err = task_info(mach_task_self(), TASK_VM_INFO_PURGEABLE, (task_info_t)&vm_info, &count);
T_ASSERT_MACH_SUCCESS(err, "verify task_info call succeeded");
T_EXPECT_EQ(count, TASK_VM_INFO_REV2_COUNT, "task_info count(%d) is equal to TASK_VM_INFO_REV2_COUNT\n", count);
T_EXPECT_NE(vm_info.virtual_size, 0ULL, "task_info --rev2 call does not return 0 for virtual_size\n");
T_EXPECT_NE(vm_info.phys_footprint, (unsigned long long)TESTPHYSFOOTPRINTVAL,
"task_info --rev2 call returned value %llu for vm_info.phys_footprint. Expected anything other than %u since this "
"value should be modified by rev2",
vm_info.phys_footprint, TESTPHYSFOOTPRINTVAL);
T_EXPECT_NE(vm_info.min_address, CANARY,
"task_info --rev2 call returned value 0x%llx for vm_info.min_address. Expected anything other than 0x%llx since "
"this value should be modified by rev2",
vm_info.min_address, CANARY);
T_EXPECT_NE(vm_info.max_address, CANARY,
"task_info --rev2 call returned value 0x%llx for vm_info.max_address. Expected anything other than 0x%llx since "
"this value should be modified by rev2",
vm_info.max_address, CANARY);
/*
* Test the REV4 version of TASK_VM_INFO.
*/
count = TASK_VM_INFO_REV4_COUNT;
vm_info.phys_footprint = TESTPHYSFOOTPRINTVAL;
vm_info.min_address = CANARY;
vm_info.max_address = CANARY;
vm_info.limit_bytes_remaining = CANARY;
err = task_info(mach_task_self(), TASK_VM_INFO_PURGEABLE, (task_info_t)&vm_info, &count);
T_ASSERT_MACH_SUCCESS(err, "verify task_info call succeeded");
T_EXPECT_EQ(count, TASK_VM_INFO_REV4_COUNT, "task_info count(%d) is equal to TASK_VM_INFO_REV4_COUNT\n", count);
T_EXPECT_NE(vm_info.phys_footprint, (unsigned long long)TESTPHYSFOOTPRINTVAL,
"task_info --rev4 call returned value %llu for vm_info.phys_footprint. Expected anything other than %u since this "
"value should be modified by rev4",
vm_info.phys_footprint, TESTPHYSFOOTPRINTVAL);
T_EXPECT_NE(vm_info.min_address, CANARY,
"task_info --rev4 call returned value 0x%llx for vm_info.min_address. Expected anything other than 0x%llx since "
"this value should be modified by rev4",
vm_info.min_address, CANARY);
T_EXPECT_NE(vm_info.max_address, CANARY,
"task_info --rev4 call returned value 0x%llx for vm_info.max_address. Expected anything other than 0x%llx since "
"this value should be modified by rev4",
vm_info.max_address, CANARY);
T_EXPECT_NE(vm_info.limit_bytes_remaining, CANARY,
"task_info --rev4 call returned value 0x%llx for vm_info.limit_bytes_remaining. Expected anything other than 0x%llx since "
"this value should be modified by rev4",
vm_info.limit_bytes_remaining, CANARY);
}
T_DECL(host_debug_info, "tests host debug info", T_META_ASROOT(true), T_META_LTEPHASE(LTE_POSTINIT))
{
T_SETUPBEGIN;
int is_dev = is_development_kernel();
T_QUIET;
T_ASSERT_TRUE(is_dev, "verify development kernel is running");
T_SETUPEND;
kern_return_t err;
mach_port_t host;
host_debug_info_internal_data_t debug_info;
mach_msg_type_number_t count = HOST_DEBUG_INFO_INTERNAL_COUNT;
host = mach_host_self();
err = host_info(host, HOST_DEBUG_INFO_INTERNAL, (host_info_t)&debug_info, &count);
T_ASSERT_MACH_SUCCESS(err, "verify host_info call succeeded");
}
T_DECL(task_debug_info, "tests task debug info", T_META_ASROOT(true), T_META_LTEPHASE(LTE_POSTINIT))
{
T_SETUPBEGIN;
int is_dev = is_development_kernel();
T_QUIET;
T_ASSERT_TRUE(is_dev, "verify development kernel is running");
T_SETUPEND;
kern_return_t err;
task_debug_info_internal_data_t debug_info;
mach_msg_type_number_t count = TASK_DEBUG_INFO_INTERNAL_COUNT;
err = task_info(mach_task_self(), TASK_DEBUG_INFO_INTERNAL, (task_info_t)&debug_info, &count);
T_ASSERT_MACH_SUCCESS(err, "verify task_info call succeeded");
}
T_DECL(thread_debug_info, "tests thread debug info", T_META_ASROOT(true), T_META_LTEPHASE(LTE_POSTINIT))
{
T_SETUPBEGIN;
int is_dev = is_development_kernel();
T_QUIET;
T_ASSERT_TRUE(is_dev, "verify development kernel is running");
T_SETUPEND;
kern_return_t err;
thread_debug_info_internal_data_t debug_info;
mach_msg_type_number_t count = THREAD_DEBUG_INFO_INTERNAL_COUNT;
