/*
* Copyright (c) 2010-2022 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*-
* Copyright (c) 2007-2009 Bruce Simpson.
* Copyright (c) 2005 Robert N. M. Watson.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* IPv4 multicast socket, group, and socket option processing module.
*/
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/tree.h>
#include <sys/mcache.h>
#include <kern/zalloc.h>
#include <pexpert/pexpert.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/net_api_stats.h>
#include <net/route.h>
#include <net/net_sysctl.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#include <netinet/igmp_var.h>
#include <net/sockaddr_utils.h>
/*
* Functions with non-static linkage defined in this file should be
* declared in in_var.h:
* imo_multi_filter()
* in_addmulti()
* in_delmulti()
* in_joingroup()
* in_leavegroup()
* and ip_var.h:
* inp_freemoptions()
* inp_getmoptions()
* inp_setmoptions()
*
* XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti()
* and in_delmulti().
*/
static void imf_commit(struct in_mfilter *);
static int imf_get_source(struct in_mfilter *imf,
const struct sockaddr_in *psin,
struct in_msource **);
static struct in_msource *
imf_graft(struct in_mfilter *, const uint8_t,
const struct sockaddr_in *);
static int imf_prune(struct in_mfilter *, const struct sockaddr_in *);
static void imf_rollback(struct in_mfilter *);
static void imf_reap(struct in_mfilter *);
static int imo_grow(struct ip_moptions *, uint16_t);
static size_t imo_match_group(const struct ip_moptions *,
const struct ifnet *, const struct sockaddr_in *);
static struct in_msource *
imo_match_source(const struct ip_moptions *, const size_t,
const struct sockaddr_in *);
static void ims_merge(struct ip_msource *ims,
const struct in_msource *lims, const int rollback);
static int in_getmulti(struct ifnet *, const struct in_addr *,
struct in_multi **);
static int in_joingroup(struct ifnet *, const struct in_addr *,
struct in_mfilter *, struct in_multi **);
static int inm_get_source(struct in_multi *inm, const in_addr_t haddr,
const int noalloc, struct ip_msource **pims);
static int inm_is_ifp_detached(const struct in_multi *);
static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
static void inm_reap(struct in_multi *);
static struct ip_moptions *
inp_findmoptions(struct inpcb *);
static int inp_get_source_filters(struct inpcb *, struct sockopt *);
static struct ifnet *
inp_lookup_mcast_ifp(const struct inpcb *,
const struct sockaddr_in *, const struct in_addr);
static int inp_block_unblock_source(struct inpcb *, struct sockopt *);
static int inp_set_multicast_if(struct inpcb *, struct sockopt *);
static int inp_set_source_filters(struct inpcb *, struct sockopt *);
static int sysctl_ip_mcast_filters SYSCTL_HANDLER_ARGS;
static struct ifnet * ip_multicast_if(struct in_addr *, unsigned int *);
static __inline__ int ip_msource_cmp(const struct ip_msource *,
const struct ip_msource *);
SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "IPv4 multicast");
static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
SYSCTL_LONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
CTLFLAG_RW | CTLFLAG_LOCKED, &in_mcast_maxgrpsrc, "Max source filters per group");
static u_int in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
SYSCTL_UINT(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
CTLFLAG_RW | CTLFLAG_LOCKED, &in_mcast_maxsocksrc, IP_MAX_SOCK_SRC_FILTER,
"Max source filters per socket");
int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_LOCKED,
&in_mcast_loop, 0, "Loopback multicast datagrams by default");
SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
CTLFLAG_RD | CTLFLAG_LOCKED, sysctl_ip_mcast_filters,
"Per-interface stack-wide source filters");
RB_GENERATE_PREV(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
#define INM_TRACE_HIST_SIZE 32 /* size of trace history */
/* For gdb */
__private_extern__ unsigned int inm_trace_hist_size = INM_TRACE_HIST_SIZE;
struct in_multi_dbg {
struct in_multi inm; /* in_multi */
u_int16_t inm_refhold_cnt; /* # of ref */
u_int16_t inm_refrele_cnt; /* # of rele */
/*
* Circular lists of inm_addref and inm_remref callers.
*/
ctrace_t inm_refhold[INM_TRACE_HIST_SIZE];
ctrace_t inm_refrele[INM_TRACE_HIST_SIZE];
/*
* Trash list linkage
*/
TAILQ_ENTRY(in_multi_dbg) inm_trash_link;
};
static LCK_ATTR_DECLARE(in_multihead_lock_attr, 0, 0);
static LCK_GRP_DECLARE(in_multihead_lock_grp, "in_multihead");
/* List of trash in_multi entries protected by inm_trash_lock */
static TAILQ_HEAD(, in_multi_dbg) inm_trash_head = TAILQ_HEAD_INITIALIZER(inm_trash_head);
static LCK_MTX_DECLARE_ATTR(inm_trash_lock, &in_multihead_lock_grp,
&in_multihead_lock_attr);
#if DEBUG
static TUNABLE(bool, inm_debug, "ifa_debug", true); /* debugging (enabled) */
#else
static TUNABLE(bool, inm_debug, "ifa_debug", false); /* debugging (disabled) */
#endif /* !DEBUG */
static KALLOC_TYPE_DEFINE(ipms_zone, struct ip_msource, NET_KT_DEFAULT);
static KALLOC_TYPE_DEFINE(inms_zone, struct in_msource, NET_KT_DEFAULT);
static LCK_RW_DECLARE_ATTR(in_multihead_lock, &in_multihead_lock_grp,
&in_multihead_lock_attr);
struct in_multihead in_multihead;
static struct in_multi *in_multi_alloc(zalloc_flags_t);
static void in_multi_free(struct in_multi *);
static void in_multi_attach(struct in_multi *);
static void inm_trace(struct in_multi *, int);
static struct ip_msource *ipms_alloc(zalloc_flags_t);
static void ipms_free(struct ip_msource *);
static struct in_msource *inms_alloc(zalloc_flags_t);
static void inms_free(struct in_msource *);
static __inline int
ip_msource_cmp(const struct ip_msource *a, const struct ip_msource *b)
{
if (a->ims_haddr < b->ims_haddr) {
return -1;
}
if (a->ims_haddr == b->ims_haddr) {
return 0;
}
return 1;
}
/*
* Inline function which wraps assertions for a valid ifp.
*/
static __inline__ int
inm_is_ifp_detached(const struct in_multi *inm)
{
VERIFY(inm->inm_ifma != NULL);
VERIFY(inm->inm_ifp == inm->inm_ifma->ifma_ifp);
return !ifnet_is_attached(inm->inm_ifp, 0);
}
/*
* Initialize an in_mfilter structure to a known state at t0, t1
* with an empty source filter list.
*/
static __inline__ void
imf_init(struct in_mfilter *imf, const uint8_t st0, const uint8_t st1)
{
memset(imf, 0, sizeof(struct in_mfilter));
RB_INIT(&imf->imf_sources);
imf->imf_st[0] = st0;
imf->imf_st[1] = st1;
}
/*
* Resize the ip_moptions vector to the next power-of-two minus 1.
*/
static int
imo_grow(struct ip_moptions *imo, uint16_t newmax)
{
struct in_multi **nmships;
struct in_multi **omships;
struct in_mfilter *nmfilters;
struct in_mfilter *omfilters;
int err;
uint16_t idx;
uint16_t oldmax;
IMO_LOCK_ASSERT_HELD(imo);
nmships = NULL;
nmfilters = NULL;
err = 0;
omships = imo->imo_membership;
omfilters = imo->imo_mfilters;
oldmax = imo->imo_max_memberships;
if (newmax == 0) {
newmax = ((oldmax + 1) * 2) - 1;
} else if (newmax <= oldmax) {
/* Nothing to do, exit early. */
return 0;
}
if (newmax > IP_MAX_MEMBERSHIPS) {
err = ETOOMANYREFS;
goto cleanup;
}
if ((nmships = kalloc_type(struct in_multi *, newmax,
Z_WAITOK | Z_ZERO)) == NULL) {
err = ENOMEM;
goto cleanup;
}
if ((nmfilters = kalloc_type(struct in_mfilter, newmax,
Z_WAITOK | Z_ZERO)) == NULL) {
err = ENOMEM;
goto cleanup;
}
/* Copy the existing memberships and release the memory. */
if (omships != NULL) {
VERIFY(oldmax <= newmax);
memcpy(nmships, omships, oldmax * sizeof(struct in_multi *));
kfree_type(struct in_multi *, oldmax, omships);
}
/* Copy the existing filters and release the memory. */
if (omfilters != NULL) {
VERIFY(oldmax <= newmax);
memcpy(nmfilters, omfilters, oldmax * sizeof(struct in_mfilter));
kfree_type(struct in_mfilter, oldmax, omfilters);
}
/* Initialize the newly allocated source filter heads. */
for (idx = oldmax; idx < newmax; idx++) {
imf_init(&nmfilters[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
}
imo->imo_membership = nmships;
nmships = NULL;
imo->imo_max_memberships = newmax;
imo->imo_mfilters = nmfilters;
nmfilters = NULL;
imo->imo_max_filters = newmax;
return 0;
cleanup:
if (nmfilters != NULL) {
kfree_type(struct in_mfilter, newmax, nmfilters);
}
if (nmships != NULL) {
kfree_type(struct in_multi *, newmax, nmships);
}
return err;
}
/*
* Find an IPv4 multicast group entry for this ip_moptions instance
* which matches the specified group, and optionally an interface.
