This is xnu-11215.1.10. See this file in:
#ifdef T_NAMESPACE
#undef T_NAMESPACE
#endif
#include <darwintest.h>
#include <unistd.h>
#include <signal.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <immintrin.h>
#include <mach/mach.h>
#include <stdio.h>
#include <string.h>
#include <err.h>
#include <i386/cpu_capabilities.h>
T_GLOBAL_META(
T_META_NAMESPACE("xnu.intel"),
T_META_CHECK_LEAKS(false),
T_META_RADAR_COMPONENT_NAME("xnu"),
T_META_RADAR_COMPONENT_VERSION("intel"),
T_META_OWNER("seth_goldberg"),
T_META_RUN_CONCURRENTLY(true)
);
#define QUICK_RUN_TIME (2)
#define NORMAL_RUN_TIME (10)
#define LONG_RUN_TIME (10*60)
#define TIMEOUT_OVERHEAD (10)
volatile boolean_t checking = true;
char vec_str_buf[8196];
char karray_str_buf[1024];
/*
* ymm defines/globals/prototypes
*/
#define STOP_COOKIE_256 0x01234567
#if defined(__x86_64__)
#define YMM_MAX 16
#define X86_AVX_STATE_T x86_avx_state64_t
#define X86_AVX_STATE_COUNT x86_AVX_STATE64_COUNT
#define X86_AVX_STATE_FLAVOR x86_AVX_STATE64
#define MCONTEXT_SIZE_256 sizeof(struct __darwin_mcontext_avx64)
#else
#define YMM_MAX 8
#define X86_AVX_STATE_T x86_avx_state32_t
#define X86_AVX_STATE_COUNT x86_AVX_STATE32_COUNT
#define X86_AVX_STATE_FLAVOR x86_AVX_STATE32
#define MCONTEXT_SIZE_256 sizeof(struct __darwin_mcontext_avx32)
#endif
#define VECTOR256 __m256
#define VEC256ALIGN __attribute ((aligned(32)))
static inline void populate_ymm(void);
static inline void check_ymm(void);
VECTOR256 vec256array0[YMM_MAX] VEC256ALIGN;
VECTOR256 vec256array1[YMM_MAX] VEC256ALIGN;
VECTOR256 vec256array2[YMM_MAX] VEC256ALIGN;
VECTOR256 vec256array3[YMM_MAX] VEC256ALIGN;
/*
* zmm defines/globals/prototypes
*/
#define STOP_COOKIE_512 0x0123456789abcdefULL
#if defined(__x86_64__)
#define ZMM_MAX 32
#define X86_AVX512_STATE_T x86_avx512_state64_t
#define X86_AVX512_STATE_COUNT x86_AVX512_STATE64_COUNT
#define X86_AVX512_STATE_FLAVOR x86_AVX512_STATE64
#define MCONTEXT_SIZE_512 sizeof(struct __darwin_mcontext_avx512_64)
#else
#define ZMM_MAX 8
#define X86_AVX512_STATE_T x86_avx512_state32_t
#define X86_AVX512_STATE_COUNT x86_AVX512_STATE32_COUNT
#define X86_AVX512_STATE_FLAVOR x86_AVX512_STATE32
#define MCONTEXT_SIZE_512 sizeof(struct __darwin_mcontext_avx512_32)
#endif
#define VECTOR512 __m512
#define VEC512ALIGN __attribute ((aligned(64)))
#define OPMASK uint64_t
#define KARRAY_MAX 8
static inline void zero_zmm(void);
static inline void zero_opmask(void);
static inline void populate_zmm(void);
static inline void populate_opmask(void);
static inline void check_zmm(boolean_t check_cookie);
VECTOR512 vec512array0[ZMM_MAX] VEC512ALIGN;
VECTOR512 vec512array1[ZMM_MAX] VEC512ALIGN;
VECTOR512 vec512array2[ZMM_MAX] VEC512ALIGN;
VECTOR512 vec512array3[ZMM_MAX] VEC512ALIGN;
OPMASK karray0[8];
OPMASK karray1[8];
OPMASK karray2[8];
OPMASK karray3[8];
kern_return_t _thread_get_state_avx(thread_t thread, int flavor, thread_state_t state,
mach_msg_type_number_t *state_count);
kern_return_t _thread_get_state_avx512(thread_t thread, int flavor, thread_state_t state,
mach_msg_type_number_t *state_count);
/*
* Common functions
*/
int
memcmp_unoptimized(const void *s1, const void *s2, size_t n)
{
if (n != 0) {
const unsigned char *p1 = s1, *p2 = s2;
do {
if (*p1++ != *p2++) {
return *--p1 - *--p2;
}
} while (--n != 0);
}
return 0;
}
void
start_timer(int seconds, void (*handler)(int, siginfo_t *, void *))
{
struct sigaction sigalrm_action = {
.sa_sigaction = handler,
.sa_flags = SA_RESTART,
.sa_mask = 0
};
struct itimerval timer = {
.it_value.tv_sec = seconds,
.it_value.tv_usec = 0,
.it_interval.tv_sec = 0,
.it_interval.tv_usec = 0
};
T_QUIET; T_WITH_ERRNO;
T_ASSERT_NE(sigaction(SIGALRM, &sigalrm_action, NULL), -1, NULL);
T_QUIET; T_WITH_ERRNO;
T_ASSERT_NE(setitimer(ITIMER_REAL, &timer, NULL), -1, NULL);
}
void
require_avx(void)
{
if ((_get_cpu_capabilities() & kHasAVX1_0) != kHasAVX1_0) {
T_SKIP("AVX not supported on this system");
}
}
void
require_avx512(void)
{
if ((_get_cpu_capabilities() & kHasAVX512F) != kHasAVX512F) {
T_SKIP("AVX-512 not supported on this system");
}
}
/*
* ymm functions
*/
static inline void
store_ymm(VECTOR256 *vec256array)
{
int i = 0;
__asm__ volatile ("vmovaps %%ymm0, %0" :"=m" (vec256array[i]));
i++; __asm__ volatile ("vmovaps %%ymm1, %0" :"=m" (vec256array[i]));
i++; __asm__ volatile ("vmovaps %%ymm2, %0" :"=m" (vec256array[i]));
i++; __asm__ volatile ("vmovaps %%ymm3, %0" :"=m" (vec256array[i]));
i++; __asm__ volatile ("vmovaps %%ymm4, %0" :"=m" (vec256array[i]));
i++; __asm__ volatile ("vmovaps %%ymm5, %0" :"=m" (vec256array[i]));
i++; __asm__ volatile ("vmovaps %%ymm6, %0" :"=m" (vec256array[i]));
i++; __asm__ volatile ("vmovaps %%ymm7, %0" :"=m" (vec256array[i]));
#if defined(__x86_64__)
i++; __asm__ volatile ("vmovaps %%ymm8, %0" :"=m" (vec256array[i]));
i++; __asm__ volatile ("vmovaps %%ymm9, %0" :"=m" (vec256array[i]));
i++; __asm__ volatile ("vmovaps %%ymm10, %0" :"=m" (vec256array[i]));
