#include <mach/mach_types.h>
#include <mach/machine.h>
#include <mach/vm_map.h>
#include <mach/mach_vm.h>
#include <mach/machine.h>
#include <i386/cpuid.h>
#include <i386/tsc.h>
#include <i386/rtclock_protos.h>
#include <i386/cpu_data.h>
#include <i386/machine_routines.h>
#include <i386/misc_protos.h>
#include <i386/cpuid.h>
#include <machine/cpu_capabilities.h>
#include <machine/commpage.h>
#include <machine/pmap.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
#include <ipc/ipc_port.h>
#include <kern/page_decrypt.h>
#include <kern/processor.h>
#include <sys/kdebug.h>
#if CONFIG_ATM
#include <atm/atm_internal.h>
#endif
extern commpage_descriptor* commpage_32_routines[];
extern commpage_descriptor* commpage_64_routines[];
extern vm_map_t commpage32_map; extern vm_map_t commpage64_map; extern vm_map_t commpage_text32_map; extern vm_map_t commpage_text64_map;
char *commPagePtr32 = NULL; char *commPagePtr64 = NULL; char *commPageTextPtr32 = NULL; char *commPageTextPtr64 = NULL;
uint64_t _cpu_capabilities = 0;
typedef uint32_t commpage_address_t;
static commpage_address_t next;
static char *commPagePtr; static commpage_address_t commPageBaseOffset;
static commpage_time_data *time_data32 = NULL;
static commpage_time_data *time_data64 = NULL;
decl_simple_lock_data(static,commpage_active_cpus_lock);
static void*
commpage_allocate(
vm_map_t submap, size_t area_used, vm_prot_t uperm)
{
vm_offset_t kernel_addr = 0; vm_offset_t zero = 0;
vm_size_t size = area_used; vm_map_entry_t entry;
ipc_port_t handle;
kern_return_t kr;
if (submap == NULL)
panic("commpage submap is null");
if ((kr = vm_map(kernel_map,
&kernel_addr,
area_used,
0,
VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_OSFMK),
NULL,
0,
FALSE,
VM_PROT_ALL,
VM_PROT_ALL,
VM_INHERIT_NONE)))
panic("cannot allocate commpage %d", kr);
if ((kr = vm_map_wire(kernel_map,
kernel_addr,
kernel_addr+area_used,
VM_PROT_DEFAULT|VM_PROT_MEMORY_TAG_MAKE(VM_KERN_MEMORY_OSFMK),
FALSE)))
panic("cannot wire commpage: %d", kr);
if (!(kr = vm_map_lookup_entry( kernel_map, vm_map_trunc_page(kernel_addr, VM_MAP_PAGE_MASK(kernel_map)), &entry) || entry->is_sub_map))
panic("cannot find commpage entry %d", kr);
VME_OBJECT(entry)->copy_strategy = MEMORY_OBJECT_COPY_NONE;
if ((kr = mach_make_memory_entry( kernel_map, &size, kernel_addr, uperm, &handle, NULL ))) panic("cannot make entry for commpage %d", kr);
if ((kr = vm_map_64( submap, &zero, area_used, 0, VM_FLAGS_FIXED, handle, 0, FALSE, uperm, uperm, VM_INHERIT_SHARE ))) panic("cannot map commpage %d", kr);
ipc_port_release(handle);
kr = vm_protect(kernel_map, kernel_addr, area_used, FALSE, VM_PROT_READ | VM_PROT_WRITE);
assert (kr == KERN_SUCCESS);
return (void*)(intptr_t)kernel_addr; }
static void*
commpage_addr_of(
commpage_address_t addr_at_runtime )
{
return (void*) ((uintptr_t)commPagePtr + (addr_at_runtime - commPageBaseOffset));
}
static int
