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Ceci n'est pas une "heap"*:
Kernel Memory Management

Thankfully, kernel KPI users seldom have to deal with the physical layer, and most calls can
remain in the virtual layer. We detail how the kernel manages its own vm_map - the
kernel_map - through kmem_alloc* and kalloc*. We next present the very important
abstractions of kernel zones. Special care is given to the nooks and crannies of the zone
allocator, due to their significance over the years in exploitation.

Before concluding, we reintroduce memory pressure - also presented in I/8, but described
here from the kernel's perspective. The gentle memorystatus of MacOS and the ruthless
jetsam of *OS are both detailed. This continues with a discussion of XNU's proprietary
purgeable memory, which helps deal with memory pressure automatically. Lastly, we conclude
with a rough map of the kernel's address space, and consider the kernel slide.

* - Kernel memory is often incorrectly refered to as the the "kernel heap". This term (apparently used within Apple as
well) is technically wrong - the heap refers to the data strcuture used in user-mode in backing malloc(3), as
opposed to the automatic, thread-local memory of the stack (although the pedantic will correctly argue that user
mode "heaps" no longer use the heap structure as well...). Though the kernel does make use of stack memory (for its
threads and user-mode threads when in-kernel), the heap data structure is not used in any way in maintaining kernel
memory, which is merely segmented into zones, similar to the Linux Slab allocator.



 

Kernel Memory Allocation

XNU makes use of multiple memory allocation facilities in the kernel. We have already
touched on those of BSD earlier in Chapter 6 ("BSD Memory Zones"), and we will discuss those
of IOKit in Chapter 13. Let us now consider then, those of Mach.

The kernel_map

The kernel_map is the vm_map representing the kernel's addressable virtual memory
space. It is set up in kmem_init() (osfmk/vm/vm_kern.c, called from vm_mem_bootstrap()).
The map is then vm_map_create()d to span VM_MIN_KERNEL_AND_KEXT_ADDRESS to
VM_MAX_KERNEL_ADDRESS. On MacOS, the range spanned is 0xffffff7f80000000-
0xffffffffffffe000, and in *OS it is 0xffffffe000000000-0xfffffff3ffffffff. These ranges allow 513GB
and "merely" 79GB (respectively), although the map naturally contains wide holes.

All subsequent kernel memory allocations inevitably end up as allocations inside the
kernel_map. This is either by allocating directly in it (using a kmem_alloc*() variant), or
carving out a sub map (kmem_suballoc(). With few notable exceptions (namely,
kmem_alloc_pageable[_external]()), all memory in the kernel_map is wired - i.e.
resident in physical memory.

kmem_alloc() and friends

This is where the kmem_alloc*() family of functions comes into play. The various
functions in the family (with the exception of kmem_alloc_pages()) all funnel to
kernel_memory_allocate(), although with different parameter and flag settings.
kmem_alloc_pages() is different, in that it allocates virtual pages using vm_page_alloc(),
but does not commit any of them.

kernel_memory_allocate()

The kernel_memory_allocate() function is thus a common handler for nearly all
memory allocations. It proceeds as follows:

Round allocation size to page multiple. The allocation size is also checked to not be zero,
or not exceed sane boundaries.

If guard pages were requested (indicated by KMA_GUARD_[FIRST|LAST] flags) they are
allocated. This is done by a call to vm_page_grab_guard(), which sets page
protections but only maps them fictitiously.

If actual wired memory was requested (indicated by the absence of KMA_VAONLY and/or
KMA_PAGEABLE), it is allocated using vm_page_grab[lo](). Low memory is only
grabbed if the KMA_LOMEM flag was specified.

If the KMA_KOBJECT flag was specified, the kernel_object is referenced. If
KMA_COMPRESOR was specified, the compressor_object is referenced. Otherwise, a
new memory object is created using a call to vm_object_allocate().

vm_map_find_space() is called to find a suitable map address. This populates both the
map_addr and the entry. The vm_map_entry_t is then linked to the object and offset.

Any KMA_GUARD_FIRST guard pages are vm_page_insert()ed to the map, followed
by wired pages (with vm_page_insert_wired()). For the wired page,
PMAP_ENTER_OPTIONS is called, trying a fast path (PMAP_OPTIONS_NOWAIT). Should
that fail - a slow path with PMAP_ENTER is tried, and must succeed. Any
KMA_GUARD_LAST pages are then appended to the map, again through
vm_page_insert().

For allocations using the kernel_object or compressor_object, a call to
vm_map_simplify() coalesces neighboring regions. Otherwise, the memory object is
deallocated.



 

kmem_suballoc()

The kmem_suballoc() function creates and maps a submap inside a parent map (usually
the kernel_map). Important suballocations include the kalloc_map (for kalloc.* zones),
ipc_kernel[_copy]_map, the g_kext_map (for kext mappings), the zone_map (and zone
tag maps, if #VM_MAX_TAG_ZONES), IOKit pageable spaces, and BSD's bufferhdr_map,
mb_map, and the bsd_pageable_map.

The flow of kmem_suballoc() is a simple application of vm_map_enter() to reserve the
memory in the parent map, followed by vm_map_create() for the submap, and
vm_map_submap() to link the two together.

kmem_realloc()

It's quite rare, but there are certain cases wherein a reallocation of existing memory might
be required. Examples of this are the ensureCapacity() methods of libkern's OSSerialize
and OSData objects, and vm_purgeable_token_add(). For these cases, kmem_realloc()
is used.

There are two fine points with kmem_realloc(). The first is, that it does not free the
original address range - meaning that it must be explicitly kmem_free()ed. The second, is that
it does not bzero() the new memory allocated (if larger than the original allocation), leading to
a potential kernel memory disclosure.

kalloc()

The simplest KPI for memory allocation provided by the kernel is that of kalloc variants.
The simplest of these macros, defined in osfmk/kern/kalloc.h, is the kernel-mode equivalent of
user-mode's malloc(3). Its variants allow for additional options, like specifying a memory tag
or controlling whether the operation can block or not. Table 12-1 shows these macros:

Table 12-1: The various kalloc() macros, defined in osfmk/kern/kalloc.h

Macro variant Provides
kalloc(size) Basic allocation of size bytes

kalloc_tag(size,itag) As above, but with memory tag

kalloc_tag_bt(size,itag) As above, but with tag determined from caller

kalloc_noblock* All the above, guaranteed to return immediately (but may fail)

kallocp* All the above, taking size by reference and updating actual size allocated

The macros all expand to a call to kalloc_canblock(). Similar to the BSD MALLOC
macro, they first set up a vm_allocation_site, and then call the underlying function, which
takes the size argument by reference, a boolean as to whether or not it may block, and the site
by reference. The reason the size is passed by reference is because kalloc_canblock()
reports the actual size of the element allocated, which may be larger than the size requested.
The need for this is rare, but kallocp* variants exists to allow passing the size argument by
reference if necessary. libkern's kern_os_malloc() is one example of this feature's usefulness,
as are libkern's calls to kallocp_container(), which ensure the returned memory is
entirely bzero()ed up to the size allocated, even if more than initially requested.

kalloc()ed memory is automatically tagged as VM_KERN_MEMORY_KALLOC (#13),
though a different tag may be specified with the _tag variants of the macro. As of XNU-3248,
it's also possible to request an allocation to be tagged according to the backtrace leading up to
it. This is done by tagging the allocation site with a special VM_TAG_BT value (0x800), as is
done by the kalloc[/p_/noblock]_tag_bt variants. When the tag is retrieved,
vm_tag_bt() (in osfmk/vm/vm_resident.c) walks the current thread's kernel stack, attempting
to locate the most recent return address and then calls
OSKextGetAllocationSiteForCaller. The function searches for the address in the kernel
extension accounting data (described in Chapter 3), and retrieves the associated tag from the
allocation site.



 

kalloc.### zones

Behind the scenes, kalloc_canblock tries not to block, by providing the allocation from
one of several kalloc.### "zones". These zones are pre-allocated regions of memory,
spanning an integer number of pages, and "carved" into element slots. Each zone uses a fixed
element size, as indicated by the zone name (e.g. "kalloc.16" uses 16-byte elements). The zones
are set up early during kernel initialization, by a call to kalloc_init (osfmk/kern/kalloc.c) from
vm_mem_bootstrap(). The kalloc operation finds the first zone capable of containing the
allocation, unless the allocation size exceeds that of the largest zone (presently, 8192 for MacOS,
and 32,768 elsewhere), in which case kmem_alloc_flags() is used instead. XNU originally
provided kalloc zones with sizes at exact powers of two, starting at 1 (20) bytes, but over time
Apple has established 16 bytes as the smallest possible allocation, and added additional zones
(48,80,96,160,192,224,288,368,400,576,768,1152,1280,1664,6144). If a zone can be found to
satisfy the allocation, kalloc_canblock() calls zalloc_canblock_tag(), to perform the
allocation from the zone and tag it according to the vm_allocation_site.

The Kalloc DLUT

With so many zones, it's important to keep the operation of finding the right one as quick
and as efficient as possible. The Direct LookUp Table ("DLUT") was introduced in XNU-2050
as a means to quickly locate the right zone for an element.