i++; __asm__ volatile ("vmovaps %%ymm11, %0" :"=m" (vec256array[i]));
i++; __asm__ volatile ("vmovaps %%ymm12, %0" :"=m" (vec256array[i]));
i++; __asm__ volatile ("vmovaps %%ymm13, %0" :"=m" (vec256array[i]));
i++; __asm__ volatile ("vmovaps %%ymm14, %0" :"=m" (vec256array[i]));
i++; __asm__ volatile ("vmovaps %%ymm15, %0" :"=m" (vec256array[i]));
#endif
}
static inline void
restore_ymm(VECTOR256 *vec256array)
{
VECTOR256 *p = vec256array;
__asm__ volatile ("vmovaps %0, %%ymm0" :: "m" (*(__m256i*)p) : "ymm0"); p++;
__asm__ volatile ("vmovaps %0, %%ymm1" :: "m" (*(__m256i*)p) : "ymm1"); p++;
__asm__ volatile ("vmovaps %0, %%ymm2" :: "m" (*(__m256i*)p) : "ymm2"); p++;
__asm__ volatile ("vmovaps %0, %%ymm3" :: "m" (*(__m256i*)p) : "ymm3"); p++;
__asm__ volatile ("vmovaps %0, %%ymm4" :: "m" (*(__m256i*)p) : "ymm4"); p++;
__asm__ volatile ("vmovaps %0, %%ymm5" :: "m" (*(__m256i*)p) : "ymm5"); p++;
__asm__ volatile ("vmovaps %0, %%ymm6" :: "m" (*(__m256i*)p) : "ymm6"); p++;
__asm__ volatile ("vmovaps %0, %%ymm7" :: "m" (*(__m256i*)p) : "ymm7");
#if defined(__x86_64__)
++p; __asm__ volatile ("vmovaps %0, %%ymm8" :: "m" (*(__m256i*)p) : "ymm8"); p++;
__asm__ volatile ("vmovaps %0, %%ymm9" :: "m" (*(__m256i*)p) : "ymm9"); p++;
__asm__ volatile ("vmovaps %0, %%ymm10" :: "m" (*(__m256i*)p) : "ymm10"); p++;
__asm__ volatile ("vmovaps %0, %%ymm11" :: "m" (*(__m256i*)p) : "ymm11"); p++;
__asm__ volatile ("vmovaps %0, %%ymm12" :: "m" (*(__m256i*)p) : "ymm12"); p++;
__asm__ volatile ("vmovaps %0, %%ymm13" :: "m" (*(__m256i*)p) : "ymm13"); p++;
__asm__ volatile ("vmovaps %0, %%ymm14" :: "m" (*(__m256i*)p) : "ymm14"); p++;
__asm__ volatile ("vmovaps %0, %%ymm15" :: "m" (*(__m256i*)p) : "ymm15");
#endif
}
static inline void
populate_ymm(void)
{
int j;
uint32_t p[8] VEC256ALIGN;
for (j = 0; j < (int) (sizeof(p) / sizeof(p[0])); j++) {
p[j] = getpid();
}
p[0] = 0x22222222;
p[7] = 0x77777777;
__asm__ volatile ("vmovaps %0, %%ymm0" :: "m" (*(__m256i*)p) : "ymm0");
__asm__ volatile ("vmovaps %0, %%ymm1" :: "m" (*(__m256i*)p) : "ymm1");
__asm__ volatile ("vmovaps %0, %%ymm2" :: "m" (*(__m256i*)p) : "ymm2");
__asm__ volatile ("vmovaps %0, %%ymm3" :: "m" (*(__m256i*)p) : "ymm3");
p[0] = 0x44444444;
p[7] = 0xEEEEEEEE;
__asm__ volatile ("vmovaps %0, %%ymm4" :: "m" (*(__m256i*)p) : "ymm4");
__asm__ volatile ("vmovaps %0, %%ymm5" :: "m" (*(__m256i*)p) : "ymm5");
__asm__ volatile ("vmovaps %0, %%ymm6" :: "m" (*(__m256i*)p) : "ymm6");
__asm__ volatile ("vmovaps %0, %%ymm7" :: "m" (*(__m256i*)p) : "ymm7");
#if defined(__x86_64__)
p[0] = 0x88888888;
p[7] = 0xAAAAAAAA;
__asm__ volatile ("vmovaps %0, %%ymm8" :: "m" (*(__m256i*)p) : "ymm8");
__asm__ volatile ("vmovaps %0, %%ymm9" :: "m" (*(__m256i*)p) : "ymm9");
__asm__ volatile ("vmovaps %0, %%ymm10" :: "m" (*(__m256i*)p) : "ymm10");
__asm__ volatile ("vmovaps %0, %%ymm11" :: "m" (*(__m256i*)p) : "ymm11");
p[0] = 0xBBBBBBBB;
p[7] = 0xCCCCCCCC;
__asm__ volatile ("vmovaps %0, %%ymm12" :: "m" (*(__m256i*)p) : "ymm12");
__asm__ volatile ("vmovaps %0, %%ymm13" :: "m" (*(__m256i*)p) : "ymm13");
__asm__ volatile ("vmovaps %0, %%ymm14" :: "m" (*(__m256i*)p) : "ymm14");
__asm__ volatile ("vmovaps %0, %%ymm15" :: "m" (*(__m256i*)p) : "ymm15");
#endif
store_ymm(vec256array0);
}
void
vec256_to_string(VECTOR256 *vec, char *buf)
{
unsigned int vec_idx = 0;
unsigned int buf_idx = 0;
int ret = 0;
for (vec_idx = 0; vec_idx < YMM_MAX; vec_idx++) {
uint64_t a[4];
bcopy(&vec[vec_idx], &a[0], sizeof(a));
ret = sprintf(
buf + buf_idx,
"0x%016llx:%016llx:%016llx:%016llx\n",
a[0], a[1], a[2], a[3]
);
T_QUIET; T_ASSERT_POSIX_SUCCESS(ret, "sprintf()");
buf_idx += ret;
}
}
void
assert_ymm_eq(void *a, void *b, int c)
{
if (memcmp_unoptimized(a, b, c)) {
vec256_to_string(a, vec_str_buf);
T_LOG("Compare failed, vector A:\n%s", vec_str_buf);
vec256_to_string(b, vec_str_buf);
T_LOG("Compare failed, vector B:\n%s", vec_str_buf);
T_ASSERT_FAIL("vectors not equal");
}
}
void
check_ymm(void)
{
uint32_t *p = (uint32_t *) &vec256array1[7];
store_ymm(vec256array1);
if (p[0] == STOP_COOKIE_256) {
return;
}
assert_ymm_eq(vec256array0, vec256array1, sizeof(vec256array0));
}
static void
copy_ymm_state_to_vector(X86_AVX_STATE_T *sp, VECTOR256 *vp)
{
int i;
struct __darwin_xmm_reg *xmm = &sp->__fpu_xmm0;
struct __darwin_xmm_reg *ymmh = &sp->__fpu_ymmh0;
for (i = 0; i < YMM_MAX; i++) {
bcopy(&xmm[i], &vp[i], sizeof(*xmm));
bcopy(&ymmh[i], (void *) ((uint64_t)&vp[i] + sizeof(*ymmh)), sizeof(*ymmh));
}
}
static void
ymm_sigalrm_handler(int signum __unused, siginfo_t *info __unused, void *ctx)
{
ucontext_t *contextp = (ucontext_t *) ctx;
mcontext_t mcontext = contextp->uc_mcontext;
X86_AVX_STATE_T *avx_state = (X86_AVX_STATE_T *) &mcontext->__fs;
uint32_t *xp = (uint32_t *) &avx_state->__fpu_xmm7;
uint32_t *yp = (uint32_t *) &avx_state->__fpu_ymmh7;
T_LOG("Got SIGALRM");
/* Check for AVX state */
T_QUIET;
T_ASSERT_GE(contextp->uc_mcsize, MCONTEXT_SIZE_256, "check context size");
