This is xnu-11215.1.10. See this file in:
/*
* Copyright (c) 2000-2007 Apple Inc. All rights reserved.
*/
#include <mach/mach_types.h>
#include <mach/exception_types.h>
#include <sys/param.h>
#include <sys/proc_internal.h>
#include <sys/user.h>
#include <sys/signal.h>
#include <sys/ucontext.h>
#include <sys/sysproto.h>
#include <sys/systm.h>
#include <sys/ux_exception.h>
#include <arm/signal.h>
#include <sys/signalvar.h>
#include <sys/kdebug.h>
#include <sys/sdt.h>
#include <sys/wait.h>
#include <kern/thread.h>
#include <mach/arm/thread_status.h>
#include <arm64/proc_reg.h>
#include <kern/assert.h>
#include <kern/ast.h>
#include <pexpert/pexpert.h>
#include <sys/random.h>
extern struct arm_saved_state *get_user_regs(thread_t);
extern user_addr_t thread_get_cthread_self(void);
extern kern_return_t thread_getstatus(thread_t act, int flavor,
thread_state_t tstate, mach_msg_type_number_t *count);
extern kern_return_t thread_getstatus_to_user(thread_t act, int flavor,
thread_state_t tstate, mach_msg_type_number_t *count, thread_set_status_flags_t);
extern kern_return_t machine_thread_state_convert_to_user(thread_t act, int flavor,
thread_state_t tstate, mach_msg_type_number_t *count, thread_set_status_flags_t);
extern kern_return_t thread_setstatus(thread_t thread, int flavor,
thread_state_t tstate, mach_msg_type_number_t count);
extern kern_return_t thread_setstatus_from_user(thread_t thread, int flavor,
thread_state_t tstate, mach_msg_type_number_t count,
thread_state_t old_tstate, mach_msg_type_number_t old_count,
thread_set_status_flags_t flags);
extern task_t current_task(void);
extern bool task_needs_user_signed_thread_state(task_t);
/* XXX Put these someplace smarter... */
typedef struct mcontext32 mcontext32_t;
typedef struct mcontext64 mcontext64_t;
/* Signal handler flavors supported */
/* These defns should match the libplatform implmn */
#define UC_TRAD 1
#define UC_FLAVOR 30
#define UC_SET_ALT_STACK 0x40000000
#define UC_RESET_ALT_STACK 0x80000000
/* The following are valid mcontext sizes */
#define UC_FLAVOR_SIZE32 ((ARM_THREAD_STATE_COUNT + ARM_EXCEPTION_STATE_COUNT + ARM_VFP_STATE_COUNT) * sizeof(int))
#define UC_FLAVOR_SIZE64 ((ARM_THREAD_STATE64_COUNT + ARM_EXCEPTION_STATE64_COUNT + ARM_NEON_STATE64_COUNT) * sizeof(int))
#if __arm64__
#define C_64_REDZONE_LEN 128
#endif
#define TRUNC_TO_16_BYTES(addr) (addr & ~0xf)
static int
sendsig_get_state32(thread_t th_act, arm_thread_state_t *ts, mcontext32_t *mcp)
{
void *tstate;
mach_msg_type_number_t state_count;
assert(!proc_is64bit_data(current_proc()));
tstate = (void *) ts;
state_count = ARM_THREAD_STATE_COUNT;
if (thread_getstatus(th_act, ARM_THREAD_STATE, (thread_state_t) tstate, &state_count) != KERN_SUCCESS) {
return EINVAL;
}
mcp->ss = *ts;
tstate = (void *) &mcp->ss;
state_count = ARM_THREAD_STATE_COUNT;
if (machine_thread_state_convert_to_user(th_act, ARM_THREAD_STATE, (thread_state_t) tstate,
&state_count, TSSF_FLAGS_NONE) != KERN_SUCCESS) {
return EINVAL;
}
tstate = (void *) &mcp->es;
state_count = ARM_EXCEPTION_STATE_COUNT;
if (thread_getstatus(th_act, ARM_EXCEPTION_STATE, (thread_state_t) tstate, &state_count) != KERN_SUCCESS) {
return EINVAL;
}
tstate = (void *) &mcp->fs;
state_count = ARM_VFP_STATE_COUNT;
if (thread_getstatus_to_user(th_act, ARM_VFP_STATE, (thread_state_t) tstate, &state_count, TSSF_FLAGS_NONE) != KERN_SUCCESS) {
return EINVAL;
}
return 0;
}
static TUNABLE(bool, pac_sigreturn_token, "pac_sigreturn_token", true);
#if defined(__arm64__)