Listing 12-2: The Direct LookUp Table of kalloc (from osfmk/kern/kalloc.c)

/*
 * Many kalloc() allocations are for small structures containing a few
 * pointers and longs - the k_zone_dlut[] direct lookup table, indexed by
 * size normalized to the minimum alignment, finds the right zone index
 * for them in one dereference.
 */

#define INDEX_ZDLUT(size)       \
                  (((size) + KALLOC_MINALIGN - 1) / KALLOC_MINALIGN)
#define N_K_ZDLUT       (2048 / KALLOC_MINALIGN)
                  /* covers sizes [0 .. 2048 - KALLOC_MINALIGN] */
#define MAX_SIZE_ZDLUT  ((N_K_ZDLUT - 1) * KALLOC_MINALIGN)

static int8_t k_zone_dlut[N_K_ZDLUT];   /* table of indices into k_zone[] */

/*
 * If there's no hit in the DLUT, then start searching from k_zindex_start.
 */
static int k_zindex_start;

static zone_t k_zone[MAX_K_ZONE];

..

/*
 * Given an allocation size, return the kalloc zone it belongs to.
 * Direct LookUp Table variant.
 */
static __inline zone_t
get_zone_dlut(vm_size_t size)
{
        long dindex = INDEX_ZDLUT(size);
        int zindex = (int)k_zone_dlut[dindex];
        return (k_zone[zindex]);
}



 

The slow path

As its name implies, there are circumstances in which kalloc_canblock does block. If
the allocation cannot fit in one of the many kalloc.* zones (and canblock is TRUE), a slow
path is taken instead. A call to kmem_alloc_flags() attempts to allocate the requested
memory - first from the kalloc_map, and then - as a fallback - the kernel_map. The
kalloc_map is a dedicated vm_map for large allocations, which is kmem_suballoc()ed by
kalloc_init() to span virtual memory between kalloc_map_min and kalloc_map_max.
The difference between the two (kalloc_map_size) is normally set to the 1/32 of the kernel's
sane_size, or 128MB for 32-bit kernels.

What makes the slow path so slow is that kmem_alloc_flags() calls
kernel_memory_allocate(), which needs to eventually call vm_page_grab() in order to
obtain physical memory pages, to back the allocation. This operation will block if there are no
pages immediately available, and can only be satisfied after page fault handling, which may take
thousands of cycles, if not more. The current thread will surely block, making this path
unsuitable and unsafe in atomic contexts. kmem_alloc_flags() is described later in this
chapter.

OSMalloc*

Yet another memory allocation facility offered by the kernel is OSMalloc. The function
prototypes are declared in libkern/libkern/OSMalloc.h (making them technically part of the Libkern
KPI), but their implementation is in osfmk/kern/kalloc.c.

The main advantage of using OSMalloc is its support of memory tags. The function takes
an additional OSMallocTag argument, which is a pointer to a structure defined as follows:

Listing 12-3: The OSMalloc tag, from libkern/libkern/OSMalloc.h

typedef struct _OSMallocTag_ {
    queue_chain_t   OSMT_link;
    uint32_t        OSMT_refcnt;
    uint32_t        OSMT_state; // OSMT_VALID or OSMT_RELEASED
    uint32_t        OSMT_attr;
    char            OSMT_name[OSMT_MAX_NAME];  // 64
} * OSMallocTag;

#define OSMT_DEFAULT   0x00
#define OSMT_PAGEABLE  0x01

extern OSMallocTag OSMalloc_Tagalloc(
    const char * name,
    uint32_t    flags);
..

void *
OSMalloc(
        uint32_t                        size,
        OSMallocTag                     tag)

Using a tag offers not only the ability to provide a meaningful name, but to also count the
number of times it is used. When a tag is created with OSMalloc_Tagalloc(), subsequent
allocations using OSMalloc increase its reference count. Further, flagging a tag with
OSMT_PAGEABLE causes the OSMalloc() to call kmem_alloc_pageable_external(),
rather than kallog_tag_bt(). Note, however, that the OSMalloc tags do not map to that
kalloc_tag*, for which only VM_KERN_MEMORY_KALLOC is used. Unfortunately, there is no
way to obtain the OSMallocTag of OSMalloc()ed memory, nor is there a way (outside of
inspecting kernel memory) to obtain the list of tags.



 

The Zone Allocator

The zones used by kalloc are only several of many more, used by the underlying Zone
Allocator. Zone allocators are very popular across operating system kernels, though they are
sometimes known by other names, for example, Linux's Slabs. A zone is defined as one or more
sets of preallocated, virtually contiguous memory pages. Each zone has a predefined element
size, and its pages can be used for obtaining elements of that stated size, but no other:
zalloc() and its variants accept only the zone, but no size arguments. Preallocating pages
and allocating elements in them allows compaction of memory space, especially in cases where
the element size is much smaller than a page size - as the alternative would have been to
consume a page per element, which would have been very wasteful. When elements are no
longer needed, they are zfree()d back into their zone, and may be reused.

The kernel allocates a large chunk of its virtual memory for zones in zone_map, through a
call to kmem_suballoc() made in zone_init() (osfmk/kern/zalloc.c). Just how large the
zone_map is varies by pointer size and physical memory. vm_mem_bootstrap (which calls
zone_init()) takes the zsize boot argument (if specified, in GB) as a base, or defaults to
one quarter of physical memory, but no less than CONFIG_ZONE_MAP_MIN (specified in
config/MASTER). For 64-bit architectures, whichever value used will further be increased by 50%,
but clamped to no more than half of RAM (In other words, the zone_map is usually 3/8 of
available RAM). For 32-bit architectures, it is not increased and further clamped by 1.5GB. Note,
however, that the allocation is virtual, not physical - i.e. not all pages of the zone_map are
guaranteed to be resident (until actually used).

Individual zones can then be allocated inside the zone_map. Each zone is initially allocated
as one set of pages, using zinit() (also from osfmk/kern/zalloc.c). The function takes four
arguments - the size of the element, the maximum size the zone can grow to, the alloc_size
used for the initial allocation or during expansion, and a human readable name for the zone. The
alloc_size is chosen so as to divide as cleanly as possible by the number of elements. The
name is required so that mach_zone_info users (notably, the zprint(1) utility) can
distinguish between the many dozens of zones*.

The zinit() call returns a zone_t, which is a pointer to a struct zone. This is a
relatively simple structure, used to maintain the zone's free_elements list, pages metadata,
its lock, zone_name, and a bitmap of its associated attributes. These are normally set by
default during zone creation (i.e., in zinit()), but remain modifiable (only before the zone is
used) through flags specified to zone_change().

Table 12-4: Flags settable by zone_change()

Attribute Default Meaning
Z_EXHAUST (1) false When zone is full no more elements can be allocated.

Z_COLLECT (2) true Zone applicable for garbage collection.

Z_EXPAND (3) true Zone may grow with subsequent allocations.

Z_FOREIGN (4) false May collect foreign elements, outsize zone map.

Z_CALLERACCT (5) true Allocations accounted to the caller.

Z_NOENCRYPT (6) false Mark zone memory as not requiring encryption.

Z_NOCALLOUT (7) false No asynchronous allocations.

Z_ALIGNMENT_REQUIRED (8) false Mark as alignment required (for CONFIG_KASAN)

Z_GZALLOC_EXEMPT (9) false Mark as untracked by the Guard Zone Allocator (CONFIG_GZALLOC)

Darwin 17

Z_KASAN_QUARANTINE (10) true CONFIG_KASAN: Quarantine zfree()d elements

Z_TAGS_ENABLED (11) false VM_MAX_TAG_ZONES: Enable element tags (also requires -zt boot-arg)

Darwin 18

Z_CACHING_ENABLED (12) no Enables zone to be used with new Zone Cache mechanism

Darwin 19

Z_CLEARMEMORY (13) no bzero() new chunks (KMA_ZERO)

* - The human readable name as a fourth argument to a function both serves to uniquely symbolicate zinit(), as
well as all of its callers - a useful method used by jtool2 --analyze when operating on kernelcaches.



 

Most zones are named after their element name (i.e. the corresponding struct), or very
similarly (e.g. "tasks" containing struct task). Table 12-5 shows some of the important
zones. Those initialized by kmeminit() are all Mach zones corresponding to BSD layer zones.

Table 12-5: Some of the zones defined as of XNU 4570

Zone Name Allocated by Used for
kalloc.### kalloc_init() (osfmk/kern/zalloc.c) Miscellaneous kalloc allocations

tasks task_init() osfmk/kern/task.c) Mach Task objects (q.v. Chapter 9)

thread thread_init() osfmk/kern/thread.c) Mach thread shuttles (q.v. Chapter 9)

ipc spaces
ipc_init() (osfmk/ipc/ipc_init.c)

Task ipc_space objects

ipc ports ipc_port objects

proc

kmeminit() (bsd/kern/kern_malloc.c)

BSD processes (q.v. Chapter 6)

uthread BSD threads (q.v. Chapter 6)

mount Mounted filesystems (q.v. Chapter 7)

fileglob Kernel file representation(q.v. Chapter 6)

fileproc Process files (q.v. Chapter 6)

file desc Process file descriptors (q.v. Chapter 6)

vnodes Vnodes (q.v. Chapter 7)

Once a zone is zinit()ed, elements can easily be obtained from it by a call to zalloc().
The function takes a single argument - the zone from which to allcoate, and thus ensures the
size is as was predetermined by zinit(). zalloc() calls zalloc_internal(), which also
controls whether the allocation canblock, needs to wait for new pages (nopagewait), a
reqsize indicating how much of the allocation will actually be used, and a memory tag.
Multiple zalloc_* variants exist to wrap these arguments, although their use is uncommon.