/* Check that the state in the context is what's set and expected */
copy_ymm_state_to_vector(avx_state, vec256array3);
assert_ymm_eq(vec256array3, vec256array0, sizeof(vec256array1));
/* Change the context and break the main loop */
xp[0] = STOP_COOKIE_256;
yp[0] = STOP_COOKIE_256;
checking = FALSE;
}
kern_return_t
_thread_get_state_avx(
thread_t thread,
int flavor,
thread_state_t state, /* pointer to OUT array */
mach_msg_type_number_t *state_count) /*IN/OUT*/
{
kern_return_t rv;
VECTOR256 ymms[YMM_MAX];
/*
* We must save and restore the YMMs across thread_get_state() because
* code in thread_get_state changes at least one xmm register AFTER the
* thread_get_state has saved the state in userspace. While it's still
* possible for something to muck with %xmms BEFORE making the mach
* system call (and rendering this save/restore useless), that does not
* currently occur, and since we depend on the avx state saved in the
* thread_get_state to be the same as that manually copied from YMMs after
* thread_get_state returns, we have to go through these machinations.
*/
store_ymm(ymms);
rv = thread_get_state(thread, flavor, state, state_count);
restore_ymm(ymms);
return rv;
}
void
ymm_integrity(int time)
{
mach_msg_type_number_t avx_count = X86_AVX_STATE_COUNT;
kern_return_t kret;
X86_AVX_STATE_T avx_state, avx_state2;
mach_port_t ts = mach_thread_self();
bzero(&avx_state, sizeof(avx_state));
bzero(&avx_state2, sizeof(avx_state));
kret = _thread_get_state_avx(
ts, X86_AVX_STATE_FLAVOR, (thread_state_t)&avx_state, &avx_count
);
store_ymm(vec256array2);
T_QUIET; T_ASSERT_MACH_SUCCESS(kret, "thread_get_state()");
vec256_to_string(vec256array2, vec_str_buf);
T_LOG("Initial state:\n%s", vec_str_buf);
copy_ymm_state_to_vector(&avx_state, vec256array1);
assert_ymm_eq(vec256array2, vec256array1, sizeof(vec256array1));
populate_ymm();
kret = _thread_get_state_avx(
ts, X86_AVX_STATE_FLAVOR, (thread_state_t)&avx_state2, &avx_count
);
store_ymm(vec256array2);
T_QUIET; T_ASSERT_MACH_SUCCESS(kret, "thread_get_state()");
vec256_to_string(vec256array2, vec_str_buf);
T_LOG("Populated state:\n%s", vec_str_buf);
copy_ymm_state_to_vector(&avx_state2, vec256array1);
assert_ymm_eq(vec256array2, vec256array1, sizeof(vec256array0));
T_LOG("Running for %ds…", time);
start_timer(time, ymm_sigalrm_handler);
/* re-populate because printing mucks up XMMs */
populate_ymm();
/* Check state until timer fires */
while (checking) {
check_ymm();
}
/* Check that the sig handler changed out AVX state */
store_ymm(vec256array1);
uint32_t *p = (uint32_t *) &vec256array1[7];
if (p[0] != STOP_COOKIE_256 ||
p[4] != STOP_COOKIE_256) {
vec256_to_string(vec256array1, vec_str_buf);
T_ASSERT_FAIL("sigreturn failed to stick");
T_LOG("State:\n%s", vec_str_buf);
}
T_LOG("Ran for %ds", time);
T_PASS("No ymm register corruption occurred");
}
/*
* zmm functions
*/
static inline void
store_opmask(OPMASK k[])
{
__asm__ volatile ("kmovq %%k0, %0" :"=m" (k[0]));
__asm__ volatile ("kmovq %%k1, %0" :"=m" (k[1]));
__asm__ volatile ("kmovq %%k2, %0" :"=m" (k[2]));
__asm__ volatile ("kmovq %%k3, %0" :"=m" (k[3]));
__asm__ volatile ("kmovq %%k4, %0" :"=m" (k[4]));
__asm__ volatile ("kmovq %%k5, %0" :"=m" (k[5]));
__asm__ volatile ("kmovq %%k6, %0" :"=m" (k[6]));
__asm__ volatile ("kmovq %%k7, %0" :"=m" (k[7]));
}
static inline void
store_zmm(VECTOR512 *vecarray)
{
int i = 0;
__asm__ volatile ("vmovaps %%zmm0, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm1, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm2, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm3, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm4, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm5, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm6, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm7, %0" :"=m" (vecarray[i]));
#if defined(__x86_64__)
i++; __asm__ volatile ("vmovaps %%zmm8, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm9, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm10, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm11, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm12, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm13, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm14, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm15, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm16, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm17, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm18, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm19, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm20, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm21, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm22, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm23, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm24, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm25, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm26, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm27, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm28, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm29, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm30, %0" :"=m" (vecarray[i]));