struct user_sigframe64 {
/* We can pass the last two args in registers for ARM64 */
user64_siginfo_t sinfo;
struct user_ucontext64 uctx;
mcontext64_t mctx;
};
static int
sendsig_get_state64(thread_t th_act, arm_thread_state64_t *ts, mcontext64_t *mcp)
{
void *tstate;
mach_msg_type_number_t state_count;
assert(proc_is64bit_data(current_proc()));
tstate = (void *) ts;
state_count = ARM_THREAD_STATE64_COUNT;
if (thread_getstatus(th_act, ARM_THREAD_STATE64, (thread_state_t) tstate, &state_count) != KERN_SUCCESS) {
return EINVAL;
}
mcp->ss = *ts;
tstate = (void *) &mcp->ss;
state_count = ARM_THREAD_STATE64_COUNT;
thread_set_status_flags_t flags = TSSF_STASH_SIGRETURN_TOKEN;
if (pac_sigreturn_token || task_needs_user_signed_thread_state(current_task())) {
flags |= TSSF_THREAD_USER_DIV;
}
if (machine_thread_state_convert_to_user(th_act, ARM_THREAD_STATE64, (thread_state_t) tstate,
&state_count, flags) != KERN_SUCCESS) {
return EINVAL;
}
tstate = (void *) &mcp->es;
state_count = ARM_EXCEPTION_STATE64_COUNT;
if (thread_getstatus(th_act, ARM_EXCEPTION_STATE64, (thread_state_t) tstate, &state_count) != KERN_SUCCESS) {
return EINVAL;
}
tstate = (void *) &mcp->ns;
state_count = ARM_NEON_STATE64_COUNT;
if (thread_getstatus_to_user(th_act, ARM_NEON_STATE64, (thread_state_t) tstate, &state_count, TSSF_FLAGS_NONE) != KERN_SUCCESS) {
return EINVAL;
}
return 0;
}
static void
sendsig_fill_uctx64(user_ucontext64_t *uctx, int oonstack, int mask, user64_addr_t sp, user64_size_t stack_size, user64_addr_t p_mctx)
{
bzero(uctx, sizeof(*uctx));
uctx->uc_onstack = oonstack;
uctx->uc_sigmask = mask;
uctx->uc_stack.ss_sp = sp;
uctx->uc_stack.ss_size = stack_size;
if (oonstack) {
uctx->uc_stack.ss_flags |= SS_ONSTACK;
}
uctx->uc_link = (user64_addr_t)0;
uctx->uc_mcsize = (user64_size_t) UC_FLAVOR_SIZE64;
uctx->uc_mcontext64 = (user64_addr_t) p_mctx;
}
static kern_return_t
sendsig_set_thread_state64(arm_thread_state64_t *regs,
user64_addr_t catcher, int infostyle, int sig, user64_addr_t p_sinfo,
user64_addr_t p_uctx, user64_addr_t token, user64_addr_t trampact, user64_addr_t sp, thread_t th_act)
{
assert(proc_is64bit_data(current_proc()));
regs->x[0] = catcher;
regs->x[1] = infostyle;
regs->x[2] = sig;
regs->x[3] = p_sinfo;
regs->x[4] = p_uctx;
regs->x[5] = token;
regs->pc = trampact;
regs->cpsr = PSR64_USER64_DEFAULT;
regs->sp = sp;
return thread_setstatus(th_act, ARM_THREAD_STATE64, (void *)regs, ARM_THREAD_STATE64_COUNT);
}
#endif /* defined(__arm64__) */
static void
sendsig_fill_uctx32(user_ucontext32_t *uctx, int oonstack, int mask, user_addr_t sp, user_size_t stack_size, user_addr_t p_mctx)
{
bzero(uctx, sizeof(*uctx));
uctx->uc_onstack = oonstack;
uctx->uc_sigmask = mask;
uctx->uc_stack.ss_sp = (user32_addr_t) sp;
uctx->uc_stack.ss_size = (user32_size_t) stack_size;
if (oonstack) {
uctx->uc_stack.ss_flags |= SS_ONSTACK;
}
uctx->uc_link = (user32_addr_t)0;
uctx->uc_mcsize = (user32_size_t) UC_FLAVOR_SIZE32;
uctx->uc_mcontext = (user32_addr_t) p_mctx;
}
static kern_return_t
sendsig_set_thread_state32(arm_thread_state_t *regs,
user32_addr_t catcher, int infostyle, int sig, user32_addr_t p_sinfo,
user32_addr_t trampact, user32_addr_t sp, thread_t th_act)
{
assert(!proc_is64bit_data(current_proc()));
regs->r[0] = catcher;
regs->r[1] = infostyle;
regs->r[2] = sig;
regs->r[3] = p_sinfo;
if (trampact & 1) {
regs->pc = trampact & ~1;
#if defined(__arm64__)
regs->cpsr = PSR64_USER32_DEFAULT | PSR64_MODE_USER32_THUMB;
#else
#error Unknown architecture.
