This is xnu-11215.1.10. See this file in:
#include <AvailabilityMacros.h>
#include <mach/thread_policy.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <libgen.h>
#include <string.h>
#include <err.h>
#include <unistd.h>
#include <pthread.h>
#include <mach/mach.h>
#include <mach/mach_error.h>
#include <mach/mach_time.h>
#include <mach/notify.h>
#include <servers/bootstrap.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/signal.h>
#include <errno.h>
#include "../unit_tests/tests_common.h" /* for record_perf_data() */
#include <libkern/OSAtomic.h>
#define MAX(A, B) ((A) < (B) ? (B) : (A))
typedef struct {
mach_msg_header_t header;
mach_msg_trailer_t trailer; // subtract this when sending
} ipc_trivial_message;
typedef struct {
mach_msg_header_t header;
u_int32_t numbers[0];
mach_msg_trailer_t trailer; // subtract this when sending
} ipc_inline_message;
typedef struct {
mach_msg_header_t header;
mach_msg_body_t body;
mach_msg_ool_descriptor_t descriptor;
mach_msg_trailer_t trailer; // subtract this when sending
} ipc_complex_message;
enum {
msg_type_trivial = 0,
msg_type_inline = 1,
msg_type_complex = 2
};
struct port_args {
int server_num;
int req_size;
mach_msg_header_t *req_msg;
int reply_size;
mach_msg_header_t *reply_msg;
mach_port_t port;
mach_port_t rcv_set;
mach_port_t *set;
mach_port_t *port_list;
};
typedef union {
pid_t pid;
pthread_t tid;
} thread_id_t;
/* Global options */
static int verbose = 0;
static boolean_t affinity = FALSE;
static boolean_t timeshare = FALSE;
static boolean_t threaded = FALSE;
static boolean_t oneway = FALSE;
static boolean_t useset = FALSE;
static boolean_t save_perfdata = FALSE;
int msg_type;
int num_ints;
int num_msgs;
int num_clients;
int num_servers;
int client_delay;
int client_spin;
int client_pages;
int portcount = 1;
int setcount = 0;
boolean_t stress_prepost = FALSE;
char **server_port_name;
struct port_args *server_port_args;
/* global data */
mach_timebase_info_data_t g_timebase;
int64_t g_client_send_time = 0;
static inline uint64_t
ns_to_abs(uint64_t ns)
{
return ns * g_timebase.denom / g_timebase.numer;
}
static inline uint64_t
abs_to_ns(uint64_t abs)
{
return abs * g_timebase.numer / g_timebase.denom;
}
void
signal_handler(int sig)
{
}
void
usage(const char *progname)
{
fprintf(stderr, "usage: %s [options]\n", progname);
fprintf(stderr, "where options are:\n");
fprintf(stderr, " -affinity\t\tthreads use affinity\n");
fprintf(stderr, " -timeshare\t\tthreads use timeshare\n");
fprintf(stderr, " -threaded\t\tuse (p)threads\n");
fprintf(stderr, " -verbose\t\tbe verbose (use multiple times to increase verbosity)\n");
fprintf(stderr, " -oneway\t\tdo not request return reply\n");
fprintf(stderr, " -count num\t\tnumber of messages to send\n");
fprintf(stderr, " -perf \t\tCreate perfdata files for metrics.\n");
fprintf(stderr, " -type trivial|inline|complex\ttype of messages to send\n");
fprintf(stderr, " -numints num\tnumber of 32-bit ints to send in messages\n");
fprintf(stderr, " -servers num\tnumber of server threads to run\n");
fprintf(stderr, " -clients num\tnumber of clients per server\n");
fprintf(stderr, " -delay num\t\tmicroseconds to sleep clients between messages\n");
fprintf(stderr, " -work num\t\tmicroseconds of client work\n");
fprintf(stderr, " -pages num\t\tpages of memory touched by client work\n");
fprintf(stderr, " -set nset num\tcreate [nset] portsets and [num] ports in each server.\n");
fprintf(stderr, " \tEach port is connected to each set.\n");
fprintf(stderr, " -prepost\t\tstress the prepost system (implies -threaded, requires -set X Y)\n");
fprintf(stderr, "default values are:\n");
fprintf(stderr, " . no affinity\n");
fprintf(stderr, " . not timeshare\n");
fprintf(stderr, " . not threaded\n");