i++; __asm__ volatile ("vmovaps %%zmm31, %0" :"=m" (vecarray[i]));
#endif
}
static inline void
restore_zmm(VECTOR512 *vecarray)
{
VECTOR512 *p = vecarray;
__asm__ volatile ("vmovaps %0, %%zmm0" :: "m" (*(__m512i*)p) : "zmm0"); p++;
__asm__ volatile ("vmovaps %0, %%zmm1" :: "m" (*(__m512i*)p) : "zmm1"); p++;
__asm__ volatile ("vmovaps %0, %%zmm2" :: "m" (*(__m512i*)p) : "zmm2"); p++;
__asm__ volatile ("vmovaps %0, %%zmm3" :: "m" (*(__m512i*)p) : "zmm3"); p++;
__asm__ volatile ("vmovaps %0, %%zmm4" :: "m" (*(__m512i*)p) : "zmm4"); p++;
__asm__ volatile ("vmovaps %0, %%zmm5" :: "m" (*(__m512i*)p) : "zmm5"); p++;
__asm__ volatile ("vmovaps %0, %%zmm6" :: "m" (*(__m512i*)p) : "zmm6"); p++;
__asm__ volatile ("vmovaps %0, %%zmm7" :: "m" (*(__m512i*)p) : "zmm7");
#if defined(__x86_64__)
++p; __asm__ volatile ("vmovaps %0, %%zmm8" :: "m" (*(__m512i*)p) : "zmm8"); p++;
__asm__ volatile ("vmovaps %0, %%zmm9" :: "m" (*(__m512i*)p) : "zmm9"); p++;
__asm__ volatile ("vmovaps %0, %%zmm10" :: "m" (*(__m512i*)p) : "zmm10"); p++;
__asm__ volatile ("vmovaps %0, %%zmm11" :: "m" (*(__m512i*)p) : "zmm11"); p++;
__asm__ volatile ("vmovaps %0, %%zmm12" :: "m" (*(__m512i*)p) : "zmm12"); p++;
__asm__ volatile ("vmovaps %0, %%zmm13" :: "m" (*(__m512i*)p) : "zmm13"); p++;
__asm__ volatile ("vmovaps %0, %%zmm14" :: "m" (*(__m512i*)p) : "zmm14"); p++;
__asm__ volatile ("vmovaps %0, %%zmm15" :: "m" (*(__m512i*)p) : "zmm15"); p++;
__asm__ volatile ("vmovaps %0, %%zmm16" :: "m" (*(__m512i*)p) : "zmm16"); p++;
__asm__ volatile ("vmovaps %0, %%zmm17" :: "m" (*(__m512i*)p) : "zmm17"); p++;
__asm__ volatile ("vmovaps %0, %%zmm18" :: "m" (*(__m512i*)p) : "zmm18"); p++;
__asm__ volatile ("vmovaps %0, %%zmm19" :: "m" (*(__m512i*)p) : "zmm19"); p++;
__asm__ volatile ("vmovaps %0, %%zmm20" :: "m" (*(__m512i*)p) : "zmm20"); p++;
__asm__ volatile ("vmovaps %0, %%zmm21" :: "m" (*(__m512i*)p) : "zmm21"); p++;
__asm__ volatile ("vmovaps %0, %%zmm22" :: "m" (*(__m512i*)p) : "zmm22"); p++;
__asm__ volatile ("vmovaps %0, %%zmm23" :: "m" (*(__m512i*)p) : "zmm23"); p++;
__asm__ volatile ("vmovaps %0, %%zmm24" :: "m" (*(__m512i*)p) : "zmm24"); p++;
__asm__ volatile ("vmovaps %0, %%zmm25" :: "m" (*(__m512i*)p) : "zmm25"); p++;
__asm__ volatile ("vmovaps %0, %%zmm26" :: "m" (*(__m512i*)p) : "zmm26"); p++;
__asm__ volatile ("vmovaps %0, %%zmm27" :: "m" (*(__m512i*)p) : "zmm27"); p++;
__asm__ volatile ("vmovaps %0, %%zmm28" :: "m" (*(__m512i*)p) : "zmm28"); p++;
__asm__ volatile ("vmovaps %0, %%zmm29" :: "m" (*(__m512i*)p) : "zmm29"); p++;
__asm__ volatile ("vmovaps %0, %%zmm30" :: "m" (*(__m512i*)p) : "zmm30"); p++;
__asm__ volatile ("vmovaps %0, %%zmm31" :: "m" (*(__m512i*)p) : "zmm31");
#endif
}
static inline void
zero_opmask(void)
{
uint64_t zero = 0x0000000000000000ULL;
__asm__ volatile ("kmovq %0, %%k0" : :"m" (zero) : "k0");
__asm__ volatile ("kmovq %0, %%k1" : :"m" (zero) : "k1");
__asm__ volatile ("kmovq %0, %%k2" : :"m" (zero) : "k2");
__asm__ volatile ("kmovq %0, %%k3" : :"m" (zero) : "k3");
__asm__ volatile ("kmovq %0, %%k4" : :"m" (zero) : "k4");
__asm__ volatile ("kmovq %0, %%k5" : :"m" (zero) : "k5");
__asm__ volatile ("kmovq %0, %%k6" : :"m" (zero) : "k6");
__asm__ volatile ("kmovq %0, %%k7" : :"m" (zero) : "k7");
store_opmask(karray0);
}
static inline void
populate_opmask(void)
{
uint64_t k[8];
for (int j = 0; j < 8; j++) {
k[j] = ((uint64_t) getpid() << 32) + (0x11111111 * j);
}
__asm__ volatile ("kmovq %0, %%k0" : :"m" (k[0]) : "k0");
__asm__ volatile ("kmovq %0, %%k1" : :"m" (k[1]) : "k1");
__asm__ volatile ("kmovq %0, %%k2" : :"m" (k[2]) : "k2");
__asm__ volatile ("kmovq %0, %%k3" : :"m" (k[3]) : "k3");
__asm__ volatile ("kmovq %0, %%k4" : :"m" (k[4]) : "k4");
__asm__ volatile ("kmovq %0, %%k5" : :"m" (k[5]) : "k5");
__asm__ volatile ("kmovq %0, %%k6" : :"m" (k[6]) : "k6");
__asm__ volatile ("kmovq %0, %%k7" : :"m" (k[7]) : "k7");
store_opmask(karray0);
}
kern_return_t
_thread_get_state_avx512(
thread_t thread,
int flavor,
thread_state_t state, /* pointer to OUT array */
mach_msg_type_number_t *state_count) /*IN/OUT*/
{
kern_return_t rv;
VECTOR512 zmms[ZMM_MAX];
/*
* We must save and restore the ZMMs across thread_get_state() because
* code in thread_get_state changes at least one xmm register AFTER the
* thread_get_state has saved the state in userspace. While it's still
* possible for something to muck with %XMMs BEFORE making the mach
* system call (and rendering this save/restore useless), that does not
* currently occur, and since we depend on the avx512 state saved in the
* thread_get_state to be the same as that manually copied from ZMMs after
* thread_get_state returns, we have to go through these machinations.