#endif
} else {
regs->pc = trampact;
regs->cpsr = PSR_USERDFLT;
}
regs->sp = sp;
return thread_setstatus(th_act, ARM_THREAD_STATE, (void *)regs, ARM_THREAD_STATE_COUNT);
}
#if CONFIG_DTRACE
static void
sendsig_do_dtrace(uthread_t ut, user_siginfo_t *sinfo, int sig, user_addr_t catcher)
{
bzero((caddr_t)&(ut->t_dtrace_siginfo), sizeof(ut->t_dtrace_siginfo));
ut->t_dtrace_siginfo.si_signo = sinfo->si_signo;
ut->t_dtrace_siginfo.si_code = sinfo->si_code;
ut->t_dtrace_siginfo.si_pid = sinfo->si_pid;
ut->t_dtrace_siginfo.si_uid = sinfo->si_uid;
ut->t_dtrace_siginfo.si_status = sinfo->si_status;
/* XXX truncates faulting address to void * */
ut->t_dtrace_siginfo.si_addr = CAST_DOWN_EXPLICIT(void *, sinfo->si_addr);
/* Fire DTrace proc:::fault probe when signal is generated by hardware. */
switch (sig) {
case SIGILL: case SIGBUS: case SIGSEGV: case SIGFPE: case SIGTRAP:
DTRACE_PROC2(fault, int, (int)(ut->uu_code), siginfo_t *, &(ut->t_dtrace_siginfo));
break;
default:
break;
}
/* XXX truncates faulting address to uintptr_t */
DTRACE_PROC3(signal__handle, int, sig, siginfo_t *, &(ut->t_dtrace_siginfo),
void (*)(void), CAST_DOWN(uintptr_t, catcher));
}
#endif
struct user_sigframe32 {
user32_addr_t puctx;
user32_addr_t token;
user32_siginfo_t sinfo;
struct user_ucontext32 uctx;
mcontext32_t mctx;
};
/*
* Send an interrupt to process.
*
*/
void
sendsig(
struct proc * p,
user_addr_t catcher,
int sig,
int mask,
__unused uint32_t code,
sigset_t siginfo
)
{
union {
struct ts32 {
arm_thread_state_t ss;
} ts32;
#if defined(__arm64__)
struct ts64 {
arm_thread_state64_t ss;
} ts64;
#endif
} ts;
union {
struct user_sigframe32 uf32;
#if defined(__arm64__)
struct user_sigframe64 uf64;
#endif
} user_frame;
user_siginfo_t sinfo;
user_addr_t sp = 0, trampact;
struct sigacts *ps = &p->p_sigacts;
int oonstack, infostyle;
thread_t th_act;
struct uthread *ut;
user_size_t stack_size = 0;
user_addr_t p_uctx, token_uctx;
kern_return_t kr;
th_act = current_thread();
ut = get_bsdthread_info(th_act);
bzero(&ts, sizeof(ts));
bzero(&user_frame, sizeof(user_frame));
if (siginfo & sigmask(sig)) {
infostyle = UC_FLAVOR;
} else {
infostyle = UC_TRAD;
}
trampact = SIGTRAMP(p, sig);
oonstack = ut->uu_sigstk.ss_flags & SA_ONSTACK;
if (ut->uu_pending_sigreturn == 0) {
/* Generate random token value used to validate sigreturn arguments */
read_random(&ut->uu_sigreturn_token, sizeof(ut->uu_sigreturn_token));
do {
read_random(&ut->uu_sigreturn_diversifier, sizeof(ut->uu_sigreturn_diversifier));
ut->uu_sigreturn_diversifier &=
__DARWIN_ARM_THREAD_STATE64_USER_DIVERSIFIER_MASK;
} while (ut->uu_sigreturn_diversifier == 0);
}
ut->uu_pending_sigreturn++;
/*
* Get sundry thread state.