err = thread_info(mach_thread_self(), THREAD_DEBUG_INFO_INTERNAL, (thread_info_t)&debug_info, &count);
T_ASSERT_MACH_SUCCESS(err, "verify task_info call succeeded");
}
static void
do_factorial_task()
{
int number = 20;
int factorial = 1;
int i;
for (i = 1; i <= number; i++) {
factorial *= i;
}
return;
}
T_DECL(task_thread_times_info, "tests task thread times info", T_META_ASROOT(true), T_META_LTEPHASE(LTE_POSTINIT))
{
T_SETUPBEGIN;
int is_dev = is_development_kernel();
T_QUIET;
T_ASSERT_TRUE(is_dev, "verify development kernel is running");
T_SETUPEND;
kern_return_t err;
task_thread_times_info_data_t thread_times_info_data;
task_thread_times_info_data_t thread_times_info_data_new;
mach_msg_type_number_t count = TASK_THREAD_TIMES_INFO_COUNT;
err = task_info(mach_task_self(), TASK_THREAD_TIMES_INFO, (task_info_t)&thread_times_info_data, &count);
T_ASSERT_MACH_SUCCESS(err, "verify task_info call succeeded");
do_factorial_task();
err = task_info(mach_task_self(), TASK_THREAD_TIMES_INFO, (task_info_t)&thread_times_info_data_new, &count);
T_ASSERT_MACH_SUCCESS(err, "verify task_info call succeeded");
/*
* The difference is observed to be less than 30 microseconds for user_time
* and less than 50 microseconds for system_time. This observation was done for over
* 1000 runs.
*/
T_EXPECT_FALSE((thread_times_info_data_new.user_time.seconds - thread_times_info_data.user_time.seconds) != 0 ||
(thread_times_info_data_new.system_time.seconds - thread_times_info_data.system_time.seconds) != 0,
"Tests whether the difference between thread times is greater than the allowed limit");
/*
* This is a negative case.
*/
count--;
err = task_info(mach_task_self(), TASK_THREAD_TIMES_INFO, (task_info_t)&thread_times_info_data, &count);
T_ASSERT_MACH_ERROR(err, KERN_INVALID_ARGUMENT,
"Negative test case: task_info should verify that count is at least equal to what is defined in API.");
}
T_DECL(task_absolutetime_info, "tests task absolute time info", T_META_ASROOT(true), T_META_LTEPHASE(LTE_POSTINIT))
{
T_SETUPBEGIN;
int is_dev = is_development_kernel();
T_QUIET;
T_ASSERT_TRUE(is_dev, "verify development kernel is running");
T_SETUPEND;
kern_return_t err;
uint64_t user_time_diff, system_time_diff;
task_absolutetime_info_data_t absolute_time_info_data;
task_absolutetime_info_data_t absolute_time_info_data_new;
mach_msg_type_number_t count = TASK_ABSOLUTETIME_INFO_COUNT;
err = task_info(mach_task_self(), TASK_ABSOLUTETIME_INFO, (task_info_t)&absolute_time_info_data, &count);
T_ASSERT_MACH_SUCCESS(err, "verify task_info call succeeded");
do_factorial_task();
err = task_info(mach_task_self(), TASK_ABSOLUTETIME_INFO, (task_info_t)&absolute_time_info_data_new, &count);
T_ASSERT_MACH_SUCCESS(err, "verify task_info call succeeded");
user_time_diff = absolute_time_info_data_new.total_user - absolute_time_info_data.total_user;
system_time_diff = absolute_time_info_data_new.total_system - absolute_time_info_data.total_system;
#if !defined(__arm64__)
/*
* On embedded devices the difference is always zero.
* On non-embedded devices the difference occurs in this range. This was observed over ~10000 runs.
*/
T_EXPECT_FALSE(user_time_diff < ABSOLUTE_MIN_USER_TIME_DIFF || system_time_diff < ABSOLUTE_MIN_SYSTEM_TIME_DIFF,
"Tests whether the difference between thread times is greater than the expected range");
#endif
if (absolute_time_info_data.threads_user <= 0) {
int precise_time_val = 0;
size_t len = sizeof(size_t);
T_LOG("User threads time is zero. This should only happen rarely and when precise_user_time is off");
err = sysctlbyname("kern.precise_user_kernel_time", &precise_time_val, &len, NULL, 0);
T_EXPECT_POSIX_SUCCESS(err, "performing sysctl to check precise_user_time");
T_LOG("kern.precise_user_kernel_time val = %d", precise_time_val);
T_EXPECT_FALSE(precise_time_val, "user thread time should only be zero when precise_user_kernel_time is disabled");
} else {
T_PASS("task_info should return non-zero value for user threads time = %llu", absolute_time_info_data.threads_user);
}
#if !defined(__arm64__)
/*
* On iOS, system threads are always zero. On OS X this value can be some large positive number.