*/
store_zmm(zmms);
rv = thread_get_state(thread, flavor, state, state_count);
restore_zmm(zmms);
return rv;
}
static inline void
zero_zmm(void)
{
uint64_t zero[8] VEC512ALIGN = {0};
__asm__ volatile ("vmovaps %0, %%zmm0" :: "m" (zero) : "zmm0");
__asm__ volatile ("vmovaps %0, %%zmm1" :: "m" (zero) : "zmm1");
__asm__ volatile ("vmovaps %0, %%zmm2" :: "m" (zero) : "zmm2");
__asm__ volatile ("vmovaps %0, %%zmm3" :: "m" (zero) : "zmm3");
__asm__ volatile ("vmovaps %0, %%zmm4" :: "m" (zero) : "zmm4");
__asm__ volatile ("vmovaps %0, %%zmm5" :: "m" (zero) : "zmm5");
__asm__ volatile ("vmovaps %0, %%zmm6" :: "m" (zero) : "zmm6");
__asm__ volatile ("vmovaps %0, %%zmm7" :: "m" (zero) : "zmm7");
#if defined(__x86_64__)
__asm__ volatile ("vmovaps %0, %%zmm8" :: "m" (zero) : "zmm8");
__asm__ volatile ("vmovaps %0, %%zmm9" :: "m" (zero) : "zmm9");
__asm__ volatile ("vmovaps %0, %%zmm10" :: "m" (zero) : "zmm10");
__asm__ volatile ("vmovaps %0, %%zmm11" :: "m" (zero) : "zmm11");
__asm__ volatile ("vmovaps %0, %%zmm12" :: "m" (zero) : "zmm12");
__asm__ volatile ("vmovaps %0, %%zmm13" :: "m" (zero) : "zmm13");
__asm__ volatile ("vmovaps %0, %%zmm14" :: "m" (zero) : "zmm14");
__asm__ volatile ("vmovaps %0, %%zmm15" :: "m" (zero) : "zmm15");
__asm__ volatile ("vmovaps %0, %%zmm16" :: "m" (zero) : "zmm16");
__asm__ volatile ("vmovaps %0, %%zmm17" :: "m" (zero) : "zmm17");
__asm__ volatile ("vmovaps %0, %%zmm18" :: "m" (zero) : "zmm18");
__asm__ volatile ("vmovaps %0, %%zmm19" :: "m" (zero) : "zmm19");
__asm__ volatile ("vmovaps %0, %%zmm20" :: "m" (zero) : "zmm20");
__asm__ volatile ("vmovaps %0, %%zmm21" :: "m" (zero) : "zmm21");
__asm__ volatile ("vmovaps %0, %%zmm22" :: "m" (zero) : "zmm22");
__asm__ volatile ("vmovaps %0, %%zmm23" :: "m" (zero) : "zmm23");
__asm__ volatile ("vmovaps %0, %%zmm24" :: "m" (zero) : "zmm24");
__asm__ volatile ("vmovaps %0, %%zmm25" :: "m" (zero) : "zmm25");
__asm__ volatile ("vmovaps %0, %%zmm26" :: "m" (zero) : "zmm26");
__asm__ volatile ("vmovaps %0, %%zmm27" :: "m" (zero) : "zmm27");
__asm__ volatile ("vmovaps %0, %%zmm28" :: "m" (zero) : "zmm28");
__asm__ volatile ("vmovaps %0, %%zmm29" :: "m" (zero) : "zmm29");
__asm__ volatile ("vmovaps %0, %%zmm30" :: "m" (zero) : "zmm30");
__asm__ volatile ("vmovaps %0, %%zmm31" :: "m" (zero) : "zmm31");
#endif
store_zmm(vec512array0);
}
static inline void
populate_zmm(void)
{
int j;
uint64_t p[8] VEC512ALIGN;
for (j = 0; j < (int) (sizeof(p) / sizeof(p[0])); j++) {
p[j] = ((uint64_t) getpid() << 32) + getpid();
}
p[0] = 0x0000000000000000ULL;
p[2] = 0x4444444444444444ULL;
p[4] = 0x8888888888888888ULL;
p[7] = 0xCCCCCCCCCCCCCCCCULL;
__asm__ volatile ("vmovaps %0, %%zmm0" :: "m" (*(__m512i*)p) : "zmm0");
__asm__ volatile ("vmovaps %0, %%zmm1" :: "m" (*(__m512i*)p) : "zmm1");
__asm__ volatile ("vmovaps %0, %%zmm2" :: "m" (*(__m512i*)p) : "zmm2");
__asm__ volatile ("vmovaps %0, %%zmm3" :: "m" (*(__m512i*)p) : "zmm3");
__asm__ volatile ("vmovaps %0, %%zmm4" :: "m" (*(__m512i*)p) : "zmm4");
__asm__ volatile ("vmovaps %0, %%zmm5" :: "m" (*(__m512i*)p) : "zmm5");
__asm__ volatile ("vmovaps %0, %%zmm6" :: "m" (*(__m512i*)p) : "zmm6");
__asm__ volatile ("vmovaps %0, %%zmm7" :: "m" (*(__m512i*)p) : "zmm7");
#if defined(__x86_64__)
p[0] = 0x1111111111111111ULL;
p[2] = 0x5555555555555555ULL;
p[4] = 0x9999999999999999ULL;
p[7] = 0xDDDDDDDDDDDDDDDDULL;
__asm__ volatile ("vmovaps %0, %%zmm8" :: "m" (*(__m512i*)p) : "zmm8");
__asm__ volatile ("vmovaps %0, %%zmm9" :: "m" (*(__m512i*)p) : "zmm9");
__asm__ volatile ("vmovaps %0, %%zmm10" :: "m" (*(__m512i*)p) : "zmm10");
__asm__ volatile ("vmovaps %0, %%zmm11" :: "m" (*(__m512i*)p) : "zmm11");
__asm__ volatile ("vmovaps %0, %%zmm12" :: "m" (*(__m512i*)p) : "zmm12");
__asm__ volatile ("vmovaps %0, %%zmm13" :: "m" (*(__m512i*)p) : "zmm13");
__asm__ volatile ("vmovaps %0, %%zmm14" :: "m" (*(__m512i*)p) : "zmm14");
__asm__ volatile ("vmovaps %0, %%zmm15" :: "m" (*(__m512i*)p) : "zmm15");
p[0] = 0x2222222222222222ULL;
p[2] = 0x6666666666666666ULL;
p[4] = 0xAAAAAAAAAAAAAAAAULL;