When a zone nears exhaustion or is empty, it may be expanded (if expandable). Zones
marked async_prio_refill (presently, Reserved.VM.map.entries and VM.map.holes)
are replenished asynchronously by the zone_replenish_thread() when they fall below
prio_refill_watermark. These must be also be marked to allow_foreign, as memory
might be allocated for them outside the zone map, if the zone map is out of space. All other
zones marked expandable may be expanded in zalloc_internal().

Both expansion and repleneshing operations involve kernel_memory_allocate()ing a
new chunk of the specified zone's alloc_size (or, if memory is low, at least one element,
rounded up to a page size), and then "cramming" it into the zone, using the zcram() routine,
which also updates the metadata for the new pages accordingly. There is also a zfill()
function, which kernel_memory_allocate()s a chunk large enough to fill a requested
number of elements. The os_reason_init() routine (in bsd/kern/sys_reason.c) uses this to
ensure the os_reason_zone has enough memory, even during jetsam events (which require
specifying an os_reason object).

The zprint(1) command is a highly useful utility to glean information about the state of
the zones. zprint(1) uses the mach_[zone|memory]_info (mach_host subsystem #220
and #227) and task_zone_info (#3428 in the task subsystem) MIG routines. The former
MIG calls produce the zone listing, and although part of mach_host and not host_priv they
nonetheless requires root privileges. There is also a mach_zone_info_for_zone() MIG
routine (mach_host #231).

zprint(1) is part of the system_cmds project, but is not part of the *OS binpack because
Apple already provides a signed (and entitled!) binary on *OS, intended to be used as part of the
sysdiagnose(1) process. As of later *OS variants, however, Apple restricts
mach_memory_info() through a #if CONFIG_DEBUGGER_FOR_ZONE_INFO, which refuses
this functionality unless PE_i_can_has_debugger(NULL) (=debug_enabled) is true,
rendering the command useless.

Using zprint(1) is a great way to find the sizeof() of some common structures,
especially those which keep changing in between Darwin versions.



 

Zone Management

It used to actually take a zone in order to manage zones. Prior to setting up the kernel
zones, a special "zone of zones" was created by a call to zone_bootstrap(), prior even to
zone_init(), which sets up the zone_map. This practice also supported "fake zones", which
were memory regions (e.g. kernel stacks) that mach_zone_info() would report to user mode.

As of Darwin 16, the zones zone has been removed, and zone_bootstrap() instead
sets up a zone_array, which is statically allocated to accommodate up to MAX_ZONES struct
zone entries. The value was initially 256, but has grown (around Darwin 17.2) to 320, where it
remains at this time. The zone_empty_bitmap tracks which zones are empty (i.e., it is initially
set to all '1's), allowing destroyed zones to be reused. The number of used entries (= '0' bits) in
the bitmap tracked with the num_zones_in_use variable, and the number of overall zones
created with num_zones. The zone names themselves are stored (NULL-terminated and
concatenated to one another) on a dedicated page, allocated by kmem_alloc_kobject and
pointed to by zone_names_start. An additional pointer, zone_names_next, points to the
end of the last zone name in the page.

Zone memory is taken from the zone_map. This is a vm_map which spans from
zone_map_min_address to zone_map_max_address. At the beginning of the zone_map is
a special area called the zone metadata region, through which individual pages can be
tracked to their allocating zones. The metadata spans from zone_metadata_region_min
(usually equal to zone_map_min_address) to zone_metadata_region_max.

Table 12-6 shows all the zone-related variables, including those described above, and others
we will encounter soon. MacOS XNU exports these symbols, but the *OS kernels do not -
although all are readily identified by joker.

As an example (from MacOS 14.3), consider the following:

bash-3.2# xnoop dump _zone_map_min_address,8
0xffffff801449c950    0xffffff801a038000   
bash-3.2# xnoop dump _zone_map_max_address,8
0xffffff801449c958    0xffffff804a038000   
bash-3.2# xnoop dump _sane_size,8
0xffffff80145e7408 00 00 00 80 00 00 00 00 

Working the math and taking the difference between the zone_map_max_address and
the zone_map_min_address we'd get 0x30000000. This is in line with what would be
expected from the source, since this value is a three eights of sane_size (as set up by
vm_mem_bootstrap() for __LP64__ kernels.

Table 12-6: Zone related variables (all defined in osfmk/kern/zalloc.c)

Variable Holds
zone_map A vm_map_t holding the actual virtual memory used by the all zones

all_zones_lock
A simple_lock guarding access to the zone_array, num_zones[_in_use]
and the zone_empty_bitmap

zone_map_[min/max]_address vm_offset_ts specifying beginning and end of zone map

zone_metadata_region_[min/max] vm_offset_ts specifying beginning and end of metadata

zone_metadata_region_lck A mtx_lck_t protecting the zone metadata region contents

zone_array An array of up to MAX_ZONES (presently, 320) struct zone entries

num_zones Tracks zones created in zone_array (incremented by zinit)

num_zones_in_use Tracks non-empty zones (as num_zones, decremented by zdestroy)

zone_empty_bitmap Bitmap of MAX_ZONES (in practice, num_zones) bits, tracking use



 

The zone_metadata_region

Maintaining metadata for zones is a daunting challenge. On the one hand, it must be done
as efficiently as possible. On the other, zones are frequent target for exploitation in controlled
kernel memory overwrites, and therefore efficiency should not come at the cost of security.
Apple has continuously been modifying zone management, with the latest redesign in Darwin 16
and above.

As of Darwin 16, per page zone metadata has been moved into its very own
zone_metadata_region. Bound between zone_metadata_region_min and ..max, this is
a large array of struct zone_page_metadata. Each of these is a fixed size element, so it
follows that a formula can be used, given a memory address, to find its zone metadata. First, the
page index needs to be found, for which the PAGE_INDEX_FOR_ELEMENT macro is used.
Listing 12-7 shows this macro:

Listing 12-7: The PAGE_INDEX macros in osfmk/kern/zalloc.c

/* Macro to get page index (within zone_map) of page containing element */
#define PAGE_INDEX_FOR_ELEMENT(element)                         \
  (((vm_offset_t)trunc_page(element) - zone_map_min_address) / PAGE_SIZE)

/* Macro to get page for given page index in zone_map */
#define PAGE_FOR_PAGE_INDEX(index)                              \
  (zone_map_min_address + (PAGE_SIZE * (index))) 

Recall, that the zone map includes its own pages - and all other zones, whose pages are
contiguous in virtual memory. A page's index can therefore be found by taking the rounded page
address of the element (bitmasked with the inverse of PAGE_MASK, as is performed by the
trunc_page() macro) and subtracting it from zone_map_min_address, then dividing that
difference by the PAGE_SIZE. Of course, this operation is fully reversible, so the inverse macro,
PAGE_FOR_PAGE_INDEX, is used in those cases.

Index at hand, finding the metadata is as straightforward as looking at the entry at that
index in the array starting at zone_metadata_region_min whose elements are struct
zone_page_metadata. Indeed, this is what the PAGE_METADATA_FOR_PAGE_INDEX macro
does. This, too, has an inverse operation, and both are shown in Listing 12-8:

Listing 12-8:

Now let's continue our example with an arbitrary address - say, that of the kernel_task:

bash-3.2# jtool -S /System/Library/Kernels/kernel | grep kernel_task$
ffffff8000c9c218 S _kernel_task
# Apply slide:
bash-3.2# xnoop sdump 0xffffff8000c9c218,8
0xffffff801449c218    0xffffff801aa4d280 

The kernel_task export is, once slid, at 0xffffff801449c218 - which is outside the zone
map. This is as it should be, because the _kernel_task export is in the __DATA.__common.
But the kernel_task is a task_t - i.e. a pointer, and the struct task it points to is at
0xffffff801aa4d280 - well within the zone map. To find the page index of this address, we
need to manually apply the PAGE_INDEX_FOR_ELEMENT macro calculation:

PAGE_INDEX_FOR_ELEMENT(0xffffff801aa4d280) = 
      (0xffffff801aa4d000 - 0xffffff801a038000) / 0x1000 = 0xa15

/* Macro to get metadata structure given a page index in zone_map */
#define PAGE_METADATA_FOR_PAGE_INDEX(index)                     \
  (zone_metadata_region_min + ((index) * sizeof(struct zone_page_metadata)))

/* Macro to get index (within zone_map) for given metadata */
#define PAGE_INDEX_FOR_METADATA(page_meta)                      \
 (((vm_offset_t)page_meta - zone_metadata_region_min) / sizeof(struct zone_page_metadata))



 

Getting the metadata for a zone element at a given address is therefore a two step
operation, although it can be combined into a larger macro - which is exactly what
PAGE_METADATA_FOR_ELEMENT achieves.