* Return its index into the array, or -1 if not found.
*/
static size_t
imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
const struct sockaddr_in *group)
{
struct in_multi *pinm;
int idx;
int nmships;
IMO_LOCK_ASSERT_HELD(__DECONST(struct ip_moptions *, imo));
/* The imo_membership array may be lazy allocated. */
if (imo->imo_membership == NULL || imo->imo_num_memberships == 0) {
return -1;
}
nmships = imo->imo_num_memberships;
for (idx = 0; idx < nmships; idx++) {
pinm = imo->imo_membership[idx];
if (pinm == NULL) {
continue;
}
INM_LOCK(pinm);
if ((ifp == NULL || (pinm->inm_ifp == ifp)) &&
in_hosteq(pinm->inm_addr, group->sin_addr)) {
INM_UNLOCK(pinm);
break;
}
INM_UNLOCK(pinm);
}
if (idx >= nmships) {
idx = -1;
}
return idx;
}
/*
* Find an IPv4 multicast source entry for this imo which matches
* the given group index for this socket, and source address.
*
* NOTE: This does not check if the entry is in-mode, merely if
* it exists, which may not be the desired behaviour.
*/
static struct in_msource *
imo_match_source(const struct ip_moptions *imo, const size_t gidx,
const struct sockaddr_in *src)
{
struct ip_msource find;
struct in_mfilter *imf;
struct ip_msource *ims;
IMO_LOCK_ASSERT_HELD(__DECONST(struct ip_moptions *, imo));
VERIFY(src->sin_family == AF_INET);
VERIFY(gidx != (size_t)-1 && gidx < imo->imo_num_memberships);
/* The imo_mfilters array may be lazy allocated. */
if (imo->imo_mfilters == NULL) {
return NULL;
}
imf = &imo->imo_mfilters[gidx];
/* Source trees are keyed in host byte order. */
find.ims_haddr = ntohl(src->sin_addr.s_addr);
ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
return (struct in_msource *)ims;
}
/*
* Perform filtering for multicast datagrams on a socket by group and source.
*
* Returns 0 if a datagram should be allowed through, or various error codes
* if the socket was not a member of the group, or the source was muted, etc.
*/
int
imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
const struct sockaddr_in *group, const struct sockaddr_in *src)
{
size_t gidx;
struct in_msource *ims;
int mode;
IMO_LOCK_ASSERT_HELD(__DECONST(struct ip_moptions *, imo));
VERIFY(ifp != NULL);
gidx = imo_match_group(imo, ifp, group);
if (gidx == (size_t)-1) {
return MCAST_NOTGMEMBER;
}
/*
* Check if the source was included in an (S,G) join.
* Allow reception on exclusive memberships by default,
* reject reception on inclusive memberships by default.
* Exclude source only if an in-mode exclude filter exists.
* Include source only if an in-mode include filter exists.
* NOTE: We are comparing group state here at IGMP t1 (now)
* with socket-layer t0 (since last downcall).
*/
mode = imo->imo_mfilters[gidx].imf_st[1];
ims = imo_match_source(imo, gidx, src);
if ((ims == NULL && mode == MCAST_INCLUDE) ||
(ims != NULL && ims->imsl_st[0] != mode)) {
return MCAST_NOTSMEMBER;
}
return MCAST_PASS;
}
int
imo_clone(struct inpcb *from_inp, struct inpcb *to_inp)
{
int err = 0;
struct ip_moptions *from;
struct ip_moptions *to;
from = inp_findmoptions(from_inp);
if (from == NULL) {
return ENOMEM;
}
to = inp_findmoptions(to_inp);
if (to == NULL) {
IMO_REMREF(from);
return ENOMEM;
}
IMO_LOCK(from);
IMO_LOCK(to);
to->imo_multicast_ifp = from->imo_multicast_ifp;
to->imo_multicast_vif = from->imo_multicast_vif;
to->imo_multicast_ttl = from->imo_multicast_ttl;
to->imo_multicast_loop = from->imo_multicast_loop;
/*
* We're cloning, so drop any existing memberships and source
* filters on the destination ip_moptions.
*/
IMO_PURGE_LOCKED(to);
VERIFY(to->imo_max_memberships != 0 && from->imo_max_memberships != 0);
if (to->imo_max_memberships < from->imo_max_memberships) {
/*
* Ensure source and destination ip_moptions memberships
* and source filters arrays are at least equal in size.
*/
err = imo_grow(to, from->imo_max_memberships);
if (err != 0) {
goto done;
}
}
VERIFY(to->imo_max_memberships >= from->imo_max_memberships);
/*
* Source filtering doesn't apply to OpenTransport socket,
* so simply hold additional reference count per membership.
*/
for (int i = 0; i < from->imo_num_memberships; i++) {
to->imo_membership[i] =
in_addmulti(&from->imo_membership[i]->inm_addr,
from->imo_membership[i]->inm_ifp);
if (to->imo_membership[i] == NULL) {
break;
}
to->imo_num_memberships++;
}
VERIFY(to->imo_num_memberships == from->imo_num_memberships);
done:
IMO_UNLOCK(to);
IMO_REMREF(to);
IMO_UNLOCK(from);
IMO_REMREF(from);
return err;
}
/*
* Find and return a reference to an in_multi record for (ifp, group),
* and bump its reference count.
* If one does not exist, try to allocate it, and update link-layer multicast
* filters on ifp to listen for group.
* Return 0 if successful, otherwise return an appropriate error code.
*/
static int
in_getmulti(struct ifnet *ifp, const struct in_addr *group,
struct in_multi **pinm)
{
struct sockaddr_in gsin;
struct ifmultiaddr *__single ifma;
struct in_multi *__single inm;
int error;
in_multihead_lock_shared();
IN_LOOKUP_MULTI(group, ifp, inm);
if (inm != NULL) {
INM_LOCK(inm);
VERIFY(inm->inm_reqcnt >= 1);
inm->inm_reqcnt++;
VERIFY(inm->inm_reqcnt != 0);
*pinm = inm;
INM_UNLOCK(inm);
in_multihead_lock_done();
/*
* We already joined this group; return the inm
* with a refcount held (via lookup) for caller.
*/
return 0;
}
in_multihead_lock_done();
SOCKADDR_ZERO(&gsin, sizeof(gsin));
gsin.sin_family = AF_INET;
gsin.sin_len = sizeof(struct sockaddr_in);
gsin.sin_addr = *group;
/*
* Check if a link-layer group is already associated
* with this network-layer group on the given ifnet.
*/
error = if_addmulti(ifp, SA(&gsin), &ifma);
if (error != 0) {
return error;
}
/*
* See comments in inm_remref() for access to ifma_protospec.
*/
in_multihead_lock_exclusive();
IFMA_LOCK(ifma);
if ((inm = ifma->ifma_protospec) != NULL) {
VERIFY(ifma->ifma_addr != NULL);
VERIFY(ifma->ifma_addr->sa_family == AF_INET);
INM_ADDREF(inm); /* for caller */
IFMA_UNLOCK(ifma);
INM_LOCK(inm);
VERIFY(inm->inm_ifma == ifma);
VERIFY(inm->inm_ifp == ifp);
VERIFY(in_hosteq(inm->inm_addr, *group));
if (inm->inm_debug & IFD_ATTACHED) {
VERIFY(inm->inm_reqcnt >= 1);
inm->inm_reqcnt++;
VERIFY(inm->inm_reqcnt != 0);
*pinm = inm;
INM_UNLOCK(inm);
in_multihead_lock_done();
IFMA_REMREF(ifma);
/*
* We lost the race with another thread doing
* in_getmulti(); since this group has already
* been joined; return the inm with a refcount
* held for caller.
*/
return 0;
}
/*
* We lost the race with another thread doing in_delmulti();
* the inm referring to the ifma has been detached, thus we
* reattach it back to the in_multihead list and return the
* inm with a refcount held for the caller.