* There is no real way to estimate the exact amount.
*/
T_EXPECT_NE(absolute_time_info_data.threads_system, 0ULL,
"task_info should return non-zero value for system threads time = %llu", absolute_time_info_data.threads_system);
#endif
/*
* This is a negative case.
*/
count--;
err = task_info(mach_task_self(), TASK_ABSOLUTETIME_INFO, (task_info_t)&absolute_time_info_data_new, &count);
T_ASSERT_MACH_ERROR(err, KERN_INVALID_ARGUMENT,
"Negative test case: task_info should verify that count is at least equal to what is defined in API.");
}
T_DECL(task_affinity_tag_info, "tests task_affinity_tag_info", T_META_ASROOT(true), T_META_LTEPHASE(LTE_POSTINIT))
{
T_SETUPBEGIN;
int is_dev = is_development_kernel();
T_QUIET;
T_ASSERT_TRUE(is_dev, "verify development kernel is running");
T_SETUPEND;
kern_return_t err;
task_affinity_tag_info_data_t affinity_tag_info_data;
mach_msg_type_number_t count = TASK_AFFINITY_TAG_INFO_COUNT;
err = task_info(mach_task_self(), TASK_AFFINITY_TAG_INFO, (task_info_t)&affinity_tag_info_data, &count);
T_ASSERT_MACH_SUCCESS(err, "verify task_info call succeeded");
/*
* The affinity is not set by default, hence expecting a zero value.
*/
T_ASSERT_FALSE(affinity_tag_info_data.min != 0 || affinity_tag_info_data.max != 0,
"task_info call returns non-zero min or max value");
/*
* This is a negative case.
*/
count--;
err = task_info(mach_task_self(), TASK_AFFINITY_TAG_INFO, (task_info_t)&affinity_tag_info_data, &count);
T_ASSERT_MACH_ERROR(err, KERN_INVALID_ARGUMENT,
"Negative test case: task_info should verify that count is at least equal to what is defined in API.");
}
T_DECL(task_flags_info, "tests task_flags_info", T_META_ASROOT(true), T_META_LTEPHASE(LTE_POSTINIT))
{
T_SETUPBEGIN;
int is_dev = is_development_kernel();
T_QUIET;
T_ASSERT_TRUE(is_dev, "verify development kernel is running");
T_SETUPEND;
kern_return_t err;
task_flags_info_data_t flags_info_data;
mach_msg_type_number_t count = TASK_FLAGS_INFO_COUNT;
err = task_info(mach_task_self(), TASK_FLAGS_INFO, (task_info_t)&flags_info_data, &count);
T_ASSERT_MACH_SUCCESS(err, "verify task_info call succeeded");
/* Change for 32-bit arch possibility?*/
T_ASSERT_EQ((flags_info_data.flags & (unsigned int)(~(TF_LP64 | TF_64B_DATA))), 0U,
"task_info should only give out 64-bit addr/data flags");
/*
* This is a negative case.
*/
count--;
err = task_info(mach_task_self(), TASK_FLAGS_INFO, (task_info_t)&flags_info_data, &count);
T_ASSERT_MACH_ERROR(err, KERN_INVALID_ARGUMENT,
"Negative test case: task_info should verify that count is at least equal to what is defined in API.");
}
T_DECL(task_power_info_v2, "tests task_power_info_v2", T_META_ASROOT(true), T_META_LTEPHASE(LTE_POSTINIT),
T_META_TAG_VM_NOT_ELIGIBLE)
{
T_SETUPBEGIN;
int is_dev = is_development_kernel();
T_QUIET;
T_ASSERT_TRUE(is_dev, "verify development kernel is running");
T_SETUPEND;
kern_return_t err;
task_power_info_v2_data_t power_info_data_v2;
task_power_info_v2_data_t power_info_data_v2_new;
mach_msg_type_number_t count = TASK_POWER_INFO_V2_COUNT;
sleep(1);
err = task_info(mach_task_self(), TASK_POWER_INFO_V2, (task_info_t)&power_info_data_v2, &count);
T_ASSERT_MACH_SUCCESS(err, "verify task_info call succeeded");
T_ASSERT_LE(power_info_data_v2.gpu_energy.task_gpu_utilisation, 0ULL,
"verified task_info call shows zero GPU utilization for non-GPU task");
do_factorial_task();
/*
* Verify the cpu_energy parameters.
*/
err = task_info(mach_task_self(), TASK_POWER_INFO_V2, (task_info_t)&power_info_data_v2_new, &count);
T_ASSERT_MACH_SUCCESS(err, "verify task_info call succeeded");
#if !defined(__arm64__)
/*
* iOS does not have system_time.
