
I Don’t talk about
Darwin, no, no, no..

But… for 0x41con…

To follow along: http://NewOSXBook.com/bonus/0x41-16.pdf

download iPhone14/15 iOS16 KC (I know, you all have it already…)

and http://NewOSXBook.com/tools/jtool2 (or jtool2.x64)

Caveat
• I really did quit Darwin (D20, Feb 10th 2020!)

• Coincided with a bit of a Twitter flame war

• Really driven by a much more intriguing set of events (get me drunk ;-))

• Remember last 0x41Con (2019)? That’s when I notified y’all in advance

• Short version: I got tired of repeatedly hitting the glass ceiling..

• But.. 0x41con is a damn special occasion*!

• Observations here may be incomplete/inaccurate

• And you made me use KeyNote! I actually MISS PowerPoint now!

LC_FILESET_ENTRY

• Biggest noticeable change in kernelcache

LC_FILESET_ENTRY

• Filesets are mini-Mach-Os at fileoff to be loaded into vmaddr

• Surprisingly, no filesize/vmsize specified (all contiguous anyway)
<mach-o/loader.h>

LC_FILESET_ENTRY

• Makes loader’s life easy, but a little less so for kextraction:

• __TEXT segment can be easily patched

• Extracting filesets thus requires some tinkering..

• __LC_[DY]SYMTAB Symbol/String tables point back to KC

• __TEXT_EXEC, __DATA, __DATA_CONST point back to KC

• Handled by jtool2 —filesets (use JDEBUG=1 to see how)

• Note that inter KEXT references will remain dangling

• Taken into consideration by --analyze (or use fixkextsyms.sh)

LC_DYLD_CHAINED_FIXUPS

• LC_DYLD_INFO is so.. 20th Darwin (and still on macOS/Intel)

• LC_DYLD_CHAINED_FIXUPS used instead:

• Handles imports + symbol references

• Defines pointers in __DATA[_CONST] for ASLR/signing

LC_DYLD_CHAINED_FIXUPS

… Points to …

<mach-o/loader.h>

LC_DYLD_CHAINED_FIXUPS
<mach-o/fixup-chains.h>

LC_DYLD_CHAINED_FIXUPS

• Several possible pointer_formats:

•

<mach-o/fixup-chains.h>

LC_DYLD_CHAINED_FIXUPS

(or use dd if=… bs=0x… skip= … instead)

LC_DYLD_CHAINED_FIXUPS

LC_DYLD_CHAINED_FIXUPS

• User mode Fixups encode imports as well

• (no more DYLD_INFO_ONLY)

Developer Mode
• Rationale: 99% of Retail builds DO NOT NEED Debugging

• Implementation:

• Debugging features/DDI etc are disabled by default

• User needs to explicitly enable Developer Mode

• Behind the scenes work performed by AMFI

• Setting stored in NVRAM, requires reboot

Developer Mode
• amfid checks developer mode status on boot

• GUI handler uses CFUserNotificationCreate to prompt

• Enable/disable via User Client methods

• New entitlements (q.v. http://NewOSXBook.com/ent.jl)

•

Developer Mode

Developer Mode
• From KEXT Side, UserClient is extended:

•

Developer Mode
• armDeveloperMode() stashes in NVRAM

Developer Mode
• Entitlements now subject to validation of developer_mode_state()

Developer Mode
• developer_mode_state() controlled by PPL

ppl_developer_mode_storage

ppl_developer_mode_set

ppl_developer_mode_storage

Developer Mode

Trust Caches

syscalls/traps
• Several new syscalls:

• Two new Mach traps: 13 and 47

• Panacea Protection Layer calls up to 106

mach_msg2
(this one’s for you, @doadam)

• Lots of buzz about mach_msg revamp (as trap#47)

• mach_msg_overwrite_trap is deprecated!

• https://twitter.com/pedantcoder/status/1534971013225517056

• TL;DR: pedant coders should pay even more attention to detail

Launch Constraints
• Superbly detailed by Linus Henze*

• https://gist.github.com/LinusHenze/
4cd5d7ef057a144cda7234e2c247c056

* - wen ETA Fugu iOS16??

Probably missed stuff..

• ..but hey, it’s been a few years..

• I’m comparing iOS and Android tomorrow, so may talk
about cryptex, XPC/mach_msg/syscall filtering, etc then.

• That’s all for now