fprintf(stderr, " . not verbose\n");
fprintf(stderr, " . not oneway\n");
fprintf(stderr, " . client sends 100000 messages\n");
fprintf(stderr, " . inline message type\n");
fprintf(stderr, " . 64 32-bit integers in inline/complex messages\n");
fprintf(stderr, " . (num_available_processors+1)%%2 servers\n");
fprintf(stderr, " . 4 clients per server\n");
fprintf(stderr, " . no delay\n");
fprintf(stderr, " . no sets / extra ports\n");
fprintf(stderr, " . no prepost stress\n");
exit(1);
}
void
parse_args(int argc, char *argv[])
{
host_basic_info_data_t info;
mach_msg_type_number_t count;
kern_return_t result;
/* Initialize defaults */
msg_type = msg_type_trivial;
num_ints = 64;
num_msgs = 100000;
client_delay = 0;
num_clients = 4;
count = HOST_BASIC_INFO_COUNT;
result = host_info(mach_host_self(), HOST_BASIC_INFO,
(host_info_t)&info, &count);
if (result == KERN_SUCCESS && info.avail_cpus > 1) {
num_servers = info.avail_cpus / 2;
} else {
num_servers = 1;
}
const char *progname = argv[0];
argc--; argv++;
while (0 < argc) {
if (0 == strcmp("-verbose", argv[0])) {
verbose++;
argc--; argv++;
} else if (0 == strcmp("-affinity", argv[0])) {
affinity = TRUE;
argc--; argv++;
} else if (0 == strcmp("-timeshare", argv[0])) {
timeshare = TRUE;
argc--; argv++;
} else if (0 == strcmp("-threaded", argv[0])) {
threaded = TRUE;
argc--; argv++;
} else if (0 == strcmp("-oneway", argv[0])) {
oneway = TRUE;
argc--; argv++;
} else if (0 == strcmp("-perf", argv[0])) {
save_perfdata = TRUE;
argc--; argv++;
} else if (0 == strcmp("-type", argv[0])) {
if (argc < 2) {
usage(progname);
}
if (0 == strcmp("trivial", argv[1])) {
msg_type = msg_type_trivial;
} else if (0 == strcmp("inline", argv[1])) {
msg_type = msg_type_inline;
} else if (0 == strcmp("complex", argv[1])) {
msg_type = msg_type_complex;
} else {
usage(progname);
}
argc -= 2; argv += 2;
} else if (0 == strcmp("-numints", argv[0])) {
if (argc < 2) {
usage(progname);
}
num_ints = strtoul(argv[1], NULL, 0);
argc -= 2; argv += 2;
} else if (0 == strcmp("-count", argv[0])) {
if (argc < 2) {
usage(progname);
}
num_msgs = strtoul(argv[1], NULL, 0);
argc -= 2; argv += 2;
} else if (0 == strcmp("-clients", argv[0])) {
if (argc < 2) {
usage(progname);
}
num_clients = strtoul(argv[1], NULL, 0);
argc -= 2; argv += 2;
} else if (0 == strcmp("-servers", argv[0])) {
if (argc < 2) {
usage(progname);
}
num_servers = strtoul(argv[1], NULL, 0);
argc -= 2; argv += 2;
} else if (0 == strcmp("-delay", argv[0])) {
if (argc < 2) {
usage(progname);
}
client_delay = strtoul(argv[1], NULL, 0);
argc -= 2; argv += 2;
} else if (0 == strcmp("-spin", argv[0])) {
if (argc < 2) {
usage(progname);
}
client_spin = strtoul(argv[1], NULL, 0);
argc -= 2; argv += 2;
} else if (0 == strcmp("-pages", argv[0])) {
if (argc < 2) {
usage(progname);
}
client_pages = strtoul(argv[1], NULL, 0);
argc -= 2; argv += 2;
} else if (0 == strcmp("-set", argv[0])) {
if (argc < 3) {
usage(progname);
}
setcount = strtoul(argv[1], NULL, 0);
portcount = strtoul(argv[2], NULL, 0);
if (setcount <= 0 || portcount <= 0) {
usage(progname);
}
useset = TRUE;
argc -= 3; argv += 3;
} else if (0 == strcmp("-prepost", argv[0])) {
stress_prepost = TRUE;
threaded = TRUE;
argc--; argv++;
} else {
fprintf(stderr, "unknown option '%s'\n", argv[0]);
usage(progname);
}
}
if (stress_prepost) {
if (!threaded) {
fprintf(stderr, "Prepost stress test _must_ be threaded\n");
exit(1);
}
if (portcount < 1 || setcount < 1) {
fprintf(stderr, "Prepost stress test requires >= 1 port in >= 1 set.\n");
exit(1);
}
}
}
void
setup_server_ports(struct port_args *ports)
{
kern_return_t ret = 0;
mach_port_t bsport;
mach_port_t port;
ports->req_size = MAX(sizeof(ipc_inline_message) +
sizeof(u_int32_t) * num_ints,