p[7] = 0xEEEEEEEEEEEEEEEEULL;
__asm__ volatile ("vmovaps %0, %%zmm16" :: "m" (*(__m512i*)p) : "zmm16");
__asm__ volatile ("vmovaps %0, %%zmm17" :: "m" (*(__m512i*)p) : "zmm17");
__asm__ volatile ("vmovaps %0, %%zmm18" :: "m" (*(__m512i*)p) : "zmm18");
__asm__ volatile ("vmovaps %0, %%zmm19" :: "m" (*(__m512i*)p) : "zmm19");
__asm__ volatile ("vmovaps %0, %%zmm20" :: "m" (*(__m512i*)p) : "zmm20");
__asm__ volatile ("vmovaps %0, %%zmm21" :: "m" (*(__m512i*)p) : "zmm21");
__asm__ volatile ("vmovaps %0, %%zmm22" :: "m" (*(__m512i*)p) : "zmm22");
__asm__ volatile ("vmovaps %0, %%zmm23" :: "m" (*(__m512i*)p) : "zmm23");
p[0] = 0x3333333333333333ULL;
p[2] = 0x7777777777777777ULL;
p[4] = 0xBBBBBBBBBBBBBBBBULL;
p[7] = 0xFFFFFFFFFFFFFFFFULL;
__asm__ volatile ("vmovaps %0, %%zmm24" :: "m" (*(__m512i*)p) : "zmm24");
__asm__ volatile ("vmovaps %0, %%zmm25" :: "m" (*(__m512i*)p) : "zmm25");
__asm__ volatile ("vmovaps %0, %%zmm26" :: "m" (*(__m512i*)p) : "zmm26");
__asm__ volatile ("vmovaps %0, %%zmm27" :: "m" (*(__m512i*)p) : "zmm27");
__asm__ volatile ("vmovaps %0, %%zmm28" :: "m" (*(__m512i*)p) : "zmm28");
__asm__ volatile ("vmovaps %0, %%zmm29" :: "m" (*(__m512i*)p) : "zmm29");
__asm__ volatile ("vmovaps %0, %%zmm30" :: "m" (*(__m512i*)p) : "zmm30");
__asm__ volatile ("vmovaps %0, %%zmm31" :: "m" (*(__m512i*)p) : "zmm31");
#endif
store_zmm(vec512array0);
}
void
vec512_to_string(VECTOR512 *vec, char *buf)
{
unsigned int vec_idx = 0;
unsigned int buf_idx = 0;
int ret = 0;
for (vec_idx = 0; vec_idx < ZMM_MAX; vec_idx++) {
uint64_t a[8];
bcopy(&vec[vec_idx], &a[0], sizeof(a));
ret = sprintf(
buf + buf_idx,
"0x%016llx:%016llx:%016llx:%016llx:"
"%016llx:%016llx:%016llx:%016llx%s",
a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],
vec_idx < ZMM_MAX - 1 ? "\n" : ""
);
T_QUIET; T_ASSERT_POSIX_SUCCESS(ret, "sprintf()");
buf_idx += ret;
}
}
void
opmask_to_string(OPMASK *karray, char *buf)
{
unsigned int karray_idx = 0;
unsigned int buf_idx = 0;
int ret = 0;
for (karray_idx = 0; karray_idx < KARRAY_MAX; karray_idx++) {
ret = sprintf(
buf + buf_idx,
"k%d: 0x%016llx%s",
karray_idx, karray[karray_idx],
karray_idx < KARRAY_MAX ? "\n" : ""
);
T_QUIET; T_ASSERT_POSIX_SUCCESS(ret, "sprintf()");
buf_idx += ret;
}
}
static void
assert_zmm_eq(void *a, void *b, int c)
{
if (memcmp_unoptimized(a, b, c)) {
vec512_to_string(a, vec_str_buf);
T_LOG("Compare failed, vector A:\n%s", vec_str_buf);
vec512_to_string(b, vec_str_buf);
T_LOG("Compare failed, vector B:\n%s", vec_str_buf);
T_ASSERT_FAIL("Vectors not equal");
}
}
static void
assert_opmask_eq(OPMASK *a, OPMASK *b)
{
for (int i = 0; i < KARRAY_MAX; i++) {
if (a[i] != b[i]) {
opmask_to_string(a, karray_str_buf);
T_LOG("Compare failed, opmask A:\n%s", karray_str_buf);
opmask_to_string(b, karray_str_buf);
T_LOG("Compare failed, opmask B:\n%s", karray_str_buf);
T_ASSERT_FAIL("opmasks not equal");
}
}
}
void
check_zmm(boolean_t check_cookie)
{
uint64_t *p = (uint64_t *) &vec512array1[7];
store_opmask(karray1);
store_zmm(vec512array1);
if (check_cookie && p[0] == STOP_COOKIE_512) {
return;
}
assert_zmm_eq(vec512array0, vec512array1, sizeof(vec512array0));
assert_opmask_eq(karray0, karray1);
}
static void
copy_state_to_opmask(X86_AVX512_STATE_T *sp, OPMASK *op)
{
OPMASK *k = (OPMASK *) &sp->__fpu_k0;
for (int i = 0; i < KARRAY_MAX; i++) {
bcopy(&k[i], &op[i], sizeof(*op));
}
}
static void
copy_zmm_state_to_vector(X86_AVX512_STATE_T *sp, VECTOR512 *vp)
{
int i;
struct __darwin_xmm_reg *xmm = &sp->__fpu_xmm0;
struct __darwin_xmm_reg *ymmh = &sp->__fpu_ymmh0;
struct __darwin_ymm_reg *zmmh = &sp->__fpu_zmmh0;
#if defined(__x86_64__)
struct __darwin_zmm_reg *zmm = &sp->__fpu_zmm16;
for (i = 0; i < ZMM_MAX / 2; i++) {
bcopy(&xmm[i], &vp[i], sizeof(*xmm));
bcopy(&ymmh[i], (void *) ((uint64_t)&vp[i] + sizeof(*ymmh)), sizeof(*ymmh));
bcopy(&zmmh[i], (void *) ((uint64_t)&vp[i] + sizeof(*zmmh)), sizeof(*zmmh));
bcopy(&zmm[i], &vp[(ZMM_MAX / 2) + i], sizeof(*zmm));
}
#else
for (i = 0; i < ZMM_MAX; i++) {
bcopy(&xmm[i], &vp[i], sizeof(*xmm));