*/
if (proc_is64bit_data(p)) {
#ifdef __arm64__
int ret = 0;
if ((ret = sendsig_get_state64(th_act, &ts.ts64.ss, &user_frame.uf64.mctx)) != 0) {
#if DEVELOPMENT || DEBUG
printf("process [%s][%d] sendsig_get_state64 failed with ret %d, expected 0", p->p_comm, proc_getpid(p), ret);
#endif
goto bad2;
}
#else
#error Unsupported architecture
#endif
} else {
int ret = 0;
if ((ret = sendsig_get_state32(th_act, &ts.ts32.ss, &user_frame.uf32.mctx)) != 0) {
#if DEVELOPMENT || DEBUG
printf("process [%s][%d] sendsig_get_state32 failed with ret %d, expected 0", p->p_comm, proc_getpid(p), ret);
#endif
goto bad2;
}
}
/*
* Figure out where our new stack lives.
*/
if ((ut->uu_flag & UT_ALTSTACK) && !oonstack &&
(ps->ps_sigonstack & sigmask(sig))) {
sp = ut->uu_sigstk.ss_sp;
stack_size = ut->uu_sigstk.ss_size;
sp += stack_size;
ut->uu_sigstk.ss_flags |= SA_ONSTACK;
} else {
/*
* Get stack pointer, and allocate enough space
* for signal handler data.
*/
if (proc_is64bit_data(p)) {
#if defined(__arm64__)
sp = CAST_USER_ADDR_T(ts.ts64.ss.sp);
#else
#error Unsupported architecture
#endif
} else {
sp = CAST_USER_ADDR_T(ts.ts32.ss.sp);
}
}
/* Make sure to move stack pointer down for room for metadata */
if (proc_is64bit_data(p)) {
#if defined(__arm64__)
sp = (sp - sizeof(user_frame.uf64) - C_64_REDZONE_LEN);
sp = TRUNC_TO_16_BYTES(sp);
#else
#error Unsupported architecture
#endif
} else {
sp -= sizeof(user_frame.uf32);
}
proc_unlock(p);
/*
* Fill in ucontext (points to mcontext, i.e. thread states).
*/
if (proc_is64bit_data(p)) {
#if defined(__arm64__)
sendsig_fill_uctx64(&user_frame.uf64.uctx, oonstack, mask, sp, (user64_size_t)stack_size,
(user64_addr_t)&((struct user_sigframe64*)sp)->mctx);
#else
#error Unsupported architecture
#endif
} else {
sendsig_fill_uctx32(&user_frame.uf32.uctx, oonstack, mask, sp, (user32_size_t)stack_size,
(user32_addr_t)&((struct user_sigframe32*)sp)->mctx);
}
/*
* Setup siginfo.