sizeof(ipc_complex_message));
ports->reply_size = sizeof(ipc_trivial_message) -
sizeof(mach_msg_trailer_t);
ports->req_msg = malloc(ports->req_size);
ports->reply_msg = malloc(ports->reply_size);
if (setcount > 0) {
ports->set = (mach_port_t *)calloc(sizeof(mach_port_t), setcount);
if (!ports->set) {
fprintf(stderr, "calloc(%lu, %d) failed!\n", sizeof(mach_port_t), setcount);
exit(1);
}
}
if (stress_prepost) {
ports->port_list = (mach_port_t *)calloc(sizeof(mach_port_t), portcount);
if (!ports->port_list) {
fprintf(stderr, "calloc(%lu, %d) failed!\n", sizeof(mach_port_t), portcount);
exit(1);
}
}
if (useset) {
mach_port_t set;
if (setcount < 1) {
fprintf(stderr, "Can't use sets with a setcount of %d\n", setcount);
exit(1);
}
for (int ns = 0; ns < setcount; ns++) {
ret = mach_port_allocate(mach_task_self(),
MACH_PORT_RIGHT_PORT_SET,
&ports->set[ns]);
if (KERN_SUCCESS != ret) {
mach_error("mach_port_allocate(SET): ", ret);
exit(1);
}
if (verbose > 1) {
printf("SVR[%d] allocated set[%d] %#x\n",
ports->server_num, ns, ports->set[ns]);
}
set = ports->set[ns];
}
/* receive on a port set (always use the first in the chain) */
ports->rcv_set = ports->set[0];
}
/* stuff the portset(s) with ports */
for (int i = 0; i < portcount; i++) {
ret = mach_port_allocate(mach_task_self(),
MACH_PORT_RIGHT_RECEIVE,
&port);
if (KERN_SUCCESS != ret) {
mach_error("mach_port_allocate(PORT): ", ret);
exit(1);
}
if (stress_prepost) {
ports->port_list[i] = port;
}
if (useset) {
/* insert the port into _all_ allocated lowest-level sets */
for (int ns = 0; ns < setcount; ns++) {
if (verbose > 1) {
printf("SVR[%d] moving port %#x into set %#x...\n",
ports->server_num, port, ports->set[ns]);
}
ret = mach_port_insert_member(mach_task_self(),
port, ports->set[ns]);
if (KERN_SUCCESS != ret) {
mach_error("mach_port_insert_member(): ", ret);
exit(1);
}
}
}
}
/* use the last one as the server's bootstrap port */
ports->port = port;
if (stress_prepost) {
/* insert a send right for _each_ port */
for (int i = 0; i < portcount; i++) {
ret = mach_port_insert_right(mach_task_self(),
ports->port_list[i],
ports->port_list[i],
MACH_MSG_TYPE_MAKE_SEND);
if (KERN_SUCCESS != ret) {
mach_error("mach_port_insert_right(): ", ret);
exit(1);
}
}
} else {
ret = mach_port_insert_right(mach_task_self(),
ports->port,
ports->port,
MACH_MSG_TYPE_MAKE_SEND);
if (KERN_SUCCESS != ret) {
mach_error("mach_port_insert_right(): ", ret);
exit(1);
}
}
ret = task_get_bootstrap_port(mach_task_self(), &bsport);
if (KERN_SUCCESS != ret) {
mach_error("task_get_bootstrap_port(): ", ret);
exit(1);
}
if (verbose) {
printf("server waiting for IPC messages from client on port '%s' (%#x).\n",
server_port_name[ports->server_num], ports->port);
}
ret = bootstrap_register(bsport,
server_port_name[ports->server_num],
ports->port);
if (KERN_SUCCESS != ret) {
mach_error("bootstrap_register(): ", ret);
exit(1);
}
}
void
setup_client_ports(struct port_args *ports)
{
kern_return_t ret = 0;
switch (msg_type) {
case msg_type_trivial:
ports->req_size = sizeof(ipc_trivial_message);
break;
case msg_type_inline:
ports->req_size = sizeof(ipc_inline_message) +
sizeof(u_int32_t) * num_ints;
break;
case msg_type_complex:
ports->req_size = sizeof(ipc_complex_message);
break;
}
ports->req_size -= sizeof(mach_msg_trailer_t);
ports->reply_size = sizeof(ipc_trivial_message);
ports->req_msg = malloc(ports->req_size);
ports->reply_msg = malloc(ports->reply_size);
ret = mach_port_allocate(mach_task_self(),
MACH_PORT_RIGHT_RECEIVE,
&(ports->port));
if (KERN_SUCCESS != ret) {
mach_error("mach_port_allocate(): ", ret);
exit(1);
}
if (verbose) {
printf("Client sending %d %s IPC messages to port '%s' in %s mode\n",
num_msgs, (msg_type == msg_type_inline) ?