*/
T_ASSERT_GT(power_info_data_v2_new.cpu_energy.total_user, power_info_data_v2.cpu_energy.total_user,
"task_info call returns valid user time");
T_ASSERT_GT(power_info_data_v2_new.cpu_energy.total_system, power_info_data_v2.cpu_energy.total_system,
"task_info call returns valid system time");
#endif
T_ASSERT_GE(power_info_data_v2.cpu_energy.task_interrupt_wakeups, 1ULL,
"verify task_info call returns non-zero value for interrupt_wakeup (ret value = %llu)",
power_info_data_v2.cpu_energy.task_interrupt_wakeups);
#if !defined(__arm64__)
if (power_info_data_v2.cpu_energy.task_platform_idle_wakeups != 0) {
T_LOG("task_info call returned %llu for platform_idle_wakeup", power_info_data_v2.cpu_energy.task_platform_idle_wakeups);
}
#endif
count = TASK_POWER_INFO_V2_COUNT_OLD;
err = task_info(mach_task_self(), TASK_POWER_INFO_V2, (task_info_t)&power_info_data_v2, &count);
T_ASSERT_MACH_SUCCESS(err, "verify task_info call succeeded");
/*
* This is a negative case.
*/
count--;
err = task_info(mach_task_self(), TASK_POWER_INFO_V2, (task_info_t)&power_info_data_v2, &count);
T_ASSERT_MACH_ERROR(err, KERN_INVALID_ARGUMENT,
"Negative test case: task_info should verify that count is at least equal to what is defined in API. Call "
"returns errno %d:%s",
err, mach_error_string(err));
}
T_DECL(test_task_basic_info_32, "tests TASK_BASIC_INFO_32", T_META_ASROOT(true), T_META_LTEPHASE(LTE_POSTINIT),
T_META_TAG_VM_PREFERRED)
{
test_task_basic_info(INFO_32);
}
T_DECL(test_task_basic_info_32_2, "tests TASK_BASIC_INFO_32_2", T_META_ASROOT(true), T_META_LTEPHASE(LTE_POSTINIT),
T_META_TAG_VM_PREFERRED)
{
test_task_basic_info(INFO_32_2);
}
#if defined(__arm64__)
T_DECL(test_task_basic_info_64i_2, "tests TASK_BASIC_INFO_64_2", T_META_ASROOT(true), T_META_LTEPHASE(LTE_POSTINIT),
T_META_TAG_VM_PREFERRED)
{
test_task_basic_info(INFO_64_2);
}
#else
T_DECL(test_task_basic_info_64, "tests TASK_BASIC_INFO_64", T_META_ASROOT(true), T_META_LTEPHASE(LTE_POSTINIT))
{
test_task_basic_info(INFO_64);
}
#endif /* defined(__arm64__) */
T_DECL(test_mach_task_basic_info, "tests MACH_TASK_BASIC_INFO", T_META_ASROOT(true), T_META_LTEPHASE(LTE_POSTINIT))
{
test_task_basic_info(INFO_MACH);
}
void
test_task_basic_info(enum info_kind kind)
{
#define BEFORE 0
#define AFTER 1
T_SETUPBEGIN;
int is_dev = is_development_kernel();
T_QUIET;
T_ASSERT_TRUE(is_dev, "verify development kernel is running");
T_SETUPEND;
task_info_t info_data[2];
task_basic_info_32_data_t basic_info_32_data[2];
#if defined(__arm64__)
task_basic_info_64_2_data_t basic_info_64_2_data[2];
#else
task_basic_info_64_data_t basic_info_64_data[2];
#endif /* defined(__arm64__) */
mach_task_basic_info_data_t mach_basic_info_data[2];
kern_return_t kr;
mach_msg_type_number_t count;
task_flavor_t flavor = 0;
integer_t suspend_count;
uint64_t resident_size_diff;
uint64_t virtual_size_diff;
void * tmp_map = NULL;
pid_t child_pid;
mach_port_name_t child_task;
/*for dt_waitpid*/
int timeout = 10; // change to max timeout
int exit_status = 0;
switch (kind) {
case INFO_32:
case INFO_32_2:
info_data[BEFORE] = (task_info_t)&basic_info_32_data[BEFORE];
info_data[AFTER] = (task_info_t)&basic_info_32_data[AFTER];
count = TASK_BASIC_INFO_32_COUNT;
flavor = TASK_BASIC_INFO_32;
if (kind == INFO_32_2) {
flavor = TASK_BASIC2_INFO_32;
}
break;
#if defined(__arm64__)
case INFO_64:
T_ASSERT_FAIL("invalid basic info kind");
break;
case INFO_64_2:
info_data[BEFORE] = (task_info_t)&basic_info_64_2_data[BEFORE];
info_data[AFTER] = (task_info_t)&basic_info_64_2_data[AFTER];
count = TASK_BASIC_INFO_64_2_COUNT;
flavor = TASK_BASIC_INFO_64_2;
break;
#else
case INFO_64:
info_data[BEFORE] = (task_info_t)&basic_info_64_data[BEFORE];
info_data[AFTER] = (task_info_t)&basic_info_64_data[AFTER];
count = TASK_BASIC_INFO_64_COUNT;
flavor = TASK_BASIC_INFO_64;
break;
case INFO_64_2:
T_ASSERT_FAIL("invalid basic info kind");
break;
#endif /* defined(__arm64__) */
case INFO_MACH:
info_data[BEFORE] = (task_info_t)&mach_basic_info_data[BEFORE];
info_data[AFTER] = (task_info_t)&mach_basic_info_data[AFTER];
count = MACH_TASK_BASIC_INFO_COUNT;
flavor = MACH_TASK_BASIC_INFO;
break;
case INFO_MAX:
default:
T_ASSERT_FAIL("invalid basic info kind");
break;
}
kr = task_info(mach_task_self(), flavor, info_data[BEFORE], &count);
T_ASSERT_MACH_SUCCESS(kr, "verify task_info succeeded");
do_factorial_task();
/*
* Allocate virtual and resident memory.