Continuing our example of locating the page holding the kernel_task structure, which
was in page 0xa15. Where is the metadata for this zone? First, we find the metadata region,
which conveniently overlaps with the beginning of the zone map*:

bash-3.2# xnoop dump _zone_metadata_region_min,8
0xffffff801449c960    0xffffff801a038000   
bash-3.2# xnoop dump _zone_metadata_region_max,8
0xffffff801449c968    0xffffff801a4b8000   

The sizeof(struct zone_page_metadata) is 24 (= 0x18). This means that the
metadata entry for page 0xa15 can be found by:

PAGE_METADATA_FOR_PAGE_INDEX(0x1a5) = 
= 0xffffff801a038000 + (0x1a5 * 0x18) = 0xffffff801a03a778

Figure 12-9 shows a graphic example. In it, pages #5 and #6 of the zone map (counting
from 0) are highlighted, as is their metadata. Finding the metadata and the page, given its
index, is a direct application of the formulae shown in this section.

Figure 12-9: Zone metadata and the zone map

There is an important exception to this type of metadata maintenance: Foreign allocations
(which, you'll recall, are from outside the zone_map). Though rare, these may be allocated by
the zone_replenish_thread() can't allocate from the zone_map so it falls back to the
kernel_map. Such allocations obviously won't work with this scheme (as there is no valid
PAGE_INDEX_FOR_ELEMENT), so metadata instead is stored on the allocation itself, which is
limited to one page.

* - Actually, not that conveniently.. Attempting to read from the very beginning of the zone metadata region will fail,
and may panic the kernel! In fact, pages #5 and #6 shown in the illustration and chosen for simplicity, are also
similarly unreadable, with the metadata becoming safe to read only later on (in a case handled by
get_zone_page_metadata()). The reason why is left to ponder as a review question.



 

The zone metadata

Thus far, we've established pages belonging to zones (and only those pages) have
corresponding metadata elements in the zone_metadata_region. When a zone claims pages
(during its creation or expansion), the metadata of these pages is made resident (by
kernel_memory_populate()). But what exactly is maintained in the metadata? Listing 12-10
shows the structure definition (from osfmk/kern/zalloc.c), as did Figure 12-9 (in the previous
page).

Listing 12-10: The struct zone_page_metadata (from osfmk/kern/zalloc.c)

Prior to Darwin 17 the number of bits in zindex was fixed to 8 - which caused a problem
with zone indices greater than 254. After increasing MAX_ZONES past 256 (in Darwin 17),
zindex was allowed to "borrow" two bits from page_count (i.e. ZINDEX_BITS is now 10),
which is fine considering that zones chunks have a small number of pages.

The pages queue chain is a pointer to the next (and previous) metadata for another zone
chunk, or (if there are no more) a pointer to the struct zone's corresponding chunk list. Each
struct zone presently maintains four such lists (queue_head_ts):

any_free_foreign: A list of foreign pages crammed into the zone. These are outside
the zone map, and therefore have the metadata embedded in them. This is only
applicable for zones which explicitly allow_foreign (i.e. have Z_FOREIGN set via
zone_change().

all_free: A list of chunks that are either freshly allocated or, over time, had all their
elements zfree()d. These are candidates to be picked up in the next garbage collection.

intermediate: A list of chunks in which at least one element is free, but also at least
one element is in use.

all_used: A list of chunks in which all elements are used. These chunks have a
free_count of 0, and a freelist_offset of 0xffffffff.

Chunks are moved between the list based on the free_count, which is incremented on
try_alloc_from_zone() and decremented on free_to_zone().

struct zone_page_metadata {
  queue_chain_t   pages; /* linkage pointer for metadata lists */

  /* Union maintaining start of element free list and real metadata (for multipage allocations) */
 union {
  /* 
  * The start of the freelist can be maintained as a 32-bit offset instead of a pointer because 
  * the free elements would be at max ZONE_MAX_ALLOC_SIZE bytes away from the metadata. Offset 
  * from start of the allocation chunk to free element list head.
  */
  uint32_t   freelist_offset;
  /* 
  * This field is used to lookup the real metadata for multipage allocations, where we mark the 
  * metadata for all pages except the first as "fake" metadata using MULTIPAGE_METADATA_MAGIC. 
  * Offset from this fake metadata to real metadata of allocation chunk (-ve offset).
  */
  uint32_t   real_metadata_offset;  
  };

  /* 
  * For the first page in the allocation chunk, this represents the total number of 
  * free elements in the chunk. 
  */
  uint16_t    free_count;
  unsigned    zindex     : ZINDEX_BITS;    /* Zone index within the zone_array */
  unsigned    page_count : PAGECOUNT_BITS; /* Count of pages within the allocation chunk */
};



 

Element Free Lists

Even if we assume for a minute that zones start up empty and elements are added linearly
(one after the other), soon enough (as elements are freed) it is inevitable that "holes" form in
zones over the freed elements. To maintain efficiency, these free elements need to be tracked so
that they can be reallocated. The way to do that is to maintain element free lists. The zone
metadata maintains a 32-bit freelist_offset, from the start of the allocation chunk to the
freelist's head.

Using an offset instead of a pointer is advantageous in that it saves four bytes per element.
For other pages within the same chunk, there's no benefit in saving any freelist reference - as it
can be walked from the first page anyway. There is, however, a need to quickly find the real
metadata. Once again, this is best served by an offset. Thus, for subsequent pages inside the
same allocation chunk, this field is repurposed (via a union) to point to the
real_metadata_offset.

Also, assuming linear addition of elements is no longer valid. After allocating a zone chunk,
zcram() introduces freelist randomization: random_free_to_zone() is called to free the
chunk's elements and splice the free list by progressively adding elements from the beginning or
the end of the page. Entropy is generated using random_bool_gen_bits() (implemented in
osfmk/prng/prng_random.c, which is the same PRNG used in the IPC space (port name) entropy.

Listing 12-11: The random_free_to_zone() from XNU-6153's osfmk/kern/zalloc.c

The Listing above shows how random_free_to_zone() determines where to free to, but
the actual splicing of the free list is performed by free_to_zone(). This routine adds the
zfree()d element to the head of the chunk free list, with or without a "poison", as discussed
shortly.

#define MAX_ENTROPY_PER_ZCRAM          4

static void
random_free_to_zone(
        zone_t          zone,
        vm_offset_t     newmem,
        vm_offset_t     first_element_offset,
        int             element_count,
        unsigned int    *entropy_buffer)
{
        vm_offset_t     last_element_offset;
        vm_offset_t     element_addr;
        vm_size_t       elem_size;
        int             index;

        assert(element_count && element_count <= ZONE_CHUNK_MAXELEMENTS);
        elem_size = zone->elem_size;
        last_element_offset = first_element_offset + ((element_count * elem_size) - elem_size);
        for (index = 0; index < element_count; index++) {
                assert(first_element_offset <= last_element_offset);
                if (
#if DEBUG || DEVELOPMENT
                    leak_scan_debug_flag || __improbable(zone->tags) ||
#endif /* DEBUG || DEVELOPMENT */
                    random_bool_gen_bits(&zone_bool_gen, entropy_buffer, MAX_ENTROPY_PER_ZCRAM, 1)) {
                    element_addr = newmem + first_element_offset;
                    first_element_offset += elem_size;
               } else {
                    element_addr = newmem + last_element_offset;
                    last_element_offset -= elem_size;
                }
                if (element_addr != (vm_offset_t)zone) {
                    zone->count++;  /* compensate for free_to_zone */
                    free_to_zone(zone, element_addr, FALSE);
                }
                zone->cur_size += elem_size;
        }
}



 

Experiment: Viewing zones and metadata in memory

The following example illustrates a simple zone layout in memory. To remain efficient,
the example uses xnoop(j), but can also be followed with the help of a simple memory
dumper (per a D-script in MacOS or with a kernel_task mach_vm_read()) in jailbroken
*OS, following jtool2 --analyze for symbolication.

We start by getting the preliminary values we'll need to perform some zone-arithmetics:

Output 12-12-a: Preliminary values needed for zone math

root@Bifröst (~)# xnoop syms slid | grep zone_array
0xffffff8001aa3520 14 _zone_array
root@Bifröst (~)# xnoop dump _zone_metadata_region_min,16
0xffffff8001aa3500    0xffffff802f05f000  # _zone_metadata_region_min
0xffffff8001aa3508    0xffffff803145f000  # _zone_metadata_region_max

Let's look at the zone at index 6. Given the size of a zone in MacOS 15 is 0x130, that
will have us at 0xffffff8001aa3c40. The reader is highly encouraged to follow along this
example with the zonedump.d D-Script (available in the Book's website as a listing), or
even on *OS, crafting a zone dumper as further exercise.