"inline" : ((msg_type == msg_type_complex) ?
"complex" : "trivial"),
server_port_name[ports->server_num],
(oneway ? "oneway" : "rpc"));
}
}
static void
thread_setup(int tag)
{
kern_return_t ret;
thread_extended_policy_data_t epolicy;
thread_affinity_policy_data_t policy;
if (!timeshare) {
epolicy.timeshare = FALSE;
ret = thread_policy_set(
mach_thread_self(), THREAD_EXTENDED_POLICY,
(thread_policy_t) &epolicy,
THREAD_EXTENDED_POLICY_COUNT);
if (ret != KERN_SUCCESS) {
printf("thread_policy_set(THREAD_EXTENDED_POLICY) returned %d\n", ret);
}
}
if (affinity) {
policy.affinity_tag = tag;
ret = thread_policy_set(
mach_thread_self(), THREAD_AFFINITY_POLICY,
(thread_policy_t) &policy,
THREAD_AFFINITY_POLICY_COUNT);
if (ret != KERN_SUCCESS) {
printf("thread_policy_set(THREAD_AFFINITY_POLICY) returned %d\n", ret);
}
}
}
void *
server(void *serverarg)
{
int idx;
kern_return_t ret;
int totalmsg = num_msgs * num_clients;
mach_port_t recv_port;
uint64_t starttm, endtm;
int svr_num = (int)(uintptr_t)serverarg;
struct port_args *args = &server_port_args[svr_num];
args->server_num = svr_num;
setup_server_ports(args);
thread_setup(args->server_num + 1);
recv_port = (useset) ? args->rcv_set : args->port;
for (idx = 0; idx < totalmsg; idx++) {
if (verbose > 2) {
printf("server awaiting message %d\n", idx);
}
ret = mach_msg(args->req_msg,
MACH_RCV_MSG | MACH_RCV_INTERRUPT | MACH_RCV_LARGE,
0,
args->req_size,
recv_port,
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);
if (MACH_RCV_INTERRUPTED == ret) {
break;
}
if (MACH_MSG_SUCCESS != ret) {
if (verbose) {
printf("mach_msg() ret=%d", ret);
}
mach_error("mach_msg (receive): ", ret);
exit(1);
}
if (verbose > 2) {
printf("server received message %d\n", idx);
}
if (args->req_msg->msgh_bits & MACH_MSGH_BITS_COMPLEX) {
ret = vm_deallocate(mach_task_self(),
(vm_address_t)((ipc_complex_message *)args->req_msg)->descriptor.address,
((ipc_complex_message *)args->req_msg)->descriptor.size);
}
if (1 == args->req_msg->msgh_id) {
if (verbose > 2) {
printf("server sending reply %d\n", idx);
}
args->reply_msg->msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_MOVE_SEND_ONCE, 0);
args->reply_msg->msgh_size = args->reply_size;
args->reply_msg->msgh_remote_port = args->req_msg->msgh_remote_port;
args->reply_msg->msgh_local_port = MACH_PORT_NULL;
args->reply_msg->msgh_id = 2;
ret = mach_msg(args->reply_msg,
MACH_SEND_MSG,
args->reply_size,
0,
MACH_PORT_NULL,
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);
if (MACH_MSG_SUCCESS != ret) {
mach_error("mach_msg (send): ", ret);
exit(1);
}
}
}
if (!useset) {
return NULL;
}
if (verbose < 1) {
return NULL;
}
uint64_t deltans = 0;
/*
* If we're using multiple sets, explicitly tear them all down
* and measure the time.