bcopy(&ymmh[i], (void *) ((uint64_t)&vp[i] + sizeof(*ymmh)), sizeof(*ymmh));
bcopy(&zmmh[i], (void *) ((uint64_t)&vp[i] + sizeof(*zmmh)), sizeof(*zmmh));
}
#endif
}
static void
zmm_sigalrm_handler(int signum __unused, siginfo_t *info __unused, void *ctx)
{
ucontext_t *contextp = (ucontext_t *) ctx;
mcontext_t mcontext = contextp->uc_mcontext;
X86_AVX512_STATE_T *avx_state = (X86_AVX512_STATE_T *) &mcontext->__fs;
uint64_t *xp = (uint64_t *) &avx_state->__fpu_xmm7;
uint64_t *yp = (uint64_t *) &avx_state->__fpu_ymmh7;
uint64_t *zp = (uint64_t *) &avx_state->__fpu_zmmh7;
uint64_t *kp = (uint64_t *) &avx_state->__fpu_k0;
/* Check for AVX512 state */
T_QUIET;
T_ASSERT_GE(contextp->uc_mcsize, MCONTEXT_SIZE_512, "check context size");
/* Check that the state in the context is what's set and expected */
copy_zmm_state_to_vector(avx_state, vec512array3);
assert_zmm_eq(vec512array3, vec512array0, sizeof(vec512array3));
copy_state_to_opmask(avx_state, karray3);
assert_opmask_eq(karray3, karray0);
/* Change the context and break the main loop */
xp[0] = STOP_COOKIE_512;
yp[0] = STOP_COOKIE_512;
zp[0] = STOP_COOKIE_512;
kp[7] = STOP_COOKIE_512;
checking = FALSE;
}
static void
zmm_sigalrm_handler_no_mod(int signum __unused, siginfo_t *info __unused, void *ctx)
{
ucontext_t *contextp = (ucontext_t *) ctx;
mcontext_t mcontext = contextp->uc_mcontext;
X86_AVX512_STATE_T *avx_state = (X86_AVX512_STATE_T *) &mcontext->__fs;
uint64_t *xp = (uint64_t *) &avx_state->__fpu_xmm7;
uint64_t *yp = (uint64_t *) &avx_state->__fpu_ymmh7;
uint64_t *zp = (uint64_t *) &avx_state->__fpu_zmmh7;
uint64_t *kp = (uint64_t *) &avx_state->__fpu_k0;
/* Check for AVX512 state */
T_QUIET;
T_ASSERT_GE(contextp->uc_mcsize, MCONTEXT_SIZE_512, "check context size");
/* Check that the state in the context is what's set and expected */
copy_zmm_state_to_vector(avx_state, vec512array3);
assert_zmm_eq(vec512array3, vec512array0, sizeof(vec512array3));
copy_state_to_opmask(avx_state, karray3);
assert_opmask_eq(karray3, karray0);
/* Change the context and break the main loop */
checking = FALSE;
}
void
zmm_integrity(int time)
{
mach_msg_type_number_t avx_count = X86_AVX512_STATE_COUNT;
kern_return_t kret;
X86_AVX512_STATE_T avx_state, avx_state2;
mach_port_t ts = mach_thread_self();
bzero(&avx_state, sizeof(avx_state));
bzero(&avx_state2, sizeof(avx_state));
store_zmm(vec512array2);
store_opmask(karray2);
kret = _thread_get_state_avx512(
ts, X86_AVX512_STATE_FLAVOR, (thread_state_t)&avx_state, &avx_count
);
T_QUIET; T_ASSERT_MACH_SUCCESS(kret, "thread_get_state()");
vec512_to_string(vec512array2, vec_str_buf);
opmask_to_string(karray2, karray_str_buf);
T_LOG("Initial state:\n%s\n%s", vec_str_buf, karray_str_buf);
copy_zmm_state_to_vector(&avx_state, vec512array1);
assert_zmm_eq(vec512array2, vec512array1, sizeof(vec512array1));
copy_state_to_opmask(&avx_state, karray1);
assert_opmask_eq(karray2, karray1);
populate_zmm();
populate_opmask();
kret = _thread_get_state_avx512(
ts, X86_AVX512_STATE_FLAVOR, (thread_state_t)&avx_state2, &avx_count
);
store_zmm(vec512array2);
store_opmask(karray2);
T_QUIET; T_ASSERT_MACH_SUCCESS(kret, "thread_get_state()");
vec512_to_string(vec512array2, vec_str_buf);
opmask_to_string(karray2, karray_str_buf);
T_LOG("Populated state:\n%s\n%s", vec_str_buf, karray_str_buf);
copy_zmm_state_to_vector(&avx_state2, vec512array1);
assert_zmm_eq(vec512array2, vec512array1, sizeof(vec512array1));
copy_state_to_opmask(&avx_state2, karray1);
assert_opmask_eq(karray2, karray1);
T_LOG("Running for %ds…", time);
start_timer(time, zmm_sigalrm_handler);
/* re-populate because printing mucks up XMMs */
populate_zmm();
populate_opmask();
/* Check state until timer fires */
while (checking) {
check_zmm(TRUE);
}
/* Check that the sig handler changed our AVX state */
store_zmm(vec512array1);
store_opmask(karray1);
uint64_t *p = (uint64_t *) &vec512array1[7];
if (p[0] != STOP_COOKIE_512 ||
p[2] != STOP_COOKIE_512 ||
p[4] != STOP_COOKIE_512 ||
karray1[7] != STOP_COOKIE_512) {
vec512_to_string(vec512array1, vec_str_buf);
opmask_to_string(karray1, karray_str_buf);