*/
tmp_map = mmap(0, PAGE_SIZE, PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
T_WITH_ERRNO;
T_EXPECT_NE(tmp_map, MAP_FAILED, "verify mmap call is successful");
memset(tmp_map, 'm', PAGE_SIZE);
child_pid = fork();
T_ASSERT_POSIX_SUCCESS(child_pid, "verify process can be forked");
if (child_pid == 0) {
/*
* This will suspend the child process.
*/
kr = task_suspend(mach_task_self());
exit(kr);
}
/*
* Wait for the child process to suspend itself.
*/
sleep(1);
kr = task_for_pid(mach_task_self(), child_pid, &child_task);
T_ASSERT_MACH_SUCCESS(kr, "verify task_for_pid succeeded. check sudo if failed");
/*
* Verify the suspend_count for child and resume it.
*/
kr = task_info(child_task, flavor, info_data[AFTER], &count);
T_ASSERT_MACH_SUCCESS(kr, "verify task_info call succeeded");
suspend_count = (integer_t)(info_get(kind, GET_SUSPEND_COUNT, info_data[AFTER]));
T_ASSERT_EQ(suspend_count, 1, "verify task_info shows correct suspend_count");
kr = task_resume(child_task);
T_ASSERT_MACH_SUCCESS(kr, "verify task_resume succeeded");
/*
* reap kr from task_suspend call in child
*/
if (dt_waitpid(child_pid, &exit_status, NULL, timeout)) {
T_ASSERT_MACH_SUCCESS(exit_status, "verify child task_suspend is successful");
} else {
T_FAIL("dt_waitpid failed");
}
kr = task_info(mach_task_self(), flavor, info_data[AFTER], &count);
T_ASSERT_MACH_SUCCESS(kr, "verify task_info call succeeded");
resident_size_diff = info_get(kind, GET_RESIDENT_SIZE, info_data[AFTER]) - info_get(kind, GET_RESIDENT_SIZE, info_data[BEFORE]);
virtual_size_diff = info_get(kind, GET_VIRTUAL_SIZE, info_data[AFTER]) - info_get(kind, GET_VIRTUAL_SIZE, info_data[BEFORE]);
/*
* INFO_32_2 gets the max resident size instead of the current resident size
* 32 KB tolerance built into test. The returned value is generally between 0 and 16384
*
* max resident size is a discrete field in INFO_MACH, so it's handled differently
*/
if (kind == INFO_32_2) {
T_EXPECT_EQ(resident_size_diff % 4096, 0ULL, "verify task_info returns valid max resident_size");
T_EXPECT_GE(resident_size_diff, 0ULL, "verify task_info returns non-negative max resident_size");
T_EXPECT_GE(virtual_size_diff, (unsigned long long)PAGE_SIZE, "verify task_info returns valid virtual_size");
} else {
T_EXPECT_GE(resident_size_diff, (unsigned long long)PAGE_SIZE, "task_info returns valid resident_size");
T_EXPECT_GE(virtual_size_diff, (unsigned long long)PAGE_SIZE, "task_info returns valid virtual_size");
}
if (kind == INFO_MACH) {
resident_size_diff = info_get(kind, GET_MAX_RES, info_data[AFTER]) - info_get(kind, GET_MAX_RES, info_data[BEFORE]);
T_EXPECT_EQ(resident_size_diff % 4096, 0ULL, "verify task_info returns valid max resident_size");
T_EXPECT_GE(resident_size_diff, 0ULL, "verify task_info returns non-negative max resident_size");
T_EXPECT_GE(info_get(kind, GET_MAX_RES, info_data[AFTER]), info_get(kind, GET_RESIDENT_SIZE, info_data[AFTER]),
"verify max resident size is greater than or equal to curr resident size");
}
do_factorial_task();
/*
* These counters give time for threads that have terminated. We dont have any, so checking for zero.
*/
time_value_t * user_tv = (time_value_t *)(info_get(kind, GET_USER_TIME, info_data[BEFORE]));
T_EXPECT_EQ((user_tv->seconds + user_tv->microseconds / 1000000), 0, "verify task_info shows valid user time");
time_value_t * sys_tv = (time_value_t *)(info_get(kind, GET_SYS_TIME, info_data[BEFORE]));
T_EXPECT_EQ(sys_tv->seconds + (sys_tv->microseconds / 1000000), 0, "verify task_info shows valid system time");
/*
* The default value for non-kernel tasks is TIMESHARE.