*/
in_multi_attach(inm);
VERIFY((inm->inm_debug &
(IFD_ATTACHED | IFD_TRASHED)) == IFD_ATTACHED);
*pinm = inm;
INM_UNLOCK(inm);
in_multihead_lock_done();
IFMA_REMREF(ifma);
return 0;
}
IFMA_UNLOCK(ifma);
/*
* A new in_multi record is needed; allocate and initialize it.
* We DO NOT perform an IGMP join as the in_ layer may need to
* push an initial source list down to IGMP to support SSM.
*
* The initial source filter state is INCLUDE, {} as per the RFC.
*/
inm = in_multi_alloc(Z_WAITOK);
INM_LOCK(inm);
inm->inm_addr = *group;
inm->inm_ifp = ifp;
inm->inm_igi = IGMP_IFINFO(ifp);
VERIFY(inm->inm_igi != NULL);
IGI_ADDREF(inm->inm_igi);
inm->inm_ifma = ifma; /* keep refcount from if_addmulti() */
inm->inm_state = IGMP_NOT_MEMBER;
/*
* Pending state-changes per group are subject to a bounds check.
*/
inm->inm_scq.ifq_maxlen = IGMP_MAX_STATE_CHANGES;
inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
RB_INIT(&inm->inm_srcs);
*pinm = inm;
in_multi_attach(inm);
VERIFY((inm->inm_debug & (IFD_ATTACHED | IFD_TRASHED)) == IFD_ATTACHED);
INM_ADDREF_LOCKED(inm); /* for caller */
INM_UNLOCK(inm);
IFMA_LOCK(ifma);
VERIFY(ifma->ifma_protospec == NULL);
ifma->ifma_protospec = inm;
IFMA_UNLOCK(ifma);
in_multihead_lock_done();
return 0;
}
/*
* Clear recorded source entries for a group.
* Used by the IGMP code.
* FIXME: Should reap.
*/
void
inm_clear_recorded(struct in_multi *inm)
{
struct ip_msource *ims;
INM_LOCK_ASSERT_HELD(inm);
RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
if (ims->ims_stp) {
ims->ims_stp = 0;
--inm->inm_st[1].iss_rec;
}
}
VERIFY(inm->inm_st[1].iss_rec == 0);
}
/*
* Record a source as pending for a Source-Group IGMPv3 query.
* This lives here as it modifies the shared tree.
*
* inm is the group descriptor.
* naddr is the address of the source to record in network-byte order.
*
* If the net.inet.igmp.sgalloc sysctl is non-zero, we will
* lazy-allocate a source node in response to an SG query.
* Otherwise, no allocation is performed. This saves some memory
* with the trade-off that the source will not be reported to the
* router if joined in the window between the query response and
* the group actually being joined on the local host.
*
* Return 0 if the source didn't exist or was already marked as recorded.
* Return 1 if the source was marked as recorded by this function.
* Return <0 if any error occured (negated errno code).
*/
int
inm_record_source(struct in_multi *inm, const in_addr_t naddr)
{
struct ip_msource find;
struct ip_msource *ims, *nims;
INM_LOCK_ASSERT_HELD(inm);
find.ims_haddr = ntohl(naddr);
ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
if (ims && ims->ims_stp) {
return 0;
}
if (ims == NULL) {
if (inm->inm_nsrc == in_mcast_maxgrpsrc) {
return -ENOSPC;
}
nims = ipms_alloc(Z_WAITOK);
nims->ims_haddr = find.ims_haddr;
RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
++inm->inm_nsrc;
ims = nims;
}
/*
* Mark the source as recorded and update the recorded
* source count.
*/
++ims->ims_stp;
++inm->inm_st[1].iss_rec;
return 1;
}
/*
* Return a pointer to an in_msource owned by an in_mfilter,
* given its source address.
* Lazy-allocate if needed. If this is a new entry its filter state is
* undefined at t0.
*
* imf is the filter set being modified.
* haddr is the source address in *host* byte-order.
*
* Caller is expected to be holding imo_lock.
*/
static int
imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
struct in_msource **plims)
{
struct ip_msource find;
struct ip_msource *ims;
struct in_msource *lims;
int error;
error = 0;
ims = NULL;
lims = NULL;
/* key is host byte order */
find.ims_haddr = ntohl(psin->sin_addr.s_addr);
ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
lims = (struct in_msource *)ims;
if (lims == NULL) {
if (imf->imf_nsrc == in_mcast_maxsocksrc) {
return ENOSPC;
}
lims = inms_alloc(Z_WAITOK);
lims->ims_haddr = find.ims_haddr;
lims->imsl_st[0] = MCAST_UNDEFINED;
RB_INSERT(ip_msource_tree, &imf->imf_sources,
(struct ip_msource *)lims);
++imf->imf_nsrc;
}
*plims = lims;
return error;
}
/*
* Graft a source entry into an existing socket-layer filter set,
* maintaining any required invariants and checking allocations.
*
* The source is marked as being in the new filter mode at t1.
*
* Return the pointer to the new node, otherwise return NULL.
*
* Caller is expected to be holding imo_lock.
*/
static struct in_msource *
imf_graft(struct in_mfilter *imf, const uint8_t st1,
const struct sockaddr_in *psin)
{
struct in_msource *lims;
struct ip_msource *__single lims_forged;
lims = inms_alloc(Z_WAITOK);
lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
lims->imsl_st[0] = MCAST_UNDEFINED;
lims->imsl_st[1] = st1;
/* Removal of __unsafe_forge_single tracked by rdar://121702748 */
lims_forged = __unsafe_forge_single(struct ip_msource *, lims);
RB_INSERT(ip_msource_tree, &imf->imf_sources,
lims_forged);
++imf->imf_nsrc;
return lims;
}
/*
* Prune a source entry from an existing socket-layer filter set,
* maintaining any required invariants and checking allocations.
*
* The source is marked as being left at t1, it is not freed.
*
* Return 0 if no error occurred, otherwise return an errno value.
*
* Caller is expected to be holding imo_lock.
*/
static int
imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
{
struct ip_msource find;
struct ip_msource *ims;
struct in_msource *lims;
/* key is host byte order */
find.ims_haddr = ntohl(psin->sin_addr.s_addr);
ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
if (ims == NULL) {
return ENOENT;
}
lims = (struct in_msource *)ims;
lims->imsl_st[1] = MCAST_UNDEFINED;
return 0;
}
/*
* Revert socket-layer filter set deltas at t1 to t0 state.
*
* Caller is expected to be holding imo_lock.
*/
static void
imf_rollback(struct in_mfilter *imf)
{
struct ip_msource *ims, *tims;
struct in_msource *lims;
RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
lims = (struct in_msource *)ims;
if (lims->imsl_st[0] == lims->imsl_st[1]) {
/* no change at t1 */
continue;
} else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
/* revert change to existing source at t1 */
lims->imsl_st[1] = lims->imsl_st[0];
} else {
/* revert source added t1 */
IGMP_PRINTF(("%s: free inms 0x%llx\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(lims)));
RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
inms_free(lims);
imf->imf_nsrc--;
}
}
imf->imf_st[1] = imf->imf_st[0];
}
/*
* Mark socket-layer filter set as INCLUDE {} at t1.
*
* Caller is expected to be holding imo_lock.
*/
void
imf_leave(struct in_mfilter *imf)
{
struct ip_msource *ims;
struct in_msource *lims;
RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
lims = (struct in_msource *)ims;
lims->imsl_st[1] = MCAST_UNDEFINED;
}
imf->imf_st[1] = MCAST_INCLUDE;
}
/*
* Mark socket-layer filter set deltas as committed.
*
* Caller is expected to be holding imo_lock.
*/
static void
imf_commit(struct in_mfilter *imf)
{
struct ip_msource *ims;
struct in_msource *lims;
RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
lims = (struct in_msource *)ims;
lims->imsl_st[0] = lims->imsl_st[1];
}
imf->imf_st[0] = imf->imf_st[1];
}
/*
* Reap unreferenced sources from socket-layer filter set.
*
* Caller is expected to be holding imo_lock.
*/
static void
imf_reap(struct in_mfilter *imf)
{
struct ip_msource *ims, *tims;
struct in_msource *lims;
RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
lims = (struct in_msource *)ims;
if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
(lims->imsl_st[1] == MCAST_UNDEFINED)) {
IGMP_PRINTF(("%s: free inms 0x%llx\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(lims)));
RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
inms_free(lims);
imf->imf_nsrc--;
}
}
}
/*
* Purge socket-layer filter set.
*
* Caller is expected to be holding imo_lock.
*/
void
imf_purge(struct in_mfilter *imf)
{
struct ip_msource *ims, *tims;
struct in_msource *lims;
RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
lims = (struct in_msource *)ims;
IGMP_PRINTF(("%s: free inms 0x%llx\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(lims)));
RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
inms_free(lims);
imf->imf_nsrc--;
}
imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
VERIFY(RB_EMPTY(&imf->imf_sources));
}
/*
* Look up a source filter entry for a multicast group.