*/
bzero((caddr_t) &sinfo, sizeof(sinfo));
sinfo.si_signo = sig;
if (proc_is64bit_data(p)) {
#if defined(__arm64__)
sinfo.si_addr = ts.ts64.ss.pc;
sinfo.pad[0] = ts.ts64.ss.sp;
#else
#error Unsupported architecture
#endif
} else {
sinfo.si_addr = ts.ts32.ss.pc;
sinfo.pad[0] = ts.ts32.ss.sp;
}
switch (sig) {
case SIGILL:
#ifdef BER_XXX
if (mctx.ss.srr1 & (1 << (31 - SRR1_PRG_ILL_INS_BIT))) {
sinfo.si_code = ILL_ILLOPC;
} else if (mctx.ss.srr1 & (1 << (31 - SRR1_PRG_PRV_INS_BIT))) {
sinfo.si_code = ILL_PRVOPC;
} else if (mctx.ss.srr1 & (1 << (31 - SRR1_PRG_TRAP_BIT))) {
sinfo.si_code = ILL_ILLTRP;
} else {
sinfo.si_code = ILL_NOOP;
}
#else
sinfo.si_code = ILL_ILLTRP;
#endif
break;
case SIGFPE:
switch (ut->uu_code) {
case EXC_ARM_FP_UF:
sinfo.si_code = FPE_FLTUND;
break;
case EXC_ARM_FP_OF:
sinfo.si_code = FPE_FLTOVF;
break;
case EXC_ARM_FP_IO:
sinfo.si_code = FPE_FLTINV;
break;
case EXC_ARM_FP_DZ:
sinfo.si_code = FPE_FLTDIV;
break;
case EXC_ARM_FP_ID:
sinfo.si_code = FPE_FLTINV;
break;
case EXC_ARM_FP_IX:
sinfo.si_code = FPE_FLTRES;
break;
default:
sinfo.si_code = FPE_NOOP;
break;
}
break;
case SIGBUS:
if (proc_is64bit_data(p)) {
#if defined(__arm64__)
sinfo.si_addr = user_frame.uf64.mctx.es.far;
#else
#error Unsupported architecture
#endif
} else {
sinfo.si_addr = user_frame.uf32.mctx.es.far;
}
sinfo.si_code = BUS_ADRALN;
break;
case SIGSEGV:
if (proc_is64bit_data(p)) {
#if defined(__arm64__)
sinfo.si_addr = user_frame.uf64.mctx.es.far;
#else
#error Unsupported architecture
#endif
} else {
sinfo.si_addr = user_frame.uf32.mctx.es.far;
}
#ifdef BER_XXX
/* First check in srr1 and then in dsisr */
if (mctx.ss.srr1 & (1 << (31 - DSISR_PROT_BIT))) {
sinfo.si_code = SEGV_ACCERR;
} else if (mctx.es.dsisr & (1 << (31 - DSISR_PROT_BIT))) {
sinfo.si_code = SEGV_ACCERR;
} else {
sinfo.si_code = SEGV_MAPERR;
}
#else
sinfo.si_code = SEGV_ACCERR;
#endif
break;
default:
{
int status_and_exitcode;
/*
* All other signals need to fill out a minimum set of
* information for the siginfo structure passed into
* the signal handler, if SA_SIGINFO was specified.
*
* p->si_status actually contains both the status and
* the exit code; we save it off in its own variable
* for later breakdown.
*/
proc_lock(p);
sinfo.si_pid = p->si_pid;
p->si_pid = 0;
status_and_exitcode = p->si_status;
p->si_status = 0;
sinfo.si_uid = p->si_uid;
p->si_uid = 0;
sinfo.si_code = p->si_code;
p->si_code = 0;
proc_unlock(p);
if (sinfo.si_code == CLD_EXITED) {
if (WIFEXITED(status_and_exitcode)) {
sinfo.si_code = CLD_EXITED;
} else if (WIFSIGNALED(status_and_exitcode)) {
if (WCOREDUMP(status_and_exitcode)) {
sinfo.si_code = CLD_DUMPED;
status_and_exitcode = W_EXITCODE(status_and_exitcode, status_and_exitcode);
} else {
sinfo.si_code = CLD_KILLED;
status_and_exitcode = W_EXITCODE(status_and_exitcode, status_and_exitcode);
}
}
}
/*
* The recorded status contains the exit code and the
* signal information, but the information to be passed
* in the siginfo to the handler is supposed to only
* contain the status, so we have to shift it out.
*/
sinfo.si_status = (WEXITSTATUS(status_and_exitcode) & 0x00FFFFFF) | (((uint32_t)(p->p_xhighbits) << 24) & 0xFF000000);
p->p_xhighbits = 0;
break;
}
}
#if CONFIG_DTRACE
sendsig_do_dtrace(ut, &sinfo, sig, catcher);
#endif /* CONFIG_DTRACE */
/*
* Copy signal-handling frame out to user space, set thread state.
*/
if (proc_is64bit_data(p)) {
#if defined(__arm64__)
user64_addr_t token;
/*
* mctx filled in when we get state. uctx filled in by
* sendsig_fill_uctx64(). We fill in the sinfo now.