commpage_cpus( void )
{
int cpus;
cpus = ml_get_max_cpus();
if (cpus == 0)
panic("commpage cpus==0");
if (cpus > 0xFF)
cpus = 0xFF;
return cpus;
}
static void
commpage_init_cpu_capabilities( void )
{
uint64_t bits;
int cpus;
ml_cpu_info_t cpu_info;
bits = 0;
ml_cpu_get_info(&cpu_info);
switch (cpu_info.vector_unit) {
case 9:
bits |= kHasAVX1_0;
case 8:
bits |= kHasSSE4_2;
case 7:
bits |= kHasSSE4_1;
case 6:
bits |= kHasSupplementalSSE3;
case 5:
bits |= kHasSSE3;
case 4:
bits |= kHasSSE2;
case 3:
bits |= kHasSSE;
case 2:
bits |= kHasMMX;
default:
break;
}
switch (cpu_info.cache_line_size) {
case 128:
bits |= kCache128;
break;
case 64:
bits |= kCache64;
break;
case 32:
bits |= kCache32;
break;
default:
break;
}
cpus = commpage_cpus();
bits |= (cpus << kNumCPUsShift);
bits |= kFastThreadLocalStorage;
#define setif(_bits, _bit, _condition) \
if (_condition) _bits |= _bit
setif(bits, kUP, cpus == 1);
setif(bits, k64Bit, cpu_mode_is64bit());
setif(bits, kSlow, tscFreq <= SLOW_TSC_THRESHOLD);
setif(bits, kHasAES, cpuid_features() &
CPUID_FEATURE_AES);
setif(bits, kHasF16C, cpuid_features() &
CPUID_FEATURE_F16C);
setif(bits, kHasRDRAND, cpuid_features() &
CPUID_FEATURE_RDRAND);
setif(bits, kHasFMA, cpuid_features() &
CPUID_FEATURE_FMA);
setif(bits, kHasBMI1, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_BMI1);
setif(bits, kHasBMI2, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_BMI2);
setif(bits, kHasRTM, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_RTM);
setif(bits, kHasHLE, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_HLE);
setif(bits, kHasAVX2_0, cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_AVX2);
setif(bits, kHasRDSEED, cpuid_features() &
CPUID_LEAF7_FEATURE_RDSEED);
setif(bits, kHasADX, cpuid_features() &
CPUID_LEAF7_FEATURE_ADX);
uint64_t misc_enable = rdmsr64(MSR_IA32_MISC_ENABLE);
setif(bits, kHasENFSTRG, (misc_enable & 1ULL) &&
(cpuid_leaf7_features() &
CPUID_LEAF7_FEATURE_ERMS));
_cpu_capabilities = bits; }
static void
commpage_mach_approximate_time_init(void)
{
char *cp = commPagePtr32;
uint8_t supported;
#ifdef CONFIG_MACH_APPROXIMATE_TIME
supported = 1;
#else
supported = 0;
#endif
if ( cp ) {
cp += (_COMM_PAGE_APPROX_TIME_SUPPORTED - _COMM_PAGE32_BASE_ADDRESS);
*(boolean_t *)cp = supported;
}
cp = commPagePtr64;
if ( cp ) {
cp += (_COMM_PAGE_APPROX_TIME_SUPPORTED - _COMM_PAGE32_START_ADDRESS);
*(boolean_t *)cp = supported;
}
commpage_update_mach_approximate_time(0);
}
uint64_t
_get_cpu_capabilities(void)
{
return _cpu_capabilities;
}
static void
commpage_stuff(
commpage_address_t address,
const void *source,
int length )
{
void *dest = commpage_addr_of(address);
if (address < next)
panic("commpage overlap at address 0x%p, 0x%x < 0x%x", dest, address, next);
bcopy(source,dest,length);
next = address + length;
}
static void
commpage_stuff_routine(
commpage_descriptor *rd )
{