*
* inm is the group descriptor to work with.
* haddr is the host-byte-order IPv4 address to look up.
* noalloc may be non-zero to suppress allocation of sources.
* *pims will be set to the address of the retrieved or allocated source.
*
* Return 0 if successful, otherwise return a non-zero error code.
*/
static int
inm_get_source(struct in_multi *inm, const in_addr_t haddr,
const int noalloc, struct ip_msource **pims)
{
struct ip_msource find;
struct ip_msource *ims, *nims;
#ifdef IGMP_DEBUG
struct in_addr ia;
char buf[MAX_IPv4_STR_LEN];
#endif
INM_LOCK_ASSERT_HELD(inm);
find.ims_haddr = haddr;
ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
if (ims == NULL && !noalloc) {
if (inm->inm_nsrc == in_mcast_maxgrpsrc) {
return ENOSPC;
}
nims = ipms_alloc(Z_WAITOK);
nims->ims_haddr = haddr;
RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
++inm->inm_nsrc;
ims = nims;
#ifdef IGMP_DEBUG
ia.s_addr = htonl(haddr);
inet_ntop(AF_INET, &ia, buf, sizeof(buf));
IGMP_PRINTF(("%s: allocated %s as 0x%llx\n", __func__,
buf, (uint64_t)VM_KERNEL_ADDRPERM(ims)));
#endif
}
*pims = ims;
return 0;
}
/*
* Helper function to derive the filter mode on a source entry
* from its internal counters. Predicates are:
* A source is only excluded if all listeners exclude it.
* A source is only included if no listeners exclude it,
* and at least one listener includes it.
* May be used by ifmcstat(8).
*/
uint8_t
ims_get_mode(const struct in_multi *inm, const struct ip_msource *ims,
uint8_t t)
{
INM_LOCK_ASSERT_HELD(__DECONST(struct in_multi *, inm));
t = !!t;
if (inm->inm_st[t].iss_ex > 0 &&
inm->inm_st[t].iss_ex == ims->ims_st[t].ex) {
return MCAST_EXCLUDE;
} else if (ims->ims_st[t].in > 0 && ims->ims_st[t].ex == 0) {
return MCAST_INCLUDE;
}
return MCAST_UNDEFINED;
}
/*
* Merge socket-layer source into IGMP-layer source.
* If rollback is non-zero, perform the inverse of the merge.
*/
static void
ims_merge(struct ip_msource *ims, const struct in_msource *lims,
const int rollback)
{
int n = rollback ? -1 : 1;
#ifdef IGMP_DEBUG
struct in_addr ia;
ia.s_addr = htonl(ims->ims_haddr);
#endif
if (lims->imsl_st[0] == MCAST_EXCLUDE) {
IGMP_INET_PRINTF(ia,
("%s: t1 ex -= %d on %s\n",
__func__, n, _igmp_inet_buf));
ims->ims_st[1].ex -= n;
} else if (lims->imsl_st[0] == MCAST_INCLUDE) {
IGMP_INET_PRINTF(ia,
("%s: t1 in -= %d on %s\n",
__func__, n, _igmp_inet_buf));
ims->ims_st[1].in -= n;
}
if (lims->imsl_st[1] == MCAST_EXCLUDE) {
IGMP_INET_PRINTF(ia,
("%s: t1 ex += %d on %s\n",
__func__, n, _igmp_inet_buf));
ims->ims_st[1].ex += n;
} else if (lims->imsl_st[1] == MCAST_INCLUDE) {
IGMP_INET_PRINTF(ia,
("%s: t1 in += %d on %s\n",
__func__, n, _igmp_inet_buf));
ims->ims_st[1].in += n;
}
}
/*
* Atomically update the global in_multi state, when a membership's
* filter list is being updated in any way.
*
* imf is the per-inpcb-membership group filter pointer.
* A fake imf may be passed for in-kernel consumers.
*
* XXX This is a candidate for a set-symmetric-difference style loop
* which would eliminate the repeated lookup from root of ims nodes,
* as they share the same key space.
*
* If any error occurred this function will back out of refcounts
* and return a non-zero value.
*/
static int
inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
{
struct ip_msource *ims, *__single nims = NULL;
struct in_msource *lims;
int schanged, error;
int nsrc0, nsrc1;
INM_LOCK_ASSERT_HELD(inm);
schanged = 0;
error = 0;
nsrc1 = nsrc0 = 0;
/*
* Update the source filters first, as this may fail.
* Maintain count of in-mode filters at t0, t1. These are
* used to work out if we transition into ASM mode or not.
* Maintain a count of source filters whose state was
* actually modified by this operation.
*/
RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
lims = (struct in_msource *)ims;
if (lims->imsl_st[0] == imf->imf_st[0]) {
nsrc0++;
}
if (lims->imsl_st[1] == imf->imf_st[1]) {
nsrc1++;
}
if (lims->imsl_st[0] == lims->imsl_st[1]) {
continue;
}
error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
++schanged;
if (error) {
break;
}
ims_merge(nims, lims, 0);
}
if (error) {
struct ip_msource *__single bims;
RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
lims = (struct in_msource *)ims;
if (lims->imsl_st[0] == lims->imsl_st[1]) {
continue;
}
(void) inm_get_source(inm, lims->ims_haddr, 1, &bims);
if (bims == NULL) {
continue;
}
ims_merge(bims, lims, 1);
}
goto out_reap;
}
IGMP_PRINTF(("%s: imf filters in-mode: %d at t0, %d at t1\n",
__func__, nsrc0, nsrc1));
/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
if (imf->imf_st[0] == imf->imf_st[1] &&
imf->imf_st[1] == MCAST_INCLUDE) {
if (nsrc1 == 0) {
IGMP_PRINTF(("%s: --in on inm at t1\n", __func__));
--inm->inm_st[1].iss_in;
}
}
/* Handle filter mode transition on socket. */
if (imf->imf_st[0] != imf->imf_st[1]) {
IGMP_PRINTF(("%s: imf transition %d to %d\n",
__func__, imf->imf_st[0], imf->imf_st[1]));
if (imf->imf_st[0] == MCAST_EXCLUDE) {
IGMP_PRINTF(("%s: --ex on inm at t1\n", __func__));
--inm->inm_st[1].iss_ex;
} else if (imf->imf_st[0] == MCAST_INCLUDE) {
IGMP_PRINTF(("%s: --in on inm at t1\n", __func__));
--inm->inm_st[1].iss_in;
}
if (imf->imf_st[1] == MCAST_EXCLUDE) {
IGMP_PRINTF(("%s: ex++ on inm at t1\n", __func__));
inm->inm_st[1].iss_ex++;
} else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
IGMP_PRINTF(("%s: in++ on inm at t1\n", __func__));
inm->inm_st[1].iss_in++;
}
}
/*
* Track inm filter state in terms of listener counts.
* If there are any exclusive listeners, stack-wide
* membership is exclusive.
* Otherwise, if only inclusive listeners, stack-wide is inclusive.
* If no listeners remain, state is undefined at t1,
* and the IGMP lifecycle for this group should finish.
*/
if (inm->inm_st[1].iss_ex > 0) {
IGMP_PRINTF(("%s: transition to EX\n", __func__));
inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
} else if (inm->inm_st[1].iss_in > 0) {
IGMP_PRINTF(("%s: transition to IN\n", __func__));
inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
} else {
IGMP_PRINTF(("%s: transition to UNDEF\n", __func__));
inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
}
/* Decrement ASM listener count on transition out of ASM mode. */
if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
(imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) {
IGMP_PRINTF(("%s: --asm on inm at t1\n", __func__));
--inm->inm_st[1].iss_asm;
}
}
/* Increment ASM listener count on transition to ASM mode. */
if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
IGMP_PRINTF(("%s: asm++ on inm at t1\n", __func__));
inm->inm_st[1].iss_asm++;
}
IGMP_PRINTF(("%s: merged imf 0x%llx to inm 0x%llx\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(imf),
(uint64_t)VM_KERNEL_ADDRPERM(inm)));
inm_print(inm);
out_reap:
if (schanged > 0) {
IGMP_PRINTF(("%s: sources changed; reaping\n", __func__));
inm_reap(inm);
}
return error;
}
/*
* Mark an in_multi's filter set deltas as committed.
* Called by IGMP after a state change has been enqueued.
*/
void
inm_commit(struct in_multi *inm)
{
struct ip_msource *ims;
INM_LOCK_ASSERT_HELD(inm);
IGMP_PRINTF(("%s: commit inm 0x%llx\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(inm)));
IGMP_PRINTF(("%s: pre commit:\n", __func__));
inm_print(inm);
RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
ims->ims_st[0] = ims->ims_st[1];
}
inm->inm_st[0] = inm->inm_st[1];
}
/*
* Reap unreferenced nodes from an in_multi's filter set.