*/
siginfo_user_to_user64(&sinfo, &user_frame.uf64.sinfo);
p_uctx = (user_addr_t)&((struct user_sigframe64*)sp)->uctx;
/*
* Generate the validation token for sigreturn
*/
token_uctx = p_uctx;
kr = machine_thread_siguctx_pointer_convert_to_user(th_act, &token_uctx);
assert(kr == KERN_SUCCESS);
token = (user64_addr_t)token_uctx ^ (user64_addr_t)ut->uu_sigreturn_token;
int ret = 0;
if ((ret = copyout(&user_frame.uf64, sp, sizeof(user_frame.uf64))) != 0) {
#if DEVELOPMENT || DEBUG
printf("process [%s][%d] copyout of user_frame to (sp, size) = (0x%llx, %zu) failed with ret %d, expected 0\n", p->p_comm, proc_getpid(p), sp, sizeof(user_frame.uf64), ret);
#endif
goto bad;
}
if ((kr = sendsig_set_thread_state64(&ts.ts64.ss,
catcher, infostyle, sig, (user64_addr_t)&((struct user_sigframe64*)sp)->sinfo,
(user64_addr_t)p_uctx, token, trampact, sp, th_act)) != KERN_SUCCESS) {
#if DEVELOPMENT || DEBUG
printf("process [%s][%d] sendsig_set_thread_state64 failed with kr %d, expected 0", p->p_comm, proc_getpid(p), kr);
#endif
goto bad;
}
#else
#error Unsupported architecture
#endif
} else {
user32_addr_t token;
/*
* mctx filled in when we get state. uctx filled in by
* sendsig_fill_uctx32(). We fill in the sinfo, *pointer*
* to uctx and token now.
*/
siginfo_user_to_user32(&sinfo, &user_frame.uf32.sinfo);
p_uctx = (user_addr_t)&((struct user_sigframe32*)sp)->uctx;
/*
* Generate the validation token for sigreturn
*/
token_uctx = (user_addr_t)p_uctx;
kr = machine_thread_siguctx_pointer_convert_to_user(th_act, &token_uctx);
assert(kr == KERN_SUCCESS);
token = (user32_addr_t)token_uctx ^ (user32_addr_t)ut->uu_sigreturn_token;
user_frame.uf32.puctx = (user32_addr_t)p_uctx;
user_frame.uf32.token = token;
if (copyout(&user_frame.uf32, sp, sizeof(user_frame.uf32)) != 0) {
goto bad;
}
if (sendsig_set_thread_state32(&ts.ts32.ss,
CAST_DOWN_EXPLICIT(user32_addr_t, catcher), infostyle, sig, (user32_addr_t)&((struct user_sigframe32*)sp)->sinfo,
CAST_DOWN_EXPLICIT(user32_addr_t, trampact), CAST_DOWN_EXPLICIT(user32_addr_t, sp), th_act) != KERN_SUCCESS) {
goto bad;
}
}
proc_lock(p);
return;
bad:
proc_lock(p);
bad2:
assert(ut->uu_pending_sigreturn > 0);
ut->uu_pending_sigreturn--;
proc_set_sigact(p, SIGILL, SIG_DFL);
sig = sigmask(SIGILL);
p->p_sigignore &= ~sig;
p->p_sigcatch &= ~sig;
ut->uu_sigmask &= ~sig;
/* sendsig is called with signal lock held */
proc_unlock(p);
psignal_locked(p, SIGILL);
proc_lock(p);
}
/*
* System call to cleanup state after a signal
* has been taken. Reset signal mask and
* stack state from context left by sendsig (above).
* Return to previous * context left by sendsig.
* Check carefully to * make sure that the user has not
* modified the * spr to gain improper priviledges.