T_ASSERT_FAIL("sigreturn failed to stick");
T_LOG("State:\n%s\n%s", vec_str_buf, karray_str_buf);
}
T_LOG("Ran for %ds", time);
T_PASS("No zmm register corruption occurred");
}
void
zmm_zeroing_optimization_integrity(int time)
{
/*
* Check ZMM zero and OpMask zero
*/
T_LOG("Checking ZMM zero and OpMask zero");
checking = true;
zero_zmm();
zero_opmask();
T_LOG("Running for %ds…", time);
start_timer(time, zmm_sigalrm_handler_no_mod);
/* re-populate because printing mucks up XMMs */
zero_zmm();
zero_opmask();
/* Check state until timer fires */
while (checking) {
check_zmm(FALSE);
}
/* Check that sig handler did not changed our AVX state */
store_zmm(vec512array2);
store_opmask(karray2);
assert_zmm_eq(vec512array0, vec512array2, sizeof(vec512array2));
assert_opmask_eq(karray0, karray2);
T_LOG("Ran for %ds", time);
T_PASS("ZMM zero and OpMask zero");
/*
* Check ZMM zero and OpMask non-zero
*/
T_LOG("Checking ZMM zero and OpMask non-zero");
checking = true;
zero_zmm();
populate_opmask();
T_LOG("Running for %ds…", time);
start_timer(time, zmm_sigalrm_handler_no_mod);
/* re-populate because printing mucks up XMMs */
zero_zmm();
populate_opmask();
/* Check state until timer fires */
while (checking) {
check_zmm(FALSE);
}
/* Check that sig handler did not changed our AVX state */
store_zmm(vec512array2);
store_opmask(karray2);
assert_zmm_eq(vec512array0, vec512array2, sizeof(vec512array2));
assert_opmask_eq(karray0, karray2);
T_LOG("Ran for %ds", time);
T_PASS("ZMM zero and OpMask non-zero");
/*
* Check ZMM non-zero and OpMask zero
*/
T_LOG("Checking ZMM non-zero and OpMask zero");
checking = true;
populate_zmm();
zero_opmask();
T_LOG("Running for %ds…", time);
start_timer(time, zmm_sigalrm_handler_no_mod);
/* re-populate because printing mucks up XMMs */
populate_zmm();
zero_opmask();
/* Check state until timer fires */
while (checking) {
check_zmm(FALSE);
}
/* Check that sig handler did not changed our AVX state */
store_zmm(vec512array2);
store_opmask(karray2);
assert_zmm_eq(vec512array0, vec512array2, sizeof(vec512array2));
assert_opmask_eq(karray0, karray2);
T_LOG("Ran for %ds", time);
T_PASS("ZMM non-zero and OpMask zero");
/*
* Check ZMM non-zero and OpMask non-zero
*/
T_LOG("Checking ZMM non-zero and OpMask non-zero");
checking = true;
populate_zmm();
populate_opmask();
T_LOG("Running for %ds…", time);
start_timer(time, zmm_sigalrm_handler_no_mod);
/* re-populate because printing mucks up XMMs */
populate_zmm();
populate_opmask();
/* Check state until timer fires */
while (checking) {
check_zmm(FALSE);
}
/* Check that sig handler did not changed our AVX state */
store_zmm(vec512array2);
store_opmask(karray2);
assert_zmm_eq(vec512array0, vec512array2, sizeof(vec512array2));
assert_opmask_eq(karray0, karray2);
T_LOG("Ran for %ds", time);
T_PASS("ZMM non-zero and OpMask non-zero");
}
/*
* Main test declarations
*/
T_DECL(ymm_integrity,
"Quick soak test to verify that AVX "
"register state is maintained correctly",
T_META_TIMEOUT(NORMAL_RUN_TIME + TIMEOUT_OVERHEAD)) {
require_avx();
ymm_integrity(NORMAL_RUN_TIME);
}
T_DECL(ymm_integrity_stress,
"Extended soak test to verify that AVX "
"register state is maintained correctly",
T_META_TIMEOUT(LONG_RUN_TIME + TIMEOUT_OVERHEAD),
T_META_ENABLED(false)) {
require_avx();
ymm_integrity(LONG_RUN_TIME);
}
T_DECL(zmm_integrity,
"Quick soak test to verify that AVX-512 "
"register state is maintained correctly",
T_META_TIMEOUT(NORMAL_RUN_TIME + TIMEOUT_OVERHEAD)) {
require_avx512();
zmm_integrity(NORMAL_RUN_TIME);
}
T_DECL(zmm_integrity_stress,
"Extended soak test to verify that AVX-512 "
"register state is maintained correctly",
T_META_TIMEOUT(LONG_RUN_TIME + TIMEOUT_OVERHEAD),
T_META_ENABLED(false)) {
require_avx512();
zmm_integrity(LONG_RUN_TIME);
}
T_DECL(zmm_zeroing_optimization_integrity,
"Quick soak test to verify AVX-512 "
"register state is maintained with "
"zeroing optimizations enabled",
T_META_TIMEOUT(QUICK_RUN_TIME + TIMEOUT_OVERHEAD)) {
require_avx512();
zmm_zeroing_optimization_integrity(QUICK_RUN_TIME);
}