*/
static void
inm_reap(struct in_multi *inm)
{
struct ip_msource *ims, *tims;
INM_LOCK_ASSERT_HELD(inm);
RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
ims->ims_stp != 0) {
continue;
}
IGMP_PRINTF(("%s: free ims 0x%llx\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(ims)));
RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
ipms_free(ims);
inm->inm_nsrc--;
}
}
/*
* Purge all source nodes from an in_multi's filter set.
*/
void
inm_purge(struct in_multi *inm)
{
struct ip_msource *ims, *tims;
INM_LOCK_ASSERT_HELD(inm);
RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
IGMP_PRINTF(("%s: free ims 0x%llx\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(ims)));
RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
ipms_free(ims);
inm->inm_nsrc--;
}
}
/*
* Join a multicast group; real entry point.
*
* Only preserves atomicity at inm level.
* NOTE: imf argument cannot be const due to sys/tree.h limitations.
*
* If the IGMP downcall fails, the group is not joined, and an error
* code is returned.
*/
static int
in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
/*const*/ struct in_mfilter *imf, struct in_multi **pinm)
{
struct in_mfilter timf;
struct in_multi *__single inm = NULL;
int error = 0;
struct igmp_tparams itp;
IGMP_INET_PRINTF(*gina, ("%s: join %s on 0x%llx(%s))\n", __func__,
_igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
bzero(&itp, sizeof(itp));
*pinm = NULL;
/*
* If no imf was specified (i.e. kernel consumer),
* fake one up and assume it is an ASM join.
*/
if (imf == NULL) {
imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
imf = &timf;
}
error = in_getmulti(ifp, gina, &inm);
if (error) {
IGMP_PRINTF(("%s: in_getmulti() failure\n", __func__));
return error;
}
IGMP_PRINTF(("%s: merge inm state\n", __func__));
INM_LOCK(inm);
error = inm_merge(inm, imf);
if (error) {
IGMP_PRINTF(("%s: failed to merge inm state\n", __func__));
goto out_inm_release;
}
IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
error = igmp_change_state(inm, &itp);
if (error) {
IGMP_PRINTF(("%s: failed to update source\n", __func__));
imf_rollback(imf);
goto out_inm_release;
}
out_inm_release:
if (error) {
IGMP_PRINTF(("%s: dropping ref on 0x%llx\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(inm)));
INM_UNLOCK(inm);
INM_REMREF(inm);
} else {
INM_UNLOCK(inm);
*pinm = inm; /* keep refcount from in_getmulti() */
}
/* schedule timer now that we've dropped the lock(s) */
igmp_set_fast_timeout(&itp);
return error;
}
/*
* Leave a multicast group; real entry point.
* All source filters will be expunged.
*
* Only preserves atomicity at inm level.
*
* Note: This is not the same as inm_release(*) as this function also
* makes a state change downcall into IGMP.
*/
int
in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
{
struct in_mfilter timf;
int error, lastref;
struct igmp_tparams itp;
bzero(&itp, sizeof(itp));
error = 0;
INM_LOCK_ASSERT_NOTHELD(inm);
in_multihead_lock_exclusive();
INM_LOCK(inm);
IGMP_INET_PRINTF(inm->inm_addr,
("%s: leave inm 0x%llx, %s/%s%d, imf 0x%llx\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(inm), _igmp_inet_buf,
(inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_name),
inm->inm_ifp->if_unit, (uint64_t)VM_KERNEL_ADDRPERM(imf)));
/*
* If no imf was specified (i.e. kernel consumer),
* fake one up and assume it is an ASM join.
*/
if (imf == NULL) {
imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
imf = &timf;
}
/*
* Begin state merge transaction at IGMP layer.
*
* As this particular invocation should not cause any memory
* to be allocated, and there is no opportunity to roll back
* the transaction, it MUST NOT fail.
*/
IGMP_PRINTF(("%s: merge inm state\n", __func__));
error = inm_merge(inm, imf);
KASSERT(error == 0, ("%s: failed to merge inm state\n", __func__));
IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
error = igmp_change_state(inm, &itp);
#if IGMP_DEBUG
if (error) {
IGMP_PRINTF(("%s: failed igmp downcall\n", __func__));
}
#endif
lastref = in_multi_detach(inm);
VERIFY(!lastref || (!(inm->inm_debug & IFD_ATTACHED) &&
inm->inm_reqcnt == 0));
INM_UNLOCK(inm);
in_multihead_lock_done();
if (lastref) {
INM_REMREF(inm); /* for in_multihead list */
}
/* schedule timer now that we've dropped the lock(s) */
igmp_set_fast_timeout(&itp);
return error;
}
/*
* Join an IPv4 multicast group in (*,G) exclusive mode.
* The group must be a 224.0.0.0/24 link-scope group.
* This KPI is for legacy kernel consumers only.
*/
struct in_multi *
in_addmulti(struct in_addr *ap, struct ifnet *ifp)
{
struct in_multi *__single pinm = NULL;
int error;
KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)),
("%s: %s not in 224.0.0.0/24\n", __func__, inet_ntoa(*ap)));
error = in_joingroup(ifp, ap, NULL, &pinm);
VERIFY(pinm != NULL || error != 0);
return pinm;
}
/*
* Leave an IPv4 multicast group, assumed to be in exclusive (*,G) mode.
* This KPI is for legacy kernel consumers only.
*/
void
in_delmulti(struct in_multi *inm)
{
(void) in_leavegroup(inm, NULL);
}
/*
* Block or unblock an ASM multicast source on an inpcb.
* This implements the delta-based API described in RFC 3678.
*
* The delta-based API applies only to exclusive-mode memberships.
* An IGMP downcall will be performed.
*
* Return 0 if successful, otherwise return an appropriate error code.
*/
static int
inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
{
struct group_source_req gsr;
struct sockaddr_in *gsa, *ssa;
struct ifnet *ifp;
struct in_mfilter *imf;
struct ip_moptions *imo;
struct in_msource *ims;
struct in_multi *inm;
size_t idx;
uint8_t fmode;
int error, doblock;
unsigned int ifindex = 0;
struct igmp_tparams itp;
bzero(&itp, sizeof(itp));
ifp = NULL;
error = 0;
doblock = 0;
memset(&gsr, 0, sizeof(struct group_source_req));
gsa = SIN(&gsr.gsr_group);
ssa = SIN(&gsr.gsr_source);
switch (sopt->sopt_name) {
case IP_BLOCK_SOURCE:
case IP_UNBLOCK_SOURCE: {
struct ip_mreq_source mreqs;
error = sooptcopyin(sopt, &mreqs,
sizeof(struct ip_mreq_source),
sizeof(struct ip_mreq_source));
if (error) {
return error;
}
gsa->sin_family = AF_INET;
gsa->sin_len = sizeof(struct sockaddr_in);
gsa->sin_addr = mreqs.imr_multiaddr;
ssa->sin_family = AF_INET;
ssa->sin_len = sizeof(struct sockaddr_in);
ssa->sin_addr = mreqs.imr_sourceaddr;
if (!in_nullhost(mreqs.imr_interface)) {
ifp = ip_multicast_if(&mreqs.imr_interface, &ifindex);
}
if (sopt->sopt_name == IP_BLOCK_SOURCE) {
doblock = 1;
}
IGMP_INET_PRINTF(mreqs.imr_interface,
("%s: imr_interface = %s, ifp = 0x%llx\n", __func__,
_igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp)));
break;
}
case MCAST_BLOCK_SOURCE:
case MCAST_UNBLOCK_SOURCE:
error = sooptcopyin(sopt, &gsr,
sizeof(struct group_source_req),
sizeof(struct group_source_req));
if (error) {
return error;
}
if (gsa->sin_family != AF_INET ||
gsa->sin_len != sizeof(struct sockaddr_in)) {
return EINVAL;
}
if (ssa->sin_family != AF_INET ||
ssa->sin_len != sizeof(struct sockaddr_in)) {
return EINVAL;
}
ifnet_head_lock_shared();
if (gsr.gsr_interface == 0 || !IF_INDEX_IN_RANGE(gsr.gsr_interface)) {
ifnet_head_done();
return EADDRNOTAVAIL;
}
ifp = ifindex2ifnet[gsr.gsr_interface];
ifnet_head_done();
if (ifp == NULL) {
return EADDRNOTAVAIL;
}
if (sopt->sopt_name == MCAST_BLOCK_SOURCE) {
doblock = 1;
}
break;
default:
IGMP_PRINTF(("%s: unknown sopt_name %d\n",
__func__, sopt->sopt_name));
return EOPNOTSUPP;
}
if (!IN_MULTICAST(ntohl(gsa->sin_addr.s_addr))) {
return EINVAL;
}
/*
* Check if we are actually a member of this group.