Output 12-12-b: Showing the pmap zone data structure, as an example

root@Bifröst (~) # xnoop dump 0xffffff8001aa3c40 zone
zone@0xffffff8001aa3c40:
   zcache(@0x0): NULL          # Not cached
   free_elements(@0x8):  NULL  # Unused
   pages.any_free_foreign.next(@0x10): 0xffffff8001aa3c50  # empty (!allow_foreign)
   pages.any_free_foreign.prev(@0x18): 0xffffff8001aa3c50  # empty (!allow_foreign)
   pages.all_free.next(@0x20):         0xffffff8001aa3c60  # empty
   pages.all_free.prev(@0x28):         0xffffff8001aa3c60  # empty
   pages.intermediate.next(@0x30):     0xffffff802f3f5ca8
   pages.intermediate.prev(@0x38):     0xffffff802f3b0000
   pages.all_used.next(@0x40):         0xffffff8001aa3c80  # Empty
   pages.all_used.prev(@0x48):         0xffffff8001aa3c80  # Empty
   count(@0x50): 542   countfree(@0x54): 98
   count_all_free_pages(@0x58): 0
   cur_size(@0xb8): 286720  max_size(@0xc0): 270336
   elem_size(@0xc8): 448 alloc_size(@0xd0): 28672
   page_count(@0xd8): 0x46  sum_count(@0xe0): 0x50a67
   exhaustible(@0xe8): false  collectable(@0xe8): true
   expandable(@0xe8): true  allows_foreign(@0xe8): false
   doing_alloc_without_vm_priv(@0xe8): false   doing_alloc_with_vm_priv(@0xe8): false
   waiting(@0xe8): false   async_pending(@0xe8): false
   zleak_on(@0xe9): false   caller_acct(@0xe9): true
   noencrypt(@0xe9): true  no_callout(@0xe9): false
   async_prio_refill(@0xe9): false gzalloc_exempt(@0xe9): false
   alignment_required(@0xe9): false zone_logging(@0xe9): false
   zone_replenishing(@0xea): false kasan_quarantine(@0xea): true
   tags(@0xea): false          tags_inline(@0xea): false
   tag_zone_index(@0xea): 0 zone_valid(@0xeb): true
   cpu_cache_enable_when_ready(@0xeb): false  cpu_cache_enabled(@0xeb): false
   clear_memory(@0xeb): false  zone_destruction(@0xeb): false
   index(@0xf0): 6   zone_name(@0xf8): pmap
   ...

We see that the zone is pmap, and serendipitously it is a pretty simple zone, as it only
has the intermediate list active (which is why it was chosen for the example), with the
other lists pointing to their own address (at offsets +0x10, +0x20 and +0x40). We can walk
the intermediate list, again using xnoop:

Output 12-12-c: Walking the pmap intermediate list

root@Bifröst (~) # xnoop  walk zone | grep pmap
Zone @0xffffff8001aa3c40: pmap Index: 6 
 Size: 0x46000/0x42000, Element Size: 448, alloc_size: 0x7000 Using 70 pages
pmap Intermediate: 0xffffff802f3f5ca8 (0xffffff80554e6000-0xffffff80554ed000) - 29 free
pmap Intermediate: 0xffffff802f2af260 (0xffffff8050e43000-0xffffff8050e4a000) - 8 free
pmap Intermediate: 0xffffff802f260de0 (0xffffff80446f3000-0xffffff80446fa000) - 4 free
pmap Intermediate: 0xffffff802f15f938 (0xffffff8039b6c000-0xffffff8039b73000) - 14 free
pmap Intermediate: 0xffffff802f1cac00 (0xffffff803e2df000-0xffffff803e2e6000) - 4 free
pmap Intermediate: 0xffffff802f291110 (0xffffff8046715000-0xffffff804671c000) - 5 free
pmap Intermediate: 0xffffff802f38bd60 (0xffffff8050e43000-0xffffff8050e4a000) - 12 free
pmap Intermediate: 0xffffff802f3e38a0 (0xffffff80548bb000-0xffffff80548c2000) - 10 free
pmap Intermediate: 0xffffff802f096fc8 (0xffffff80315b2000-0xffffff80315b9000) - 6 free
pmap Intermediate: 0xffffff802f3b0000 (0xffffff805265f000-0xffffff8052666000) - 6 free

Note, that even though the intermediate list chunks are not in ascending order, the
math adds up. The count of all free elements across chunks is the same as countfree.
Each chunk is 0x7000 bytes, and so the total number of chunks is 70, same as the zone's
page_count.



 

Garbage Collection

As we've established, freeing zone elements results in holes. If such holes are large enough
so as to encompass an entire page, the zone can be compacted and the page freed for re-use,
possibly by another zone. There is thus a need to collect "garbage" pages periodically, or on low
memory conditions.

Garbage collection is performed by calling consider_zone_gc(), with a boolean to
consider_jetsams. The "consideration" is allowing for a special case reclaiming early boot
memory (from kmapoff_kaddr, as discussed in Chapter 5) and otherwise checking that
zone_gc_allowed is set to TRUE, which it always is. The calls to consider_zone_gc() are
made from the vm_pageout thread's vm_pageout_garbage_collect, and from
vm_page_find_contiguous(), on failure to find pages.

The actual garbage collection is performed by zone_gc(), which may first call
kill_process_in_largest_zone() if consider_jetsams was true, as discussed later.
zone_gc() then acquires the zone_gc_lock and iterates over all zones marked as
collectable in the zone_array, calling drop_free_elements() if they have pages in
their all_free queue. Cacheable zones (as of Darwin 18) also have their depots drained, as
discussed later. The garbage collection occurs under the zone_gc_lock, which ensures only
one concurrent garbage collection can take place. Throughout the process the thread's options
flags TH_OPT_ZONE_GC, marking the thread as garbage collecting (and also avoid a potential
deadlock with the zone replenish thread).

drop_free_elements() locks the zone it operates on, in order to "snatch" its all_free
queue, replacing it with an empty queue. The (now detached) queue is iterated over once to
determine its size and element count, and then the zone is locked again briefly so it can be
adjusted accordingly. The detached queue is then iterated over again, this time dequeueing each
page chunk in turn, and then calling kmem_free() to free the page from the zone_map.

Iterating over all the zones' free lists in this manner can be a very long operation, so after
every such free operation a call to thread_yield_to_preemption() is made (allows
possible preemption (for a pending AST_PREEMPT, as discussed in Chapter 9). Since
drop_free_elements() may be called from zdestroy, the preemption check is made only
as part of a zone_gc(), as determined by the aforementioned TH_OPT_ZONE_GC option.

GC and UAF

Garbage collection, however, also proves to be an instrumental step in exploitation, as part
of the "Feng Shui" required to channel the Qi of exploitation. Rather than thinking about it as
"garbage collection" in this context, it helps to consider "memory recycling" - The memory freed
following garbage collection can be reused by the system for entirely different purposes. Memory
which previously represented a given object in some zone may be repurposed and later used by
another object (of the same or of a different type) in some other (or the same) zone.

If a Use-After-Free condition can be triggered, a user mode attacker can cause the
reference count of an object to drop to zero, while still nonetheless holding a reference to the
object in user mode. If the attacker further has the ability to control write operations to the
object's memory after it is repurposed (for example, by spraying fake content in a Mach message
OOL descriptor), the object (usually, an ipc_port, or IOUserClient) can be entirely
controlled. Specific examples of these attacks can be found throughout Volume III.

What made this type of exploitation far easier was that garbage collection could be trigged
from user mode, by calling mach_zone_force_gc (MIG message #221 of the mach_host
subsystem). The call was synchronous, so it was guaranteed any reclamation of pages would be
complete when it returned. Apple eventually figured out this is a security concern, and removed
the call (outside of DEBUG/DEVELOPMENT) as of Darwin 17. Garbage collection can still be
triggered, however, by causing the rapid allocation of many kernel objects, or sending (but not
receiving) many Mach messages. Doing so will first fill up any intermediate lists, then lead to
more chunk alocations. Destroying the objects or receiving the messages results in freeing the
respective zone elements, and reclaims the entire free pages, after which they may be
repurposed. Although the operation is nowadays performed asynchronously, the interested caller
can simply delay execution sufficiently for collection to reliably complete.



 

Battling zone corruption

In a perfect world, zone metadata, free lists and allocations could be trusted, since they are
in kernel memory. In the cruel, far-from-perfect world of XNU, however, nefarious hackers and
jailbreakers find new vulnerabilities leading to kernel memory corruption. Apple has reworked the
metadata several times, before settling (for now) on the Darwin 16 and later approach described
earlier.

A common exploitation method (exploited, for example, by the TaiG jailbreak, as discussed
in III/18) involved freeing an element (using zfree() or, as of Darwin 18, the quicker
zfree_direct()) into the wrong zone. Either variant requires both the zone pointer and the
element to be freed, but it is only from Darwin 16 that such zfree() operations (but not
zfree_direct()s, used by the zone cache) are reliably intercepted, thanks to the new zone
metadata layout.

During the free operation the element may or may not be "poisoned", by memset()ing with
ZP_POISON (0xdeadbeefdeadbeef). The zfree() variants both call element poisoning code
(refactored in Darwin 18 into the zfree_poison_element() routine). Doing so for every
element, however, is quite costly, so concessions have to be made:

Zones whose element sizes is equal to or less than zp_tiny_zone_limit always get
poisoned. This value is set by zp_init() to the CPU's cache line size
(cpu_info.cache_line_size). The -no-zp boot argument sets this value to zero,
thereby disabling poisoning altogether.

For larger zones, zp_factor and zp_scale govern the frequency of poisoning. These
are initially set to ZP_DEFAULT_[SAMPLING/SCALE]_FACTOR (16 and 4, respectively),
and the default factor is further permuted in one out of every two cases by +/-1 (as
determined by two bits from early_random(). The zp-factor and zp-scale boot
arguments (with dashes, not underscores..) can override these values. Whichever way
they are set, sample_counter() tracks the freed zone's zp_count, and possibly
poisons according to them, with the zp_scale providing a right logical shift for the
element size. This means that larger elements are less likely to be poisoned, and the
zp_scale can control the frequency of poisoning. Setting the zp_factor to 0
effectively disables this poisoning, and setting it to 1 (or setting the -zp boot argument,
which does so as well) poisons every operation.