commpage_stuff(rd->commpage_address,rd->code_address,rd->code_length);
}
static void
commpage_populate_one(
vm_map_t submap, char ** kernAddressPtr, size_t area_used, commpage_address_t base_offset, commpage_time_data** time_data, const char* signature, vm_prot_t uperm)
{
uint8_t c1;
uint16_t c2;
int c4;
uint64_t c8;
uint32_t cfamily;
short version = _COMM_PAGE_THIS_VERSION;
next = 0;
commPagePtr = (char *)commpage_allocate( submap, (vm_size_t) area_used, uperm );
*kernAddressPtr = commPagePtr; commPageBaseOffset = base_offset;
*time_data = commpage_addr_of( _COMM_PAGE_TIME_DATA_START );
commpage_stuff(_COMM_PAGE_SIGNATURE,signature,(int)MIN(_COMM_PAGE_SIGNATURELEN, strlen(signature)));
commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES64,&_cpu_capabilities,sizeof(_cpu_capabilities));
commpage_stuff(_COMM_PAGE_VERSION,&version,sizeof(short));
commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES,&_cpu_capabilities,sizeof(uint32_t));
c2 = 32; if (_cpu_capabilities & kCache64)
c2 = 64;
else if (_cpu_capabilities & kCache128)
c2 = 128;
commpage_stuff(_COMM_PAGE_CACHE_LINESIZE,&c2,2);
c4 = MP_SPIN_TRIES;
commpage_stuff(_COMM_PAGE_SPIN_COUNT,&c4,4);
c1 = machine_info.physical_cpu_max;
commpage_stuff(_COMM_PAGE_PHYSICAL_CPUS,&c1,1);
c1 = machine_info.logical_cpu_max;
commpage_stuff(_COMM_PAGE_LOGICAL_CPUS,&c1,1);
c8 = ml_cpu_cache_size(0);
commpage_stuff(_COMM_PAGE_MEMORY_SIZE, &c8, 8);
cfamily = cpuid_info()->cpuid_cpufamily;
commpage_stuff(_COMM_PAGE_CPUFAMILY, &cfamily, 4);
if (next > _COMM_PAGE_END)
panic("commpage overflow: next = 0x%08x, commPagePtr = 0x%p", next, commPagePtr);
}
void
commpage_populate( void )
{
commpage_init_cpu_capabilities();
commpage_populate_one( commpage32_map,
&commPagePtr32,
_COMM_PAGE32_AREA_USED,
_COMM_PAGE32_BASE_ADDRESS,
&time_data32,
"commpage 32-bit",
VM_PROT_READ);
#ifndef __LP64__
pmap_commpage32_init((vm_offset_t) commPagePtr32, _COMM_PAGE32_BASE_ADDRESS,
_COMM_PAGE32_AREA_USED/INTEL_PGBYTES);
#endif
time_data64 = time_data32;
if (_cpu_capabilities & k64Bit) {
commpage_populate_one( commpage64_map,
&commPagePtr64,
_COMM_PAGE64_AREA_USED,
_COMM_PAGE32_START_ADDRESS,
&time_data64,
"commpage 64-bit",
VM_PROT_READ);
#ifndef __LP64__
pmap_commpage64_init((vm_offset_t) commPagePtr64, _COMM_PAGE64_BASE_ADDRESS,
_COMM_PAGE64_AREA_USED/INTEL_PGBYTES);
#endif
}
simple_lock_init(&commpage_active_cpus_lock, 0);
commpage_update_active_cpus();
commpage_mach_approximate_time_init();
rtc_nanotime_init_commpage();
commpage_update_kdebug_enable();
#if CONFIG_ATM
commpage_update_atm_diagnostic_config(atm_get_diagnostic_config());
#endif
}
void commpage_text_populate( void ){
commpage_descriptor **rd;
next = 0;
commPagePtr = (char *) commpage_allocate(commpage_text32_map, (vm_size_t) _COMM_PAGE_TEXT_AREA_USED, VM_PROT_READ | VM_PROT_EXECUTE);
commPageTextPtr32 = commPagePtr;
char *cptr = commPagePtr;
int i=0;