*/
imo = inp_findmoptions(inp);
if (imo == NULL) {
return ENOMEM;
}
IMO_LOCK(imo);
idx = imo_match_group(imo, ifp, gsa);
if (idx == (size_t)-1 || imo->imo_mfilters == NULL) {
error = EADDRNOTAVAIL;
goto out_imo_locked;
}
VERIFY(imo->imo_mfilters != NULL);
imf = &imo->imo_mfilters[idx];
inm = imo->imo_membership[idx];
/*
* Attempting to use the delta-based API on an
* non exclusive-mode membership is an error.
*/
fmode = imf->imf_st[0];
if (fmode != MCAST_EXCLUDE) {
error = EINVAL;
goto out_imo_locked;
}
/*
* Deal with error cases up-front:
* Asked to block, but already blocked; or
* Asked to unblock, but nothing to unblock.
* If adding a new block entry, allocate it.
*/
ims = imo_match_source(imo, idx, ssa);
if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
IGMP_INET_PRINTF(ssa->sin_addr,
("%s: source %s %spresent\n", __func__,
_igmp_inet_buf, doblock ? "" : "not "));
error = EADDRNOTAVAIL;
goto out_imo_locked;
}
/*
* Begin state merge transaction at socket layer.
*/
if (doblock) {
IGMP_PRINTF(("%s: %s source\n", __func__, "block"));
ims = imf_graft(imf, fmode, ssa);
if (ims == NULL) {
error = ENOMEM;
}
} else {
IGMP_PRINTF(("%s: %s source\n", __func__, "allow"));
error = imf_prune(imf, ssa);
}
if (error) {
IGMP_PRINTF(("%s: merge imf state failed\n", __func__));
goto out_imf_rollback;
}
/*
* Begin state merge transaction at IGMP layer.
*/
INM_LOCK(inm);
IGMP_PRINTF(("%s: merge inm state\n", __func__));
error = inm_merge(inm, imf);
if (error) {
IGMP_PRINTF(("%s: failed to merge inm state\n", __func__));
INM_UNLOCK(inm);
goto out_imf_rollback;
}
IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
error = igmp_change_state(inm, &itp);
INM_UNLOCK(inm);
#if IGMP_DEBUG
if (error) {
IGMP_PRINTF(("%s: failed igmp downcall\n", __func__));
}
#endif
out_imf_rollback:
if (error) {
imf_rollback(imf);
} else {
imf_commit(imf);
}
imf_reap(imf);
out_imo_locked:
IMO_UNLOCK(imo);
IMO_REMREF(imo); /* from inp_findmoptions() */
/* schedule timer now that we've dropped the lock(s) */
igmp_set_fast_timeout(&itp);
return error;
}
/*
* Given an inpcb, return its multicast options structure pointer.
*
* Caller is responsible for locking the inpcb, and releasing the
* extra reference held on the imo, upon a successful return.
*/
static struct ip_moptions *
inp_findmoptions(struct inpcb *inp)
{
struct ip_moptions *imo;
struct in_multi **immp;
struct in_mfilter *imfp;
size_t idx;
if ((imo = inp->inp_moptions) != NULL) {
IMO_ADDREF(imo); /* for caller */
return imo;
}
imo = ip_allocmoptions(Z_WAITOK);
if (imo == NULL) {
return NULL;
}
immp = kalloc_type(struct in_multi *, IP_MIN_MEMBERSHIPS,
Z_WAITOK | Z_ZERO | Z_NOFAIL);
imfp = kalloc_type(struct in_mfilter, IP_MIN_MEMBERSHIPS,
Z_WAITOK | Z_ZERO | Z_NOFAIL);
imo->imo_multicast_ifp = NULL;
imo->imo_multicast_addr.s_addr = INADDR_ANY;
imo->imo_multicast_vif = -1;
imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
imo->imo_multicast_loop = !!in_mcast_loop;
imo->imo_num_memberships = 0;
imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
imo->imo_membership = immp;
imo->imo_max_filters = IP_MIN_MEMBERSHIPS;
imo->imo_mfilters = imfp;
/* Initialize per-group source filters. */
for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++) {
imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
}
inp->inp_moptions = imo; /* keep reference from ip_allocmoptions() */
IMO_ADDREF(imo); /* for caller */
return imo;
}
/*
* Atomically get source filters on a socket for an IPv4 multicast group.
*/
static int
inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
{
struct __msfilterreq64 msfr = {}, msfr64;
struct __msfilterreq32 msfr32;
struct sockaddr_in *gsa;
struct ifnet *ifp;
struct ip_moptions *imo;
struct in_mfilter *imf;
struct ip_msource *ims;
struct in_msource *lims;
struct sockaddr_in *psin;
struct sockaddr_storage *ptss;
struct sockaddr_storage *tss;
int error;
size_t idx;
uint32_t nsrcs, ncsrcs;
user_addr_t tmp_ptr;
imo = inp->inp_moptions;
VERIFY(imo != NULL);
int is_64bit_proc = IS_64BIT_PROCESS(current_proc());
if (is_64bit_proc) {
error = sooptcopyin(sopt, &msfr64,
sizeof(struct __msfilterreq64),
sizeof(struct __msfilterreq64));
if (error) {
return error;
}
/* we never use msfr.msfr_srcs; */
memcpy(&msfr, &msfr64, sizeof(msfr64));
} else {
error = sooptcopyin(sopt, &msfr32,
sizeof(struct __msfilterreq32),
sizeof(struct __msfilterreq32));
if (error) {
return error;
}
/* we never use msfr.msfr_srcs; */
memcpy(&msfr, &msfr32, sizeof(msfr32));
}
ifnet_head_lock_shared();
if (msfr.msfr_ifindex == 0 || !IF_INDEX_IN_RANGE(msfr.msfr_ifindex)) {
ifnet_head_done();
return EADDRNOTAVAIL;
}
ifp = ifindex2ifnet[msfr.msfr_ifindex];
ifnet_head_done();
if (ifp == NULL) {
return EADDRNOTAVAIL;
}
if ((size_t) msfr.msfr_nsrcs >
UINT32_MAX / sizeof(struct sockaddr_storage)) {
msfr.msfr_nsrcs = UINT32_MAX / sizeof(struct sockaddr_storage);
}
if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) {
msfr.msfr_nsrcs = in_mcast_maxsocksrc;
}
IMO_LOCK(imo);
/*
* Lookup group on the socket.
*/
gsa = SIN(&msfr.msfr_group);
idx = imo_match_group(imo, ifp, gsa);
if (idx == (size_t)-1 || imo->imo_mfilters == NULL) {
IMO_UNLOCK(imo);
return EADDRNOTAVAIL;
}
imf = &imo->imo_mfilters[idx];
/*
* Ignore memberships which are in limbo.
*/
if (imf->imf_st[1] == MCAST_UNDEFINED) {
IMO_UNLOCK(imo);
return EAGAIN;
}
msfr.msfr_fmode = imf->imf_st[1];
/*
* If the user specified a buffer, copy out the source filter
* entries to userland gracefully.
* We only copy out the number of entries which userland
* has asked for, but we always tell userland how big the
* buffer really needs to be.
*/
if (is_64bit_proc) {
tmp_ptr = CAST_USER_ADDR_T(msfr64.msfr_srcs);
} else {
tmp_ptr = CAST_USER_ADDR_T(msfr32.msfr_srcs);
}
tss = NULL;
if (tmp_ptr != USER_ADDR_NULL && msfr.msfr_nsrcs > 0) {
tss = kalloc_data((size_t)msfr.msfr_nsrcs * sizeof(*tss),
Z_WAITOK | Z_ZERO);
if (tss == NULL) {
IMO_UNLOCK(imo);
return ENOBUFS;
}
}
/*
* Count number of sources in-mode at t0.
* If buffer space exists and remains, copy out source entries.