There are further integity checks for zone pointers in the free list, rolled up into
is_sane_zone_ptr(). The current criteria mandate alignment to pointer boundary, a kernel
address, and pointing to somewhere in the zone map (unless the zone allows foreign elements).

Darwin 19 adds a significant improvement with zone_require (address, zindex).
Prior to dereferencing an object pointer, this call ensures that the address belongs to the zone at
zindex. This effectively eliminates a common technique of UaF/GC in which fake objects (mostly
ipc_ports, but potentially tasks, procs, etc) could be constructed (by parking mach_msgs and
OOL descriptors in kernel). iOS 13.2 further laces most port to kobject conversion checks with
calls to zone_require().*

The Guard Mode Zone Allocator (MacOS)

MacOS #defines the CONFIG_GZALLOC setting, which enables the "Guard Mode" zone
allocator. When set, this makes zalloc_internal first call to gzalloc_alloc(), rather than
the zone cache or the traditional zone allocation. Guarded zone allocations then behave very
similarly to the way libgmalloc(3) (Guard Malloc) allocations do in user mode, to detect use
of uninitialized data or potential overflows, but in kernel mode. It does so by memset()ting a
pattern ('g') on free and adjoining guard pages (protected to PROT_NONE) to allocations.

* - The author is befuddled by the fact that zone_require() in *OS up to and including 13.3 does not panic() if
the address is not in a zone, despite the open sources (of XNU-6153.11.26) seeming to indicate it does. At any rate,
this "minor" oversight enabled Brandon Azad's "oob_timestamp" exploit technique for 13.3.[1]



 

Similar to libgmalloc(3), the Guard Mode zone allocator can be configured to detect
underflows, rather than overflows, and other aspects of allocation behavior can be tweaked. This
is done by passing the following boot arguments:

The guard zone allocator also adds gzalloc_data_t metadata to every zone. This is a
simple structure, containing an array of addresses (gzfc), and an index holding its active size.
Using this allocator is far more reliable than the probabilistic poisoning, but does waste
significant memory. It therefore only applies to gzalloc_tracked() zones, which presently
consist of zones whose element sizes fall between the gzalloc_[min|max], or the particular
zone matched by the gzname argument. This is only if the zones in questions aren't marked by
gzalloc_exempt (through the Z_GZALLOC_EXEMPT flag of zone_change()). The default
value of gzalloc_min is greater than the max, so unless changed (or -gzalloc_mode is
explicitly stated), no zones (but the possibly named one) will be tracked.

The Zone Cache (Darwin 18+)

Darwin 18 adds a new layer on top of the zone allocator, called the zone cache. The layer
draws on academic research, and aims to make zone allocations more efficient and scalable
across multiple CPUs. Listing 12-14 (next page) shows the verbose description of the zone
caching mechanism, from osfmk/kern/zcache.h. Readers remembering the discussion of the user
mode magazine allocator (I/8) will likely be able to find the strong parallels between the two.

Zone caching is contingent on CONFIG_ZCACHE being defined, though that is true across all
Darwin 18 flavors. Additionally, it requires either specific zone opt-in by specifying the
zcc_enable_for_zone_name= boot-arg, global enablement by -zcache_all, or specific
opt-in by calling zone_change() with the Z_CACHING_ENABLED flag (presently set only for
ipc_kmsg_zone). When caching is enabled for a zone, zcache_init() is called on it,
initializing a per-CPU cache for it and setting the zone's cpu_cache_enabled() field. Zones
zinit()ed before the zone cache is ready are tagged through their
cpu_cache_enable_when_ready field, so that zone_bootstrap() picks up the marking
and zcache_init()s them.

zone_caching_enabled(zone) checks the criteria on a per zone basis which is that the
zone is marked with cpu_cache_enabled, and that the zone is not tagged or followed by
zleaks. If met, zalloc_internal() is diverted to zcache_alloc_from_cpu_cache, and
likewise zfree() is diverted to call zcache_free_to_cpu_cache().

The magazines are kept in their own zone (zcc_magazine_zone). The zone cache also
uses its own zcache_canary, with an early_random() value set by
zcache_bootstrap(). The canary is added at the beginning and end of each element when
freed to the CPU cache (or when the magazine is filled), and validated when elements are
allocated from the cache (or the magazine is drained). This provides another way to intercept
potential use after free. When draining the magazine, after the canary is validated the element is
freed through zfree_direct(), as a lightweight version of zfree() which skips the
cumbersome checks of zfree()ing to the wrong zone.

Table 12-13: The boot arguments processed by the Guard Mode zone allocator

-[no]gzalloc_mode Enables the allocator on all zones, or disables. Default is disabled

gzalloc_[min|max] Target only zones with elements between min and max (default: none)

gzalloc_uf_mode Protect underflows, rather than overflows

gzalloc_fc_size Free element cache size

gzname Zone to target, by name

-gzalloc_wp Set guard page permissions to allow read

-gzalloc_no_dfree_check Disable double free check (default: check)

-gzalloc_noconsistency Disable consistency checks (default: check)



 

Listing 12-14: Zone caches (from XNU 4903's osfmk/kern/zcache.h)

/*  Below is a diagram of the caching system. This design is based of the
 * paper "Magazines and Vmem: Extending the Slab Allocator to Many CPUs and
 * Arbitrary Resources" by Jeff Bonwick and Jonathan Adams. It is divided into 3
 * layers: the Per-cpu Layer, the Depot Layer, and the Zone Allocator. The
 * Per-CPU and Depot layers store elements using arrays we call magazines.
 *
 *  Magazines function like a stack (we push and pop elements) and can be
 *  moved around for bulk operations.
 *  _________         _________         _________
 * |  CPU 1  |       |  CPU 2  |       |  CPU 3  |
 * |  _   _  |       |  _   _  |       |  _   _  |
 * | |#| | | |       | | | |#| |       | |#| |#| |        Per-CPU Layer
 * | |#| |_| |       | |_| |#| |       | |#| |#| |
 * |_________|       |_________|       |_________|
 *
 *  ______________________________________________
 * |            _   _   _   _   _   _             |
 * |           |#| |#| |#| | | | | | |            |     Depot Layer
 * |           |#| |#| |#| |_| |_| |_|            |
 * |______________________________________________|
 *
 *  _______________________________________________
 * | # | # | # | # | # | # | # | # | # | # | # | # |   Zone Allocator
 * |_______________________________________________|
 *
 * The top layer is the per-cpu cache and consists of a current and
 * previous magazine for each CPU. The current magazine is the one we always try
 * to allocate from and free to first. Only if we are unable, do we check the
 * previous magazine. If the previous magazine can satisfy the allocate or free,
 * then we switch the two and allocate from the new current magazine. This layer
 * requires no locking, so we can access multiple CPU's caches concurrently.
 * This is the main source of the speedup.
 *
 *  We have two magazines here to prevent thrashing when swapping magazines
 * with the depot layer. If a certain pattern of alloc and free are called we
 * can waste a lot of time swapping magazines to and from the depot layer. We
 * prevent this by dividing the per-cpu cache into two separate magazines.
 *
 * The middle layer is the magazine depot. This layer consists of a
 * collection of full and empty magazines. These are used to reload the per-cpu
 * caches when needed. This is implemented as an array of magazines which are
 * initially all empty and as we fill up magazines we increment the index to
 * point at the first empty magazine. Since this layer is per-zone, it allows us
 *  to balance the cache between cpus, but does require taking a lock.
 *
 *  When neither the current nor previous magazine for a given CPU can
 * satisfy the free or allocation, we look to the depot layer. If there are
 * magazines in the depot that can satisfy the free or allocation we swap
 * that magazine into the current position. In the example below, to allocate on
 * the given CPU we must lock the depot layer and swap magazine A with magazine
 * B and decrement the depot index.
 *
 *      _____________________       _______________________________________
 *     |    Per-CPU Cache    |     |              Depot Layer              |
 *     |                     |     |                                       |
 *     |   A___      ____    |     |   ____      B___      ____      ____  |
 *     |  |    |    |    |   |     |  | ## |    | ## |    |    |    |    | |
 *     |  |    |    |    |   |     |  | ## |    | ## |    |    |    |    | |
 *     |  |    |    |    |   |     |  | ## |    | ## |    |    |    |    | |
 *     |  |    |    |    |   |     |  | ## |    | ## |    |    |    |    | |
 *     |  |____|    |____|   |     |  |_##_|    |_##_|    |____|    |____| |
 *     | Current   Previous  |     |                                       |
 *     |_____________________|     |_______________________________________|
 *
 * The bottom layer is the Zone Allocator. This is already implemented in
 *  XNU and will remain mostly unchanged. Implementation for this can be found
 * in zalloc.c and zalloc.h. We will only use the zone if all other layers are
 * unable to satisfy the allocation or free. When we do use the zone, we will
 * try to allocate an entire magazine of elements or free an entire magazine of
 * elements at once.
 *
 *  Caching must be enabled explicitly, by calling zone_change() with the
 * Z_CACHING_ENABLED flag, for every zone you want to cache elements for. Zones
 * which are good candidates for this are ones with highly contended zone locks.
 * Some good potential candidates are kalloc.16, kalloc.48, Vm objects, VM map
 * entries, ipc vouchers, and ipc ports.
 * ..
 */