*/
for (int ns = 0; ns < setcount; ns++) {
if (verbose > 1) {
printf("\tTearing down set[%d] %#x...\n", ns, args->set[ns]);
}
starttm = mach_absolute_time();
ret = mach_port_mod_refs(mach_task_self(), args->set[ns], MACH_PORT_RIGHT_PORT_SET, -1);
endtm = mach_absolute_time();
deltans += abs_to_ns(endtm - starttm);
if (ret != KERN_SUCCESS) {
mach_error("mach_port_mod_refs(): ", ret);
exit(1);
}
}
uint64_t nlinks = (uint64_t)setcount * (uint64_t)portcount;
printf("\tteardown of %llu links took %llu ns\n", nlinks, deltans);
printf("\t%lluns per set\n", deltans / (uint64_t)setcount);
return NULL;
}
static inline void
client_spin_loop(unsigned count, void(fn)(void))
{
while (count--) {
fn();
}
}
static long dummy_memory;
static long *client_memory = &dummy_memory;
static void
client_work_atom(void)
{
static int i;
if (++i > client_pages * PAGE_SIZE / sizeof(long)) {
i = 0;
}
client_memory[i] = 0;
}
static int calibration_count = 10000;
static int calibration_usec;
static void *
calibrate_client_work(void)
{
long dummy;
struct timeval nowtv;
struct timeval warmuptv = { 0, 100 * 1000 }; /* 100ms */
struct timeval starttv;
struct timeval endtv;
if (client_spin) {
/* Warm-up the stepper first... */
gettimeofday(&nowtv, NULL);
timeradd(&nowtv, &warmuptv, &endtv);
do {
client_spin_loop(calibration_count, client_work_atom);
gettimeofday(&nowtv, NULL);
} while (timercmp(&nowtv, &endtv, < ));
/* Now do the calibration */
while (TRUE) {
gettimeofday(&starttv, NULL);
client_spin_loop(calibration_count, client_work_atom);
gettimeofday(&endtv, NULL);
if (endtv.tv_sec - starttv.tv_sec > 1) {
calibration_count /= 10;
continue;
}
calibration_usec = endtv.tv_usec - starttv.tv_usec;
if (endtv.tv_usec < starttv.tv_usec) {
calibration_usec += 1000000;
}
if (calibration_usec < 1000) {
calibration_count *= 10;
continue;
}
calibration_count /= calibration_usec;
break;
}
if (verbose > 1) {
printf("calibration_count=%d calibration_usec=%d\n",
calibration_count, calibration_usec);
}
}
return NULL;
}
static void *
client_work(void)
{
if (client_spin) {
client_spin_loop(calibration_count * client_spin,
client_work_atom);
}
if (client_delay) {
usleep(client_delay);
}
return NULL;
}
void *
client(void *threadarg)
{
struct port_args args;
struct port_args *svr_args = NULL;
int idx;
mach_msg_header_t *req, *reply;
mach_port_t bsport, servport;
kern_return_t ret;
int server_num = (int)(uintptr_t)threadarg;
void *ints = malloc(sizeof(u_int32_t) * num_ints);
if (verbose) {
printf("client(%d) started, server port name %s\n",
server_num, server_port_name[server_num]);
}
args.server_num = server_num;
thread_setup(server_num + 1);
if (stress_prepost) {
svr_args = &server_port_args[server_num];
}
/* find server port */
ret = task_get_bootstrap_port(mach_task_self(), &bsport);
if (KERN_SUCCESS != ret) {
mach_error("task_get_bootstrap_port(): ", ret);
exit(1);
}
ret = bootstrap_look_up(bsport,
server_port_name[server_num],
&servport);
if (KERN_SUCCESS != ret) {
mach_error("bootstrap_look_up(): ", ret);
exit(1);
}
setup_client_ports(&args);
/* Allocate and touch memory */
if (client_pages) {
unsigned i;
client_memory = (long *) malloc(client_pages * PAGE_SIZE);
for (i = 0; i < client_pages; i++) {
client_memory[i * PAGE_SIZE / sizeof(long)] = 0;
}
}
uint64_t starttm, endtm;
/* start message loop */
for (idx = 0; idx < num_msgs; idx++) {
req = args.req_msg;
reply = args.reply_msg;
req->msgh_size = args.req_size;
if (stress_prepost) {
req->msgh_remote_port = svr_args->port_list[idx % portcount];
} else {
req->msgh_remote_port = servport;
}
if (oneway) {
req->msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, 0);