*/
nsrcs = msfr.msfr_nsrcs;
ncsrcs = 0;
ptss = tss;
RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
lims = (struct in_msource *)ims;
if (lims->imsl_st[0] == MCAST_UNDEFINED ||
lims->imsl_st[0] != imf->imf_st[0]) {
continue;
}
if (tss != NULL && nsrcs > 0) {
psin = SIN(ptss);
psin->sin_family = AF_INET;
psin->sin_len = sizeof(struct sockaddr_in);
psin->sin_addr.s_addr = htonl(lims->ims_haddr);
psin->sin_port = 0;
++ptss;
--nsrcs;
++ncsrcs;
}
}
IMO_UNLOCK(imo);
if (tss != NULL) {
error = copyout(tss, CAST_USER_ADDR_T(tmp_ptr), ncsrcs * sizeof(*tss));
kfree_data(tss, (size_t)msfr.msfr_nsrcs * sizeof(*tss));
if (error) {
return error;
}
}
msfr.msfr_nsrcs = ncsrcs;
if (is_64bit_proc) {
msfr64.msfr_ifindex = msfr.msfr_ifindex;
msfr64.msfr_fmode = msfr.msfr_fmode;
msfr64.msfr_nsrcs = msfr.msfr_nsrcs;
memcpy(&msfr64.msfr_group, &msfr.msfr_group,
sizeof(struct sockaddr_storage));
error = sooptcopyout(sopt, &msfr64,
sizeof(struct __msfilterreq64));
} else {
msfr32.msfr_ifindex = msfr.msfr_ifindex;
msfr32.msfr_fmode = msfr.msfr_fmode;
msfr32.msfr_nsrcs = msfr.msfr_nsrcs;
memcpy(&msfr32.msfr_group, &msfr.msfr_group,
sizeof(struct sockaddr_storage));
error = sooptcopyout(sopt, &msfr32,
sizeof(struct __msfilterreq32));
}
return error;
}
/*
* Return the IP multicast options in response to user getsockopt().
*/
int
inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
{
struct ip_mreqn mreqn;
struct ip_moptions *imo;
struct ifnet *ifp;
struct in_ifaddr *ia;
int error, optval;
unsigned int ifindex;
u_char coptval;
imo = inp->inp_moptions;
/*
* If socket is neither of type SOCK_RAW or SOCK_DGRAM,
* or is a divert socket, reject it.
*/
if (SOCK_PROTO(inp->inp_socket) == IPPROTO_DIVERT ||
(SOCK_TYPE(inp->inp_socket) != SOCK_RAW &&
SOCK_TYPE(inp->inp_socket) != SOCK_DGRAM)) {
return EOPNOTSUPP;
}
error = 0;
switch (sopt->sopt_name) {
case IP_MULTICAST_IF:
memset(&mreqn, 0, sizeof(struct ip_mreqn));
if (imo != NULL) {
IMO_LOCK(imo);
ifp = imo->imo_multicast_ifp;
if (!in_nullhost(imo->imo_multicast_addr)) {
mreqn.imr_address = imo->imo_multicast_addr;
} else if (ifp != NULL) {
mreqn.imr_ifindex = ifp->if_index;
IFP_TO_IA(ifp, ia);
if (ia != NULL) {
IFA_LOCK_SPIN(&ia->ia_ifa);
mreqn.imr_address =
IA_SIN(ia)->sin_addr;
IFA_UNLOCK(&ia->ia_ifa);
ifa_remref(&ia->ia_ifa);
}
}
IMO_UNLOCK(imo);
}
if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
error = sooptcopyout(sopt, &mreqn,
sizeof(struct ip_mreqn));
} else {
error = sooptcopyout(sopt, &mreqn.imr_address,
sizeof(struct in_addr));
}
break;
case IP_MULTICAST_IFINDEX:
if (imo != NULL) {
IMO_LOCK(imo);
}
if (imo == NULL || imo->imo_multicast_ifp == NULL) {
ifindex = 0;
} else {
ifindex = imo->imo_multicast_ifp->if_index;
}
if (imo != NULL) {
IMO_UNLOCK(imo);
}
error = sooptcopyout(sopt, &ifindex, sizeof(ifindex));
break;
case IP_MULTICAST_TTL:
if (imo == NULL) {
optval = coptval = IP_DEFAULT_MULTICAST_TTL;
} else {
IMO_LOCK(imo);
optval = coptval = imo->imo_multicast_ttl;
IMO_UNLOCK(imo);
}
if (sopt->sopt_valsize == sizeof(u_char)) {
error = sooptcopyout(sopt, &coptval, sizeof(u_char));
} else {
error = sooptcopyout(sopt, &optval, sizeof(int));
}
break;
case IP_MULTICAST_LOOP:
if (imo == 0) {
optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
} else {
IMO_LOCK(imo);
optval = coptval = imo->imo_multicast_loop;
IMO_UNLOCK(imo);
}
if (sopt->sopt_valsize == sizeof(u_char)) {
error = sooptcopyout(sopt, &coptval, sizeof(u_char));
} else {
error = sooptcopyout(sopt, &optval, sizeof(int));
}
break;
case IP_MSFILTER:
if (imo == NULL) {
error = EADDRNOTAVAIL;
} else {
error = inp_get_source_filters(inp, sopt);
}
break;
default:
error = ENOPROTOOPT;
break;
}
return error;
}
/*
* Look up the ifnet to use for a multicast group membership,
* given the IPv4 address of an interface, and the IPv4 group address.
*
* This routine exists to support legacy multicast applications
* which do not understand that multicast memberships are scoped to
* specific physical links in the networking stack, or which need
* to join link-scope groups before IPv4 addresses are configured.
*
* If inp is non-NULL and is bound to an interface, use this socket's
* inp_boundif for any required routing table lookup.
*
* If the route lookup fails, attempt to use the first non-loopback
* interface with multicast capability in the system as a
* last resort. The legacy IPv4 ASM API requires that we do
* this in order to allow groups to be joined when the routing
* table has not yet been populated during boot.
*
* Returns NULL if no ifp could be found.
*
*/
static struct ifnet *
inp_lookup_mcast_ifp(const struct inpcb *inp,
const struct sockaddr_in *gsin, const struct in_addr ina)
{
struct ifnet *ifp;
unsigned int ifindex = 0;
VERIFY(gsin->sin_family == AF_INET);
VERIFY(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)));
ifp = NULL;
if (!in_nullhost(ina)) {
struct in_addr new_ina;
memcpy(&new_ina, &ina, sizeof(struct in_addr));
ifp = ip_multicast_if(&new_ina, &ifindex);
} else {
struct route ro;
unsigned int ifscope = IFSCOPE_NONE;
if (inp != NULL && (inp->inp_flags & INP_BOUND_IF)) {
ifscope = inp->inp_boundifp->if_index;
}
bzero(&ro, sizeof(ro));
memcpy(&ro.ro_dst, gsin, sizeof(struct sockaddr_in));
rtalloc_scoped_ign(&ro, 0, ifscope);
if (ro.ro_rt != NULL) {
ifp = ro.ro_rt->rt_ifp;
VERIFY(ifp != NULL);
} else {
struct in_ifaddr *ia;
struct ifnet *mifp;
mifp = NULL;
lck_rw_lock_shared(&in_ifaddr_rwlock);
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) {
IFA_LOCK_SPIN(&ia->ia_ifa);
mifp = ia->ia_ifp;
IFA_UNLOCK(&ia->ia_ifa);
if (!(mifp->if_flags & IFF_LOOPBACK) &&
(mifp->if_flags & IFF_MULTICAST)) {
ifp = mifp;
break;
}
}
lck_rw_done(&in_ifaddr_rwlock);
}
ROUTE_RELEASE(&ro);
}
return ifp;
}
/*
* Join an IPv4 multicast group, possibly with a source.
*
* NB: sopt->sopt_val might point to the kernel address space. This means that
* we were called by the IPv6 stack due to the presence of an IPv6 v4 mapped
* address. In this scenario, sopt_p points to kernproc and sooptcopyin() will
* just issue an in-kernel memcpy.
*/
int
inp_join_group(struct inpcb *inp, struct sockopt *sopt)
{
struct group_source_req gsr;
struct sockaddr_in *gsa, *ssa;
struct ifnet *ifp;
struct in_mfilter *imf;
struct ip_moptions *imo;
struct in_multi *__single inm = NULL;
struct in_msource *lims;
size_t idx;
int error, is_new;
struct igmp_tparams itp;
bzero(&itp, sizeof(itp));
ifp = NULL;
imf = NULL;
error = 0;
is_new = 0;
memset(&gsr, 0, sizeof(struct group_source_req));
gsa = SIN(&gsr.gsr_group);
gsa->sin_family = AF_UNSPEC;
ssa = SIN(&gsr.gsr_source);
ssa->sin_family = AF_UNSPEC;
switch (sopt->sopt_name) {
case IP_ADD_MEMBERSHIP:
case IP_ADD_SOURCE_MEMBERSHIP: {
struct ip_mreq_source mreqs;
if (sopt->sopt_name == IP_ADD_MEMBERSHIP) {
error = sooptcopyin(sopt, &mreqs,
sizeof(struct ip_mreq),
sizeof(struct ip_mreq));
/*
* Do argument switcharoo from ip_mreq into
* ip_mreq_source to avoid using two instances.