 

Memorystatus (MacOS) and Jetsam (*OS)

The user mode perspective of memory pressure conditions, which occur when the system is
low on physical memory, was discussed in III/8, which also introduced MacOS's memorystatus,
and the *OS Jetsam. Whereas the former is a gentle, opt-in mechanism (thanks to the abundant
availability of swap space), the latter is a cruel and harsh overlord, which will not hesitate to kill
for the most minor of transgressions. The memorystatus_do_kill() routine (in
bsd/kern/kern_memorystatus.c) takes a uint32_t cause argument, which is a
kMemoryStatusKilled* constant from the following:

Table 12-15: The many causes of untimely death by Jetsam/Memorystatus (from sys/kern_memorystatus.h)

kMemorystatusKilled.. Reason
(--) Jettisoned

Hiwat High Water Mark (maximum memory utilization)

Vnodes Maximum vnode utilization (vnode table full)

VMPageShortage Overall free page shortage

ProcThrashing Process thrashing

FCThrashing File Cache thrashing

PerProcessLimit Per-process page limit exceeded

DiskSpaceShortage Low disk space

IdleExit Idle exit (memory status)

ZoneMapExhaustion Zone map nearing exhaustion

VMCompressorThrashing Compressor thrashing (excessive operations due to memory handling)

VMCompressorSpaceShortage Compressor overall space shortage

LowSwap Low swap space

The various reasons have corresponding memorystatus_kill_on_.. functions, and
those funnel to memorystatus_kill_process_sync(), which proceeds to kill either the PID
specified, or the top process according to the jetsam priority bands (discussed in I/9). Execution
is swift and merciless: memorystatus_do_kill() calls the "no-frills", no saving throw
jetsam_do_kill(), which uses exit_with_reason() to smite the process with a
SIGKILL. memorytstatus_do_kill() then triggers memory compaction, to free as much
memory as possible.

The most common reason for riling Jetsam is kMemoryStatusKilledHiwat, which is
common on *OS when a process commits the deadly sin of gluttony, consuming too much
memory. Jetsam can be made to warn (memorystatus_warn_process()) through
memorystatus_on_ledger_footprint_exceeded(). This code path, however, is no longer
active as of Darwin 16. Instead, consider_vm_pressure_events() defers to
memorystatus_update_vm_pressure(), which dispatches a knote, which Jetsam-fearing
apps can respond to (per didReceiveMemoryWarning(), q.v. I/9-32).

Senseless bloodshed must be avoided if possible, so memorystatus_kill_proc() also
attempts a call to vm_purgeable_purge_task_owned(), to see if it can purge some of the
task's memory. This is done for all causes, save for vnode or zone map exhaustion.

Purgeable memory

Purgeable memory is a non-standard extension provided by XNU. Such memory is
marked at the vm_object level, and may be discarded at the kernel's discretion. As explained in
I/8, libmalloc supports malloc_make_[non]purgeable() calls, and libcache (or the
higher level Foundation.framework's NSCache) make use of this facility. Purgeable memory
may also be allocated directly, with the VM_FLAGS_PURGABLE* flag when calling
[mach_]vm_allocate() (or through the fd argument of mmap(2), when using MAP_ANON).

* - The correct spelling is "purgeable", yet portions of the kernel (primarily in osfmk/mach/vm_purgable.h) are spelled
"purgable". This is not only an unfortunate mistake, it can get downright frustrating, especially when both spellings
are used in the same routine. The comment in osfmk/vm/vm_purgeable_internal.h expects to eventually "change this
on occasion", (perhaps by the simple solution of aliasing through macros?) but the occasion has yet to arrive.



 

The purgeable facility is accessible through MIG routines in several subsystems:

task_purgable_info (#3438): returning a struct vm_purgeable_info on the
counts of purgeable memory for this task.

[mach_]vm_purgable_control() (#4818/3830): a VM_PURGABLE_GET_STATE,
SET_STATE or PURGE_ALL operation.

memory_entry_purgable_control() (#4900): Starting with Darwin 18, XNU
provides a new MIG subsystem, memory_entry (#4900), whose first routine is
memory_entry_purgable_control(). This is the same as the VM-level ones, but at a
memory entry granularity.

In kernel mode, purgeable memory is maintained at the vm_object level, in the
purgable field. This can exist in one of three states: VM_PURGABLE_VOLATILE,
..NONVOLATILE, or ..DENY. The high order bits of the state hold the ordering
(VM_PURGABLE_BEHAVIOR_[FIFO/LIFO]) and grouping of the page, as documented in
osfmk/mach/vm_purgable.h:

Listing 12-16: The purgeable state bits (from osfmk/vm/vm_purgeable.h)

/*
 * Purgeable state:
 *
 *  31 15 14 13 12 11 10 8 7 6 5 4 3 2 1 0
 * +-----+--+-----+--+----+-+-+---+---+---+
 * |     |NA|DEBUG|  | GRP| |B|ORD|   |STA|
 * +-----+--+-----+--+----+-+-+---+---+---+
 * " ": unused (i.e. reserved)
 * STA: purgeable state
 *      see: VM_PURGABLE_NONVOLATILE=0 to VM_PURGABLE_DENY=3
 * ORD: order
 *      see:VM_VOLATILE_ORDER_*
 * B: behavior
 *      see: VM_PURGABLE_BEHAVIOR_*
 * GRP: group
 *      see: VM_VOLATILE_GROUP_*
 * DEBUG: debug
 *      see: VM_PURGABLE_DEBUG_*
 * NA: no aging
 *      see: VM_PURGABLE_NO_AGING*
 */

Purgable status maintenance is performed through vm_object_purgable_control(),
which is also what the higher level ..purgable_control() MIG routines call. The VM
subsystem calls look up the corresponding vm_map_entry, and through it resolve the
VME_OBJECT. Possible operations are VM_PURGABLE_[GET/SET]_STATE, or .._PURGE_ALL.

When setting the state to VM_PURGABLE_VOLATILE, the object is disconnected from its
physical page, and added to one of the purgeable_queues. The facility presently maintains
three purgeable_queues: PURGEABLE_Q_TYPE_OBSOLETE (deprecated, FIFO), .._FIFO
and ...LIFO, corresponding to the VM_PURGABLE_BEHAVIOR_* bits. The queues (defined in
osfmk/vm/vm_purgeable_internal.h) further support sub-groups, allowing objects to be sub-
classified. The ..FIFO and ..LIFO queues also support tokens:

Listing 12-17: The purgeable_q type (from osfmk/vm/vm_purgeable_internal.h)

#define NUM_VOLATILE_GROUPS 8
struct purgeable_q {
        token_idx_t token_q_head;    /* first token */
        token_idx_t token_q_tail;    /* last token  */
        token_idx_t token_q_unripe;  /* first token which is not ripe */
        int32_t new_pages;
        queue_head_t objq[NUM_VOLATILE_GROUPS];
        enum purgeable_q_type type;
};

Thus, when vm_object_purgable_control() is called with .._PURGE_ALL, the
routine calls vm_purgeable_object_purge_all() (from osfmk/vm/vm_purgeable.c), cycling
through all queues, over each of the groups, and calling vm_object_purge() to dispose of it.
All of this is done under up to three locks - vm_purgeable_queue_lock, the purgeable
vm_object's own lock, and the vm_page_queue_lock (when removing the page). Purging
the object is performed by force-moving the physical pages of the object to the free queue
(unless busy, paged or wired). The object is then marked as "empty".



 

Kernel Memory Layout

With all the types of kernel memory figured out at this point, we can draw a rough atlas of
kernel memory. Certain areas in kernel memory - especially the zone_map - are quite volatile, as
processes, threads, kexts and other objects pop in and out of existence. At a higher level,
however, i.e. one that considers the zone_map and other sub maps opaque, the layout is fairly
stable, owing to the kernel's deterministic startup and fixed allocations.

The kernel_map regions

The kernel_map is just a special case of a vm_map, so have kernel_task, will travel:
Using the mach_vm_region_* MIG routines, the kernel_map's individual mappings can be
retrieved through vm_region_*_info flavors. This can actually be accomplished without
holding the task, as well, thanks to the powerful proc_info system call (#336). This is the
method employed by procexp(j) when displaying regions for PID 0, and requires no
entitlement - only root privileges. The output of procexp(j) will gives similar results similar
to Output 12-18, though over time will get cluttered further with kext allocations and other
kernel allocations, which may fill the numerous holes.