*/
static int
sigreturn_copyin_ctx32(struct user_ucontext32 *uctx, mcontext32_t *mctx, user_addr_t uctx_addr)
{
int error;
assert(!proc_is64bit_data(current_proc()));
error = copyin(uctx_addr, uctx, sizeof(*uctx));
if (error) {
return error;
}
/* validate the machine context size */
switch (uctx->uc_mcsize) {
case UC_FLAVOR_SIZE32:
break;
default:
return EINVAL;
}
assert(uctx->uc_mcsize == sizeof(*mctx));
error = copyin((user_addr_t)uctx->uc_mcontext, mctx, uctx->uc_mcsize);
if (error) {
return error;
}
return 0;
}
static int
sigreturn_set_state32(thread_t th_act, mcontext32_t *mctx)
{
assert(!proc_is64bit_data(current_proc()));
/* validate the thread state, set/reset appropriate mode bits in cpsr */
#if defined(__arm64__)
mctx->ss.cpsr = (mctx->ss.cpsr & ~PSR64_MODE_MASK) | PSR64_USER32_DEFAULT;
#else
#error Unknown architecture.
#endif
if (thread_setstatus_from_user(th_act, ARM_THREAD_STATE, (void *)&mctx->ss,
ARM_THREAD_STATE_COUNT, NULL, 0, TSSF_FLAGS_NONE) != KERN_SUCCESS) {
return EINVAL;
}
if (thread_setstatus_from_user(th_act, ARM_VFP_STATE, (void *)&mctx->fs,
ARM_VFP_STATE_COUNT, NULL, 0, TSSF_FLAGS_NONE) != KERN_SUCCESS) {
return EINVAL;
}
return 0;
}
#if defined(__arm64__)
static int
sigreturn_copyin_ctx64(struct user_ucontext64 *uctx, mcontext64_t *mctx, user_addr_t uctx_addr)
{
int error;
assert(proc_is64bit_data(current_proc()));
error = copyin(uctx_addr, uctx, sizeof(*uctx));
if (error) {
return error;
}
/* validate the machine context size */
switch (uctx->uc_mcsize) {
case UC_FLAVOR_SIZE64:
break;
default:
return EINVAL;
}
assert(uctx->uc_mcsize == sizeof(*mctx));
error = copyin((user_addr_t)uctx->uc_mcontext64, mctx, uctx->uc_mcsize);
if (error) {
return error;
}
return 0;
}
static int
sigreturn_set_state64(thread_t th_act, mcontext64_t *mctx, thread_set_status_flags_t tssf_flags)
{
assert(proc_is64bit_data(current_proc()));
/* validate the thread state, set/reset appropriate mode bits in cpsr */
mctx->ss.cpsr = (mctx->ss.cpsr & ~PSR64_MODE_MASK) | PSR64_USER64_DEFAULT;
if (thread_setstatus_from_user(th_act, ARM_THREAD_STATE64, (void *)&mctx->ss,
ARM_THREAD_STATE64_COUNT, NULL, 0, tssf_flags) != KERN_SUCCESS) {
return EINVAL;
}
if (thread_setstatus_from_user(th_act, ARM_NEON_STATE64, (void *)&mctx->ns,
ARM_NEON_STATE64_COUNT, NULL, 0, TSSF_FLAGS_NONE) != KERN_SUCCESS) {
return EINVAL;
}
return 0;
}
#endif /* defined(__arm64__) */
/* ARGSUSED */
int
sigreturn(
struct proc * p,
struct sigreturn_args * uap,
__unused int *retval)
{
union {
user_ucontext32_t uc32;
#if defined(__arm64__)
user_ucontext64_t uc64;
#endif
} uctx;
union {
mcontext32_t mc32;
#if defined(__arm64__)
mcontext64_t mc64;
#endif
} mctx;
struct sigacts *ps = &p->p_sigacts;
int error, sigmask = 0, onstack = 0;
thread_t th_act;
struct uthread *ut;
uint32_t sigreturn_validation;
user_addr_t token_uctx;
kern_return_t kr;
th_act = current_thread();
ut = (struct uthread *) get_bsdthread_info(th_act);
/* see osfmk/kern/restartable.c */
act_set_ast_reset_pcs(TASK_NULL, th_act);
/*
* If we are being asked to change the altstack flag on the thread, we
* just set/reset it and return (the uap->uctx is not used).