for(; i< _COMM_PAGE_TEXT_AREA_USED; i++){
cptr[i]=0xCC;
}
commPageBaseOffset = _COMM_PAGE_TEXT_START;
for (rd = commpage_32_routines; *rd != NULL; rd++) {
commpage_stuff_routine(*rd);
}
#ifndef __LP64__
pmap_commpage32_init((vm_offset_t) commPageTextPtr32, _COMM_PAGE_TEXT_START,
_COMM_PAGE_TEXT_AREA_USED/INTEL_PGBYTES);
#endif
if (_cpu_capabilities & k64Bit) {
next = 0;
commPagePtr = (char *) commpage_allocate(commpage_text64_map, (vm_size_t) _COMM_PAGE_TEXT_AREA_USED, VM_PROT_READ | VM_PROT_EXECUTE);
commPageTextPtr64 = commPagePtr;
cptr=commPagePtr;
for(i=0; i<_COMM_PAGE_TEXT_AREA_USED; i++){
cptr[i]=0xCC;
}
for (rd = commpage_64_routines; *rd !=NULL; rd++) {
commpage_stuff_routine(*rd);
}
#ifndef __LP64__
pmap_commpage64_init((vm_offset_t) commPageTextPtr64, _COMM_PAGE_TEXT_START,
_COMM_PAGE_TEXT_AREA_USED/INTEL_PGBYTES);
#endif
}
if (next > _COMM_PAGE_TEXT_END)
panic("commpage text overflow: next=0x%08x, commPagePtr=%p", next, commPagePtr);
}
void
commpage_set_nanotime(
uint64_t tsc_base,
uint64_t ns_base,
uint32_t scale,
uint32_t shift )
{
commpage_time_data *p32 = time_data32;
commpage_time_data *p64 = time_data64;
static uint32_t generation = 0;
uint32_t next_gen;
if (p32 == NULL)
return;
if ( generation != p32->nt_generation )
panic("nanotime trouble 1");
if ( ns_base < p32->nt_ns_base )
panic("nanotime trouble 2");
if ((shift != 0) && ((_cpu_capabilities & kSlow)==0) )
panic("nanotime trouble 3");
next_gen = ++generation;
if (next_gen == 0)
next_gen = ++generation;
p32->nt_generation = 0;
p64->nt_generation = 0;
p32->nt_tsc_base = tsc_base;
p64->nt_tsc_base = tsc_base;
p32->nt_ns_base = ns_base;
p64->nt_ns_base = ns_base;
p32->nt_scale = scale;
p64->nt_scale = scale;
p32->nt_shift = shift;
p64->nt_shift = shift;
p32->nt_generation = next_gen;
p64->nt_generation = next_gen;
}
void
commpage_disable_timestamp( void )
{
time_data32->gtod_generation = 0;
time_data64->gtod_generation = 0;
}
void
commpage_set_timestamp(
uint64_t abstime,
uint64_t secs )
{
commpage_time_data *p32 = time_data32;
commpage_time_data *p64 = time_data64;
static uint32_t generation = 0;
uint32_t next_gen;
next_gen = ++generation;
if (next_gen == 0)
next_gen = ++generation;
p32->gtod_generation = 0;
p64->gtod_generation = 0;
p32->gtod_ns_base = abstime;
p64->gtod_ns_base = abstime;
p32->gtod_sec_base = secs;
p64->gtod_sec_base = secs;
p32->gtod_generation = next_gen;
p64->gtod_generation = next_gen;
}
void
commpage_set_memory_pressure(
unsigned int pressure )
{
char *cp;
uint32_t *ip;
cp = commPagePtr32;
if ( cp ) {
cp += (_COMM_PAGE_MEMORY_PRESSURE - _COMM_PAGE32_BASE_ADDRESS);
ip = (uint32_t*) (void *) cp;
*ip = (uint32_t) pressure;
}
cp = commPagePtr64;
if ( cp ) {
cp += (_COMM_PAGE_MEMORY_PRESSURE - _COMM_PAGE32_START_ADDRESS);
ip = (uint32_t*) (void *) cp;
*ip = (uint32_t) pressure;
}
}
void
commpage_set_spin_count(
unsigned int count )
{
char *cp;