*/
policy_t pt = (policy_t)info_get(kind, GET_POLICY, info_data[BEFORE]);
T_EXPECT_EQ(pt, POLICY_TIMESHARE, "verify task_info shows valid policy");
/*
* This is a negative case.
*/
count--;
kr = task_info(mach_task_self(), flavor, info_data[AFTER], &count);
T_ASSERT_MACH_ERROR(kr, KERN_INVALID_ARGUMENT,
"Negative test case: task_info should verify that count is at least equal to what is defined in API");
/*
* deallocate memory
*/
munmap(tmp_map, PAGE_SIZE);
return;
#undef BEFORE
#undef AFTER
}
T_DECL(test_sigcont_task_suspend_resume,
"test to verify that SIGCONT on task_suspend()-ed process works",
T_META_ASROOT(true),
T_META_LTEPHASE(LTE_POSTINIT))
{
T_SETUPBEGIN;
int is_dev = is_development_kernel();
T_QUIET;
T_ASSERT_TRUE(is_dev, "verify development kernel is running");
T_SETUPEND;
mach_task_basic_info_data_t mach_basic_info_data;
task_info_t info_data = (task_info_t)&mach_basic_info_data;
task_debug_info_internal_data_t debug_info;
mach_msg_type_number_t debug_count = TASK_DEBUG_INFO_INTERNAL_COUNT;
kern_return_t kr;
int posix_ret;
mach_msg_type_number_t count = MACH_TASK_BASIC_INFO_COUNT;
task_flavor_t flavor = MACH_TASK_BASIC_INFO;
integer_t suspend_count;
integer_t debug_suspend_count;
pid_t child_pid = 0;
mach_port_name_t child_task;
/*for dt_waitpid*/
int timeout = 5;
int exit_status = 0;
int signal_no = 0;
child_pid = fork();
T_ASSERT_POSIX_SUCCESS(child_pid, "verify process can be forked");
if (child_pid == 0) {
/*
* This will suspend the child process.
*/
kr = task_suspend(mach_task_self());
/*
* When child resumes, it exits immediately
*/
exit(kr);
}
/*
* Wait for the child process to suspend itself.
*/
sleep(1);
kr = task_for_pid(mach_task_self(), child_pid, &child_task);
T_ASSERT_MACH_SUCCESS(kr, "verify task_for_pid succeeded. check sudo if failed");
/*
* Verify the suspend_count for child and resume it.
*/
kr = task_info(child_task, flavor, info_data, &count);
T_ASSERT_MACH_SUCCESS(kr, "verify task_info call succeeded");
suspend_count = (integer_t)(info_get(INFO_MACH, GET_SUSPEND_COUNT, info_data));
T_ASSERT_EQ(suspend_count, 1, "verify task_info shows correct suspend_count (1) (actually user stop count) ");
kr = task_info(child_task, TASK_DEBUG_INFO_INTERNAL, (task_info_t)&debug_info, &debug_count);
T_ASSERT_MACH_SUCCESS(kr, "verify task_info call succeeded");
debug_suspend_count = debug_info.suspend_count;
T_ASSERT_EQ(debug_info.suspend_count, 1, "verify debug_info shows correct suspend_count(1)");
posix_ret = kill(child_pid, SIGCONT);
T_ASSERT_POSIX_SUCCESS(posix_ret, "verify signal call succeeded");
/*
* reap kr from task_suspend call in child
*/
dt_waitpid(child_pid, &exit_status, &signal_no, timeout);
T_ASSERT_EQ(signal_no, 0, "child should be resumed and exit without signal");
T_ASSERT_EQ(exit_status, 0, "child should exit with 0");
}
T_DECL(test_sigcont_task_suspend2_resume,
"test to verify that SIGCONT on task_suspend2()-ed process doesn't work",
T_META_ASROOT(true),
T_META_LTEPHASE(LTE_POSTINIT))
{
T_SETUPBEGIN;
int is_dev = is_development_kernel();
T_QUIET;
T_ASSERT_TRUE(is_dev, "verify development kernel is running");
T_SETUPEND;
mach_task_basic_info_data_t mach_basic_info_data;
task_info_t info_data = (task_info_t)&mach_basic_info_data;
task_debug_info_internal_data_t debug_info;
mach_msg_type_number_t debug_count = TASK_DEBUG_INFO_INTERNAL_COUNT;
kern_return_t kr;
int posix_ret;
mach_msg_type_number_t count = MACH_TASK_BASIC_INFO_COUNT;
task_flavor_t flavor = MACH_TASK_BASIC_INFO;
integer_t suspend_count = 0;
integer_t debug_suspend_count = 0;
pid_t child_pid = 0;
mach_port_name_t child_task;
task_suspension_token_t child_token = 0xFFFFF;
/*
* for dt_waitpid
* We expect the test to fail right now, so I've set timeout to