req->msgh_local_port = MACH_PORT_NULL;
} else {
req->msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND,
MACH_MSG_TYPE_MAKE_SEND_ONCE);
req->msgh_local_port = args.port;
}
req->msgh_id = oneway ? 0 : 1;
if (msg_type == msg_type_complex) {
(req)->msgh_bits |= MACH_MSGH_BITS_COMPLEX;
((ipc_complex_message *)req)->body.msgh_descriptor_count = 1;
((ipc_complex_message *)req)->descriptor.address = ints;
((ipc_complex_message *)req)->descriptor.size =
num_ints * sizeof(u_int32_t);
((ipc_complex_message *)req)->descriptor.deallocate = FALSE;
((ipc_complex_message *)req)->descriptor.copy = MACH_MSG_VIRTUAL_COPY;
((ipc_complex_message *)req)->descriptor.type = MACH_MSG_OOL_DESCRIPTOR;
}
if (verbose > 2) {
printf("client sending message %d to port %#x\n",
idx, req->msgh_remote_port);
}
starttm = mach_absolute_time();
ret = mach_msg(req,
MACH_SEND_MSG,
args.req_size,
0,
MACH_PORT_NULL,
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);
endtm = mach_absolute_time();
if (MACH_MSG_SUCCESS != ret) {
mach_error("mach_msg (send): ", ret);
fprintf(stderr, "bailing after %u iterations\n", idx);
exit(1);
break;
}
if (stress_prepost) {
OSAtomicAdd64(endtm - starttm, &g_client_send_time);
}
if (!oneway) {
if (verbose > 2) {
printf("client awaiting reply %d\n", idx);
}
reply->msgh_bits = 0;
reply->msgh_size = args.reply_size;
reply->msgh_local_port = args.port;
ret = mach_msg(args.reply_msg,
MACH_RCV_MSG | MACH_RCV_INTERRUPT,
0,
args.reply_size,
args.port,
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);
if (MACH_MSG_SUCCESS != ret) {
mach_error("mach_msg (receive): ", ret);
fprintf(stderr, "bailing after %u iterations\n",
idx);
exit(1);
}
if (verbose > 2) {
printf("client received reply %d\n", idx);
}
}
client_work();
}
free(ints);
return NULL;
}
static void
thread_spawn(thread_id_t *thread, void *(fn)(void *), void *arg)
{
if (threaded) {
kern_return_t ret;
ret = pthread_create(
&thread->tid,
NULL,
fn,
arg);
if (ret != 0) {
err(1, "pthread_create()");
}
if (verbose > 1) {
printf("created pthread %p\n", thread->tid);
}
} else {
thread->pid = fork();
if (thread->pid == 0) {
if (verbose > 1) {
printf("calling %p(%p)\n", fn, arg);
}
fn(arg);
exit(0);
}
if (verbose > 1) {
printf("forked pid %d\n", thread->pid);
}
}
}
static void
thread_join(thread_id_t *thread)
{
if (threaded) {
kern_return_t ret;
if (verbose > 1) {
printf("joining thread %p\n", thread->tid);
}
ret = pthread_join(thread->tid, NULL);
if (ret != KERN_SUCCESS) {
err(1, "pthread_join(%p)", thread->tid);
}
} else {
int stat;
if (verbose > 1) {
printf("waiting for pid %d\n", thread->pid);
}
waitpid(thread->pid, &stat, 0);
}
}
static void
wait_for_servers(void)
{
int i;
int retry_count = 10;
mach_port_t bsport, servport;
kern_return_t ret;
/* find server port */
ret = task_get_bootstrap_port(mach_task_self(), &bsport);
if (KERN_SUCCESS != ret) {
mach_error("task_get_bootstrap_port(): ", ret);
exit(1);
}
while (retry_count-- > 0) {
for (i = 0; i < num_servers; i++) {
ret = bootstrap_look_up(bsport,
server_port_name[i],
&servport);
if (ret != KERN_SUCCESS) {
break;
}
}
if (ret == KERN_SUCCESS) {
return;
}
usleep(100 * 1000); /* 100ms */
}
fprintf(stderr, "Server(s) failed to register\n");
exit(1);
}
int
main(int argc, char *argv[])
{
int i;
int j;
thread_id_t *client_id;
thread_id_t *server_id;
signal(SIGINT, signal_handler);
parse_args(argc, argv);
if (mach_timebase_info(&g_timebase) != KERN_SUCCESS) {
fprintf(stderr, "Can't get mach_timebase_info!\n");
exit(1);
}
calibrate_client_work();
/*
* If we're using affinity create an empty namespace now
* so this is shared by all our offspring.