Output 12-18: The regions of XNU

It's possible to determine the semantics of the memory regions thanks to the memory tags
assigned by the kernel and the individual kexts: Calls to kernel_memory_allocate(),
kmem_suballoc() and friends take a tag value, and the tags are listed in
osfmk/mach/vm_statistics.h as VM_KERNL_MEMORY_* constants (all KERNEL_PRIVATE, so they
are not visible in the user mode header). Note, that some tags are used only in the context of
kalloc_tag[_bt] calls, and will thus not be visible in region information. Table 12-20
highlights the tags and - more importantly - their callers:

Table 12-20: The VM_KERN_MEMORY_* tags in osfmk/kern/memory_statistics.h

# VM_KERN_MEMORY_* caller
0 _NONE The kernel's own Mach-O is tagged this way

1 _OSFMK Miscellaneous in osfmk/vm/*

2 _BSD Temporary mappings for sysctl(8), Mach-O loading, and execve(2)

3 _IOKIT gIOKitPageableMaps, serializer data, etc

4 _LIBKERN tags used by libkern kalloc_tag[_bt] calls

5 _OSKEXT OSKext structures (primarily, gLoadedKextSummaries, etc.

6 _KEXT Loaded Kext Mach-Os (__PRELINK_TEXT)

7 _IPC ipc_kernel_map and ipc_kernel_copy_map

8 _STACK Thread stack space

9 _CPU per-CPU data

10 _PMAP MacOS: pv_*_tables (from pmap_init()

11 _PTE Used as vm_object tag in vm_page_wire/vm_page_insert_wired()

# Display kernel regions through proc_info, weeding out those with dynamic
# tags, which belong to individual kernel extensions
#
root@Zephyr(~)# procexp 0 regions |
pipe>           grep -v ^Tag
Untagged (0)    0x00000000 ffffff7f80000000-ffffff7f97400000 [ 372M]---/--- NUL
Kext            0x00000000 ffffff7f97400000-ffffff8000000000 [   1G]rw-/rwx NUL   # __PRELINK_TEXT
#
# Kernel hiding here in plain sight... (from __TEXT through __LAST, with KLD section jettisoned.
# In *OS this would be in a 4-16G ---/---- mapping, to make it "harder" to figure out slide
Untagged (0)    0x00000000 ffffff8000000000-ffffff80176c2000 [ 374M]---/--- NUL 
Untagged (0)    0x00e6e1c9 ffffff80176c2000-ffffff8017830000 [   1M]rw-/rwx PRV # __LINKEDIT (jettisoned)
Untagged (0)    0x00000000 ffffff8017830000-ffffff8021786000 [ 159M]---/--- NUL
..
PMAP            0x00e50640 ffffff8021931000-ffffff8026a5d000 [  81M]rw-/rwx S/A  # pmap structure from pmap_init()
ZONE            0x00000000 ffffff8026a5d000-ffffff80e6a5d000 [   3G]rw-/rwx NUL  # zone_map_[min-max]_address
OSFMK           0x00e50640 ffffff80e6a5d000-ffffff80e6a5e000 [   4K]rw-/rwx S/A  # zone names
kalloc          0x00000000 ffffff80e6a5e000-ffffff80f6a5e000 [ 256M]rw-/rwx NUL  # kalloc_map
....
IPC  0x00000000 ffffff80f6ad3000-ffffff80f6bd3000 [1024K]rw-/rwx NULL # ipc_kernel_map
IPC  0x00000000 ffffff80f6bd3000-ffffff80f73d3000 [   8M]rw-/rwx NULL # ipc_kernel_copy_map
..
OSKext          0x00c73cc9 ffffff811763d000-ffffff8117642000 [  20K]r--/rwx PRV  # gLoadedKextSummaries
compressor      0x00e50640 ffffff811fcce000-ffffff811fccf000 [   4K]rw-/rwx S/A 
compressor      0x00000000 ffffff8123069000-ffffff91232a9000 [  64G]rw-/rwx NUL  # compressor_map
..



 
Table 12-20 (cont.): The VM_KERN_MEMORY_* tags in osfmk/kern/memory_statistics.h (cont.)

# VM_KERN_MEMORY_* caller
12 _ZONE The kernel zone map

13 _KALLOC The kalloc_map

14 _COMPRESSOR The compressor_map

15 _COMPRESSED_DATA Unused

16 _PHANTOM_CACHE Ghost pages in phantom cache

17 _WAITQ global_waitqs and (#if CONFIG_WAITQ_STATS) g_waitq_stats

18 _DIAG kdebug & telemetry buffers etc.

19 _LOG os_log kernel_firehose_addr

20 _FILE Kernel UPLs, VFS buffers

21 _MBUF The mbmap for allocating network mbufs

22 _UBC Reserved for Unified Buffer Cache, but unused

23 _SECURITY Apple Protect Pager, mac_wire, etc.

24 _MLOCK mlock(2)ed and/or mach_vm_wire()d memory

25 _REASON OSReason kcdata bufs (kalloc_tag[_bt] only)

26 _SKYWALK Skywalk subsystem memory (arenas, etc)

27 _LTABLE Darwin 18+: Lockless Link tables

28+ _DYNAMIC Dynamic tags by specific kexts, first come first served

The Kernel Slide

The Kernel Address Space Layout Randomization (KASLR) was introduced in Darwin 12 in an
effort to raise the bar on kernel exploitation. Determining the target address space is an
important step in successfully overwriting memory or obtaining code execution. The idea behind
KASLR, therefore, is to add a random slide value into the kernel base, so as to make what are
otherwise fixed virtual memory addresses harder to determine, and thus exploit.

The kernel slide is set by the boot loader (EFI/iBoot), prior to loading the kernel. It can
then be determined during kernel boot (in [i386/arm]_vm_init), by taking the fixed kernel
address and subtracting it from the virtual base address passed in the Platform Expert's
boot_args struct. It is then cached in the vm_kernel_slide global.

The kern.slide sysctl MIB is set to 1 if the kernel is slid, and the kas_info syscall
(#439) returns the kernel slide value to user mode. On the *OS SECURE_KERNEL this is
naturally unimplemented (ENOTSUP). In MacOS, it requires both root privileges and the
agreement of the MACF policies hooking mac_system_check_kas_info(), which is enforced
by the Sandbox.kext when SIP is enabled. If SIP is disabled, numerous ways of retrieving the
value exist, as simple as a one-line DTrace script dumping the value from PE_state->kslide.

It is absolutely imperative to "unslide" any kernel addresses reported back to user mode
through debugging interfaces. There are generally two methods of doing so. The first is simply
unsliding - i.e. subtracting the vm_kernel_slide value, so the address returned is the same as
can be found in the kernel's Mach-O. This is usually the case during backtraces, as it both serves
to hide the slide and make the stack traces easy to symbolicate. The second is permuting the
address, so that it remains unique but not easy to associate with its original value. This is the
case when returning unique object addresses from zones or elsewhere in the kernel_map - for
example the iin_objects of mach_port_space_info.

Two macros are commonly used - VM_KERNEL_UNSLIDE[_OR_PERM]. The latter acts
unslides VM_KERNEL_IS_SLID addresses, and applies the permutation to other kernel
addresses. The permutation is an arbitrary vm_kernel_addrperm value, read_random()ly
during the kernel_bootstrap_thread(), and then added to the result of applying the
VM_KERNEL_STRIP_PTR macro on the pointer (Unfortunately, the macro merely returns the
original pointer). Darwin 17 and later add (but, as of yet, do not use) a third macro,
VM_KERNEL_ADDRHASH, which uses a proper hash (presently, SHA-256), along with a much
needed vm_kernel_addrhash_salt, also read_random()ly during startup.



 

Review Questions

1. Prior to Darwin 16, Apple tested other locations for the zone metadata, including putting it
in the beginning and end of every page. What is an advantage and a disadvantage of the
present solution?

2. What other, possibly simpler way, to get a zone element's metadata by its index, could
you consider in place of the PAGE_METADATA_FOR_PAGE_INDEX macro? Why is a macro
preferred?

3. Looking back at the footnote in the section discussing the zone metadata region, you will
note that attempting to read the very beginning of the metadata region (which is also the
very beginning of the zone map) will fail and is prone to panic on *OS through
mach_vm_read() of the kernel_task. Why is that?

4. Following on the previous question, what is the formula to determine the first valid
metadata entry in the zone_metadata_region, which is also safe to read from kernel
memory? What is the minimal page index to which this applies?

5. What other concern would one encounter when trying to sequentially read kernel memory
from the zone_metadata_region? How could that issue be solved?

6. Why is the MAX_ENTROPY_PER_ZCRAM set to 4?

7. How is it that the pmap zone's cur_size may exceed its max_size (as in 12-12-c)?

8. What is the difference between Z_EXHAUST and !Z_EXPANDABLE?

9. What could have been the rationale for zone_require() not panic()ing on an
address outside the zone_map? Why is this incorrect? And how could the routine be
properly reimplemented so as to cover all cases?

10. In older versions of Darwin (and even the present day, for foreign allocations) the zone
metadata could be embedded in the element page. Why is this a bad idea?

11. What are the similarities and differences between the user mode magazine allocator and
the new kernel mode zone allocator of Darwin 18?

12. Why is it absolutely vital to empty the vm_object after force-freeing its pages during
vm_object_purge()?

13. Where are the two(!) obvious(!!) KASLR memory disclosures in procexp 0 regions
in MacOS (at least up to 15)? Which one of those is (at least up to iOS 13, maybe later) in
*OS as well?

14. Why is the salt an absolute requirement for the VM_KERNEL_ADDRHASH scenario?

15. How could ledgers (from Chapter 9) be used to augment the defenses against zone
corruption attacks and fake objects?
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