* be shorter than we may want it to be when the issue is fixed
*/
int timeout = 1;
int exit_status = 0;
int signal_no = 0;
/* for pipe */
int fd[2];
pipe(fd);
int pipe_msg = 0;
child_pid = fork();
T_ASSERT_POSIX_SUCCESS(child_pid, "verify process can be forked %d", child_pid);
if (child_pid == 0) {
close(fd[1]);
T_LOG("Waiting to read from parent...");
read(fd[0], &pipe_msg, sizeof(pipe_msg));
T_LOG("Done reading from parent, about to exit...");
exit(0);
}
/*
* Wait for child to fork and block on read
*/
sleep(1);
close(fd[0]);
kr = task_for_pid(mach_task_self(), child_pid, &child_task);
T_ASSERT_MACH_SUCCESS(kr, "verify task_for_pid succeeded. check sudo if failed");
kr = task_info(child_task, TASK_DEBUG_INFO_INTERNAL, (task_info_t)&debug_info, &debug_count);
T_ASSERT_MACH_SUCCESS(kr, "verify task_info call succeeded");
debug_suspend_count = debug_info.suspend_count;
T_EXPECT_EQ(debug_suspend_count, 0, "verify debug_info shows correct (true) suspend_count(0)");
kr = task_suspend2(child_task, &child_token);
T_ASSERT_MACH_SUCCESS(kr, "verify task_suspend2 call succeeded");
kr = task_info(child_task, TASK_DEBUG_INFO_INTERNAL, (task_info_t)&debug_info, &debug_count);
T_ASSERT_MACH_SUCCESS(kr, "verify task_info call succeeded");
debug_suspend_count = debug_info.suspend_count;
T_ASSERT_EQ(debug_suspend_count, 1, "verify debug_info shows correct (true) suspend_count(1)");
/*
* Verify the suspend_count for child and resume it.
*/
kr = task_info(child_task, flavor, info_data, &count);
T_ASSERT_MACH_SUCCESS(kr, "verify task_info call succeeded");
suspend_count = (integer_t)(info_get(INFO_MACH, GET_SUSPEND_COUNT, info_data));
T_EXPECT_EQ(suspend_count, 1, "verify task_info shows correct (user_stop_count) suspend_count (1)");
posix_ret = kill(child_pid, SIGCONT);
T_ASSERT_POSIX_SUCCESS(posix_ret, "verify signal call succeeded");
kr = task_info(child_task, TASK_DEBUG_INFO_INTERNAL, (task_info_t)&debug_info, &debug_count);
T_EXPECT_MACH_SUCCESS(kr, "verify task_info call succeeded");
debug_suspend_count = debug_info.suspend_count;
T_EXPECTFAIL_WITH_RADAR(33166654);
T_EXPECT_EQ(debug_suspend_count, 1, "verify debug_info shows correct (true) suspend_count (1)");
suspend_count = (integer_t)(info_get(INFO_MACH, GET_SUSPEND_COUNT, info_data));
T_ASSERT_EQ(suspend_count, 1, "verify task_info shows correct (user_stop_count) suspend_count (1) after SIG_CONT");
kr = task_resume(child_task);
T_EXPECTFAIL_WITH_RADAR(33166654);
T_EXPECT_MACH_SUCCESS(kr, "verify task_resume succeeded");
/*
* reap kr from task_suspend call in child
*/
dt_waitpid(child_pid, &exit_status, &signal_no, timeout);
T_ASSERT_EQ(signal_no, SIG_DT_TIMEOUT, "dt_waitpid timed out as expected");
// Resume properly using token and then wait
kr = task_resume2(child_token);
T_EXPECTFAIL_WITH_RADAR(33166654);
T_ASSERT_MACH_SUCCESS(kr, "verify task_resume2 succeeded");
write(fd[1], &pipe_msg, sizeof(pipe_msg));
/*
* reap kr from task_suspend call in child
*/
dt_waitpid(child_pid, &exit_status, &signal_no, timeout);
T_ASSERT_EQ(signal_no, 0, "child should be resumed and no signal should be returned");
T_ASSERT_EQ(exit_status, 0, "child should exit with 0");
}
uint64_t
info_get(enum info_kind kind, enum info_get get, void * data)
{
switch (get) {
case GET_SUSPEND_COUNT:
switch (kind) {
case INFO_32:
case INFO_32_2:
return (uint64_t)(((task_basic_info_32_t)data)->suspend_count);
#if defined(__arm64__)
case INFO_64:
T_ASSERT_FAIL("illegal info_get %d %d", kind, get);
break;
case INFO_64_2:
return (uint64_t)(((task_basic_info_64_2_t)data)->suspend_count);
#else
case INFO_64:
return (uint64_t)(((task_basic_info_64_t)data)->suspend_count);
case INFO_64_2:
T_ASSERT_FAIL("illegal info_get %d %d", kind, get);
break;
#endif /* defined(__arm64__) */
case INFO_MACH:
return (uint64_t)(((mach_task_basic_info_t)data)->suspend_count);
case INFO_MAX:
default:
T_ASSERT_FAIL("unhandled info_get %d %d", kind, get);
}
case GET_RESIDENT_SIZE:
switch (kind) {
case INFO_32:
case INFO_32_2:
return (uint64_t)(((task_basic_info_32_t)data)->resident_size);
#if defined(__arm64__)
case INFO_64:
T_ASSERT_FAIL("illegal info_get %d %d", kind, get);
break;
case INFO_64_2:
return (uint64_t)(((task_basic_info_64_2_t)data)->resident_size);
#else
case INFO_64:
return (uint64_t)(((task_basic_info_64_t)data)->resident_size);
case INFO_64_2:
T_ASSERT_FAIL("illegal info_get %d %d", kind, get);
break;
#endif /* defined(__arm64__) */
case INFO_MACH:
return (uint64_t)(((mach_task_basic_info_t)data)->resident_size);
case INFO_MAX:
default:
T_ASSERT_FAIL("unhandled info_get %d %d", kind, get);
}
case GET_VIRTUAL_SIZE:
switch (kind) {
case INFO_32:
case INFO_32_2:
return (uint64_t)(((task_basic_info_32_t)data)->virtual_size);
#if defined(__arm64__)
case INFO_64:
T_ASSERT_FAIL("illegal info_get %d %d", kind, get);
break;
case INFO_64_2:
return (uint64_t)(((task_basic_info_64_2_t)data)->virtual_size);
#else
case INFO_64:
return (uint64_t)(((task_basic_info_64_t)data)->virtual_size);
case INFO_64_2:
T_ASSERT_FAIL("illegal info_get %d %d", kind, get);
break;
#endif /* defined(__arm64__) */
case INFO_MACH:
return (uint64_t)(((mach_task_basic_info_t)data)->virtual_size);
case INFO_MAX:
default:
T_ASSERT_FAIL("unhandled info_get %d %d", kind, get);
}
case GET_USER_TIME:
switch (kind) {
case INFO_32:
case INFO_32_2:
return (uint64_t) &(((task_basic_info_32_t)data)->user_time);
#if defined(__arm64__)
case INFO_64:
T_ASSERT_FAIL("illegal info_get %d %d", kind, get);
break;
case INFO_64_2:
return (uint64_t) &(((task_basic_info_64_2_t)data)->user_time);
#else
case INFO_64:
return (uint64_t) &(((task_basic_info_64_t)data)->user_time);
case INFO_64_2:
T_ASSERT_FAIL("illegal info_get %d %d", kind, get);
break;
#endif /* defined(__arm64__) */
case INFO_MACH:
return (uint64_t) &(((mach_task_basic_info_t)data)->user_time);
case INFO_MAX:
default:
T_ASSERT_FAIL("unhandled info_get %d %d", kind, get);
}
case GET_SYS_TIME:
switch (kind) {
case INFO_32:
case INFO_32_2:
return (uint64_t) &(((task_basic_info_32_t)data)->system_time);
#if defined(__arm64__)
case INFO_64:
T_ASSERT_FAIL("illegal info_get %d %d", kind, get);
break;
case INFO_64_2:
return (uint64_t) &(((task_basic_info_64_2_t)data)->system_time);
#else
case INFO_64:
return (uint64_t) &(((task_basic_info_64_t)data)->system_time);
case INFO_64_2:
T_ASSERT_FAIL("illegal info_get %d %d", kind, get);
break;
#endif /* defined(__arm64__) */
case INFO_MACH:
return (uint64_t) &(((mach_task_basic_info_t)data)->user_time);
case INFO_MAX:
default:
T_ASSERT_FAIL("unhandled info_get %d %d", kind, get);
}
case GET_POLICY:
switch (kind) {
case INFO_32:
case INFO_32_2:
return (uint64_t)(((task_basic_info_32_t)data)->policy);
#if defined(__arm64__)
case INFO_64:
T_ASSERT_FAIL("illegal info_get %d %d", kind, get);
break;
case INFO_64_2:
return (uint64_t)(((task_basic_info_64_2_t)data)->policy);
#else
case INFO_64:
return (uint64_t)(((task_basic_info_64_t)data)->policy);
case INFO_64_2:
T_ASSERT_FAIL("illegal info_get %d %d", kind, get);
break;
#endif /* defined(__arm64__) */
case INFO_MACH:
return (uint64_t)(((mach_task_basic_info_t)data)->policy);
case INFO_MAX:
default:
T_ASSERT_FAIL("unhandled info_get %d %d", kind, get);
}
case GET_MAX_RES:
switch (kind) {
case INFO_32:
case INFO_32_2:
case INFO_64:
case INFO_64_2:
T_ASSERT_FAIL("illegal info_get %d %d", kind, get);
case INFO_MACH:
return (uint64_t)(((mach_task_basic_info_t)data)->resident_size_max);
case INFO_MAX:
default:
T_ASSERT_FAIL("unhandled info_get %d %d", kind, get);
}
}
__builtin_unreachable();
}