*/
if (affinity) {
thread_setup(0);
}
server_id = (thread_id_t *) malloc(num_servers * sizeof(thread_id_t));
server_port_name = (char **) malloc(num_servers * sizeof(char *));
server_port_args = (struct port_args *)calloc(sizeof(struct port_args), num_servers);
if (!server_id || !server_port_name || !server_port_args) {
fprintf(stderr, "malloc/calloc of %d server book keeping structs failed\n", num_servers);
exit(1);
}
if (verbose) {
printf("creating %d servers\n", num_servers);
}
for (i = 0; i < num_servers; i++) {
server_port_name[i] = (char *) malloc(sizeof("PORT.pppppp.xx"));
/* PORT names include pid of main process for disambiguation */
sprintf(server_port_name[i], "PORT.%06d.%02d", getpid(), i);
thread_spawn(&server_id[i], server, (void *) (long) i);
}
int totalclients = num_servers * num_clients;
int totalmsg = num_msgs * totalclients;
struct timeval starttv, endtv, deltatv;
/*
* Wait for all servers to have registered all ports before starting
* the clients and the clock.
*/
wait_for_servers();
printf("%d server%s, %d client%s per server (%d total) %u messages...",
num_servers, (num_servers > 1)? "s" : "",
num_clients, (num_clients > 1)? "s" : "",
totalclients,
totalmsg);
fflush(stdout);
/* Call gettimeofday() once and throw away result; some implementations
* (like Mach's) cache some time zone info on first call.
*/
gettimeofday(&starttv, NULL);
gettimeofday(&starttv, NULL);
client_id = (thread_id_t *) malloc(totalclients * sizeof(thread_id_t));
if (verbose) {
printf("creating %d clients\n", totalclients);
}
for (i = 0; i < num_servers; i++) {
for (j = 0; j < num_clients; j++) {
thread_spawn(
&client_id[(i * num_clients) + j],
client,
(void *) (long) i);
}
}
/* Wait for servers to complete */
for (i = 0; i < num_servers; i++) {
thread_join(&server_id[i]);
}
gettimeofday(&endtv, NULL);
if (verbose) {
printf("all servers complete: waiting for clients...\n");
}
for (i = 0; i < totalclients; i++) {
thread_join(&client_id[i]);
}
/* report results */
deltatv.tv_sec = endtv.tv_sec - starttv.tv_sec;
deltatv.tv_usec = endtv.tv_usec - starttv.tv_usec;
if (endtv.tv_usec < starttv.tv_usec) {
deltatv.tv_sec--;
deltatv.tv_usec += 1000000;
}
double dsecs = (double) deltatv.tv_sec +
1.0E-6 * (double) deltatv.tv_usec;
printf(" in %lu.%03u seconds\n",
deltatv.tv_sec, deltatv.tv_usec / 1000);
printf(" throughput in messages/sec: %g\n",
(double)totalmsg / dsecs);
printf(" average message latency (usec): %2.3g\n",
dsecs * 1.0E6 / (double) totalmsg);
double time_in_sec = (double)deltatv.tv_sec + (double)deltatv.tv_usec / 1000.0;
double throughput_msg_p_sec = (double) totalmsg / dsecs;
double avg_msg_latency = dsecs * 1.0E6 / (double)totalmsg;
if (save_perfdata == TRUE) {
char name[256];
snprintf(name, sizeof(name), "%s_avg_msg_latency", basename(argv[0]));
record_perf_data(name, "usec", avg_msg_latency, "Message latency measured in microseconds. Lower is better", stderr);
}
if (stress_prepost) {
int64_t sendns = abs_to_ns(g_client_send_time);
dsecs = (double)sendns / (double)NSEC_PER_SEC;
printf(" total send time: %2.3gs\n", dsecs);
printf(" average send time (usec): %2.3g\n",
dsecs * 1.0E6 / (double)totalmsg);
}
return 0;
}