uint32_t *ip;
if (count == 0)
count = 1;
cp = commPagePtr32;
if ( cp ) {
cp += (_COMM_PAGE_SPIN_COUNT - _COMM_PAGE32_BASE_ADDRESS);
ip = (uint32_t*) (void *) cp;
*ip = (uint32_t) count;
}
cp = commPagePtr64;
if ( cp ) {
cp += (_COMM_PAGE_SPIN_COUNT - _COMM_PAGE32_START_ADDRESS);
ip = (uint32_t*) (void *) cp;
*ip = (uint32_t) count;
}
}
void
commpage_update_active_cpus(void)
{
char *cp;
volatile uint8_t *ip;
if (!commPagePtr32)
return;
simple_lock(&commpage_active_cpus_lock);
cp = commPagePtr32;
cp += (_COMM_PAGE_ACTIVE_CPUS - _COMM_PAGE32_BASE_ADDRESS);
ip = (volatile uint8_t*) cp;
*ip = (uint8_t) processor_avail_count;
cp = commPagePtr64;
if ( cp ) {
cp += (_COMM_PAGE_ACTIVE_CPUS - _COMM_PAGE32_START_ADDRESS);
ip = (volatile uint8_t*) cp;
*ip = (uint8_t) processor_avail_count;
}
simple_unlock(&commpage_active_cpus_lock);
}
void
commpage_update_kdebug_enable(void)
{
volatile uint32_t *saved_data_ptr;
char *cp;
cp = commPagePtr32;
if (cp) {
cp += (_COMM_PAGE_KDEBUG_ENABLE - _COMM_PAGE32_BASE_ADDRESS);
saved_data_ptr = (volatile uint32_t *)cp;
*saved_data_ptr = kdebug_enable;
}
cp = commPagePtr64;
if ( cp ) {
cp += (_COMM_PAGE_KDEBUG_ENABLE - _COMM_PAGE32_START_ADDRESS);
saved_data_ptr = (volatile uint32_t *)cp;
*saved_data_ptr = kdebug_enable;
}
}
void
commpage_update_atm_diagnostic_config(uint32_t diagnostic_config)
{
volatile uint32_t *saved_data_ptr;
char *cp;
cp = commPagePtr32;
if (cp) {
cp += (_COMM_PAGE_ATM_DIAGNOSTIC_CONFIG - _COMM_PAGE32_BASE_ADDRESS);
saved_data_ptr = (volatile uint32_t *)cp;
*saved_data_ptr = diagnostic_config;
}
cp = commPagePtr64;
if ( cp ) {
cp += (_COMM_PAGE_ATM_DIAGNOSTIC_CONFIG - _COMM_PAGE32_START_ADDRESS);
saved_data_ptr = (volatile uint32_t *)cp;
*saved_data_ptr = diagnostic_config;
}
}
void
commpage_update_mach_approximate_time(uint64_t abstime)
{
#ifdef CONFIG_MACH_APPROXIMATE_TIME
uint64_t saved_data;
char *cp;
cp = commPagePtr32;
if ( cp ) {
cp += (_COMM_PAGE_APPROX_TIME - _COMM_PAGE32_BASE_ADDRESS);
saved_data = *(uint64_t *)cp;
if (saved_data < abstime) {
OSCompareAndSwap64(saved_data, abstime, (uint64_t *)cp);
}
}
cp = commPagePtr64;
if ( cp ) {
cp += (_COMM_PAGE_APPROX_TIME - _COMM_PAGE32_START_ADDRESS);
saved_data = *(uint64_t *)cp;
if (saved_data < abstime) {
OSCompareAndSwap64(saved_data, abstime, (uint64_t *)cp);
}
}
#else
#pragma unused (abstime)
#endif
}
extern user32_addr_t commpage_text32_location;
extern user64_addr_t commpage_text64_location;
uint32_t
commpage_is_in_pfz32(uint32_t addr32)
{
if ( (addr32 >= (commpage_text32_location + _COMM_TEXT_PFZ_START_OFFSET))
&& (addr32 < (commpage_text32_location+_COMM_TEXT_PFZ_END_OFFSET))) {
return 1;
}
else
return 0;
}
uint32_t
commpage_is_in_pfz64(addr64_t addr64)
{
if ( (addr64 >= (commpage_text64_location + _COMM_TEXT_PFZ_START_OFFSET))
&& (addr64 < (commpage_text64_location + _COMM_TEXT_PFZ_END_OFFSET))) {
return 1;
}
else
return 0;
}