*/
if ((unsigned int)uap->infostyle == UC_SET_ALT_STACK) {
ut->uu_sigstk.ss_flags |= SA_ONSTACK;
return 0;
} else if ((unsigned int)uap->infostyle == UC_RESET_ALT_STACK) {
ut->uu_sigstk.ss_flags &= ~SA_ONSTACK;
return 0;
}
if (proc_is64bit_data(p)) {
#if defined(__arm64__)
error = sigreturn_copyin_ctx64(&uctx.uc64, &mctx.mc64, uap->uctx);
if (error != 0) {
return error;
}
onstack = uctx.uc64.uc_onstack;
sigmask = uctx.uc64.uc_sigmask;
#else
#error Unsupported architecture
#endif
} else {
error = sigreturn_copyin_ctx32(&uctx.uc32, &mctx.mc32, uap->uctx);
if (error != 0) {
return error;
}
onstack = uctx.uc32.uc_onstack;
sigmask = uctx.uc32.uc_sigmask;
}
if ((onstack & 01)) {
ut->uu_sigstk.ss_flags |= SA_ONSTACK;
} else {
ut->uu_sigstk.ss_flags &= ~SA_ONSTACK;
}
ut->uu_sigmask = sigmask & ~sigcantmask;
if (ut->uu_siglist & ~ut->uu_sigmask) {
signal_setast(current_thread());
}
sigreturn_validation = atomic_load_explicit(
&ps->ps_sigreturn_validation, memory_order_relaxed);
token_uctx = uap->uctx;
kr = machine_thread_siguctx_pointer_convert_to_user(th_act, &token_uctx);
assert(kr == KERN_SUCCESS);
if (proc_is64bit_data(p)) {
#if defined(__arm64__)
user64_addr_t token;
token = (user64_addr_t)token_uctx ^ (user64_addr_t)ut->uu_sigreturn_token;
thread_set_status_flags_t tssf_flags = TSSF_FLAGS_NONE;
if ((user64_addr_t)uap->token != token) {
#if DEVELOPMENT || DEBUG
printf("process %s[%d] sigreturn token mismatch: received 0x%llx expected 0x%llx\n",
p->p_comm, proc_getpid(p), (user64_addr_t)uap->token, token);
#endif /* DEVELOPMENT || DEBUG */
if (sigreturn_validation != PS_SIGRETURN_VALIDATION_DISABLED) {
return EINVAL;
}
}
if (sigreturn_validation != PS_SIGRETURN_VALIDATION_DISABLED) {
tssf_flags |= TSSF_CHECK_SIGRETURN_TOKEN;
if (pac_sigreturn_token || task_needs_user_signed_thread_state(current_task())) {
tssf_flags |= TSSF_ALLOW_ONLY_MATCHING_TOKEN | TSSF_THREAD_USER_DIV;
}
}
error = sigreturn_set_state64(th_act, &mctx.mc64, tssf_flags);
if (error != 0) {
#if DEVELOPMENT || DEBUG
printf("process %s[%d] sigreturn set_state64 error %d\n",
p->p_comm, proc_getpid(p), error);
#endif /* DEVELOPMENT || DEBUG */
return error;
}
#else
#error Unsupported architecture
#endif
} else {
user32_addr_t token;
token = (user32_addr_t)token_uctx ^ (user32_addr_t)ut->uu_sigreturn_token;
if ((user32_addr_t)uap->token != token) {
#if DEVELOPMENT || DEBUG
printf("process %s[%d] sigreturn token mismatch: received 0x%x expected 0x%x\n",
p->p_comm, proc_getpid(p), (user32_addr_t)uap->token, token);
#endif /* DEVELOPMENT || DEBUG */
if (sigreturn_validation != PS_SIGRETURN_VALIDATION_DISABLED) {
return EINVAL;
}
}
error = sigreturn_set_state32(th_act, &mctx.mc32);
if (error != 0) {
#if DEVELOPMENT || DEBUG
printf("process %s[%d] sigreturn sigreturn_set_state32 error %d\n",
p->p_comm, proc_getpid(p), error);
#endif /* DEVELOPMENT || DEBUG */
return error;
}
}
/* Decrement the pending sigreturn count */
if (ut->uu_pending_sigreturn > 0) {
ut->uu_pending_sigreturn--;
}
return EJUSTRETURN;
}
/*
* machine_exception() performs machine-dependent translation
* of a mach exception to a unix signal.
*/
int
machine_exception(int exception,
__unused mach_exception_code_t code,
__unused mach_exception_subcode_t subcode)
{
switch (exception) {
case EXC_BAD_INSTRUCTION:
return SIGILL;
case EXC_ARITHMETIC:
return SIGFPE;
}
return 0;
}