*/
mreqs.imr_interface = mreqs.imr_sourceaddr;
mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
} else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
error = sooptcopyin(sopt, &mreqs,
sizeof(struct ip_mreq_source),
sizeof(struct ip_mreq_source));
}
if (error) {
IGMP_PRINTF(("%s: error copyin IP_ADD_MEMBERSHIP/"
"IP_ADD_SOURCE_MEMBERSHIP %d err=%d\n",
__func__, sopt->sopt_name, error));
return error;
}
gsa->sin_family = AF_INET;
gsa->sin_len = sizeof(struct sockaddr_in);
gsa->sin_addr = mreqs.imr_multiaddr;
if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
ssa->sin_family = AF_INET;
ssa->sin_len = sizeof(struct sockaddr_in);
ssa->sin_addr = mreqs.imr_sourceaddr;
}
if (!IN_MULTICAST(ntohl(gsa->sin_addr.s_addr))) {
return EINVAL;
}
ifp = inp_lookup_mcast_ifp(inp, gsa, mreqs.imr_interface);
IGMP_INET_PRINTF(mreqs.imr_interface,
("%s: imr_interface = %s, ifp = 0x%llx\n", __func__,
_igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp)));
break;
}
case MCAST_JOIN_GROUP:
case MCAST_JOIN_SOURCE_GROUP:
if (sopt->sopt_name == MCAST_JOIN_GROUP) {
error = sooptcopyin(sopt, &gsr,
sizeof(struct group_req),
sizeof(struct group_req));
} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
error = sooptcopyin(sopt, &gsr,
sizeof(struct group_source_req),
sizeof(struct group_source_req));
}
if (error) {
return error;
}
if (gsa->sin_family != AF_INET ||
gsa->sin_len != sizeof(struct sockaddr_in)) {
return EINVAL;
}
/*
* Overwrite the port field if present, as the sockaddr
* being copied in may be matched with a binary comparison.
*/
gsa->sin_port = 0;
if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
if (ssa->sin_family != AF_INET ||
ssa->sin_len != sizeof(struct sockaddr_in)) {
return EINVAL;
}
ssa->sin_port = 0;
}
if (!IN_MULTICAST(ntohl(gsa->sin_addr.s_addr))) {
return EINVAL;
}
ifnet_head_lock_shared();
if (gsr.gsr_interface == 0 || !IF_INDEX_IN_RANGE(gsr.gsr_interface)) {
ifnet_head_done();
return EADDRNOTAVAIL;
}
ifp = ifindex2ifnet[gsr.gsr_interface];
ifnet_head_done();
if (ifp == NULL) {
return EADDRNOTAVAIL;
}
break;
default:
IGMP_PRINTF(("%s: unknown sopt_name %d\n",
__func__, sopt->sopt_name));
return EOPNOTSUPP;
}
if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
return EADDRNOTAVAIL;
}
INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_mcast_join_total);
/*
* TBD: revisit the criteria for non-OS initiated joins
*/
if (inp->inp_lport == htons(5353)) {
INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_mcast_join_os_total);
}
imo = inp_findmoptions(inp);
if (imo == NULL) {
return ENOMEM;
}
IMO_LOCK(imo);
idx = imo_match_group(imo, ifp, gsa);
if (idx == (size_t)-1) {
is_new = 1;
} else {
inm = imo->imo_membership[idx];
imf = &imo->imo_mfilters[idx];
if (ssa->sin_family != AF_UNSPEC) {
/*
* MCAST_JOIN_SOURCE_GROUP on an exclusive membership
* is an error. On an existing inclusive membership,
* it just adds the source to the filter list.
*/
if (imf->imf_st[1] != MCAST_INCLUDE) {
error = EINVAL;
goto out_imo_locked;
}
/*
* Throw out duplicates.
*
* XXX FIXME: This makes a naive assumption that
* even if entries exist for *ssa in this imf,
* they will be rejected as dupes, even if they
* are not valid in the current mode (in-mode).
*
* in_msource is transactioned just as for anything
* else in SSM -- but note naive use of inm_graft()
* below for allocating new filter entries.
*
* This is only an issue if someone mixes the
* full-state SSM API with the delta-based API,
* which is discouraged in the relevant RFCs.
*/
lims = imo_match_source(imo, idx, ssa);
if (lims != NULL /*&&
* lims->imsl_st[1] == MCAST_INCLUDE*/) {
error = EADDRNOTAVAIL;
goto out_imo_locked;
}
} else {
/*
* MCAST_JOIN_GROUP on an existing exclusive
* membership is an error; return EADDRINUSE
* to preserve 4.4BSD API idempotence, and
* avoid tedious detour to code below.
* NOTE: This is bending RFC 3678 a bit.
*
* On an existing inclusive membership, this is also
* an error; if you want to change filter mode,
* you must use the userland API setsourcefilter().
* XXX We don't reject this for imf in UNDEFINED
* state at t1, because allocation of a filter
* is atomic with allocation of a membership.
*/
error = EINVAL;
/* See comments above for EADDRINUSE */
if (imf->imf_st[1] == MCAST_EXCLUDE) {
error = EADDRINUSE;
}
goto out_imo_locked;
}
}
/*
* Begin state merge transaction at socket layer.
*/
if (is_new) {
if (imo->imo_num_memberships == imo->imo_max_memberships) {
error = imo_grow(imo, 0);
if (error) {
goto out_imo_locked;
}
}
/*
* Allocate the new slot upfront so we can deal with
* grafting the new source filter in same code path
* as for join-source on existing membership.
*/
idx = imo->imo_num_memberships;
imo->imo_membership[idx] = NULL;
imo->imo_num_memberships++;
VERIFY(imo->imo_mfilters != NULL);
imf = &imo->imo_mfilters[idx];
VERIFY(RB_EMPTY(&imf->imf_sources));
}
/*
* Graft new source into filter list for this inpcb's
* membership of the group. The in_multi may not have
* been allocated yet if this is a new membership, however,
* the in_mfilter slot will be allocated and must be initialized.
*/
if (ssa->sin_family != AF_UNSPEC) {
/* Membership starts in IN mode */
if (is_new) {
IGMP_PRINTF(("%s: new join w/source\n", __func__));
imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
} else {
IGMP_PRINTF(("%s: %s source\n", __func__, "allow"));
}
lims = imf_graft(imf, MCAST_INCLUDE, ssa);
if (lims == NULL) {
IGMP_PRINTF(("%s: merge imf state failed\n",
__func__));
error = ENOMEM;
goto out_imo_free;
}
} else {
/* No address specified; Membership starts in EX mode */
if (is_new) {
IGMP_PRINTF(("%s: new join w/o source\n", __func__));
imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE);
}
}
/*
* Begin state merge transaction at IGMP layer.
*/
if (is_new) {
VERIFY(inm == NULL);
error = in_joingroup(ifp, &gsa->sin_addr, imf, &inm);
VERIFY(inm != NULL || error != 0);
if (error) {
goto out_imo_free;
}
imo->imo_membership[idx] = inm; /* from in_joingroup() */
} else {
IGMP_PRINTF(("%s: merge inm state\n", __func__));
INM_LOCK(inm);
error = inm_merge(inm, imf);
if (error) {
IGMP_PRINTF(("%s: failed to merge inm state\n",
__func__));
INM_UNLOCK(inm);
goto out_imf_rollback;
}
IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
error = igmp_change_state(inm, &itp);
INM_UNLOCK(inm);
if (error) {
IGMP_PRINTF(("%s: failed igmp downcall\n",
__func__));
goto out_imf_rollback;
}
}
out_imf_rollback:
if (error) {
imf_rollback(imf);
if (is_new) {
imf_purge(imf);
} else {
imf_reap(imf);
}
} else {
imf_commit(imf);
}
out_imo_free:
if (error && is_new) {
VERIFY(inm == NULL);
imo->imo_membership[idx] = NULL;
--imo->imo_num_memberships;
}
out_imo_locked:
IMO_UNLOCK(imo);
IMO_REMREF(imo); /* from inp_findmoptions() */
/* schedule timer now that we've dropped the lock(s) */
igmp_set_fast_timeout(&itp);
return error;
}
/*
* Leave an IPv4 multicast group on an inpcb, possibly with a source.
*
* NB: sopt->sopt_val might point to the kernel address space. Refer to the
* block comment on top of inp_join_group() for more information.
*/
int
inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
{
struct group_source_req gsr;
struct ip_mreq_source mreqs;
struct sockaddr_in *gsa, *ssa;
struct ifnet *ifp;
struct in_mfilter *imf;
struct ip_moptions *imo;
struct in_msource *ims;
struct in_multi *inm = NULL;
size_t idx;
int error, is_final;
unsigned int ifindex = 0;
struct igmp_tparams itp;
bzero(&itp, sizeof(itp));
ifp = NULL;
error = 0;
is_final = 1;
memset(&gsr, 0, sizeof(struct group_source_req));
gsa = SIN(&gsr.gsr_group);
ssa = SIN(&gsr.gsr_source);
switch (sopt->sopt_name) {
case IP_DROP_MEMBERSHIP:
case IP_DROP_SOURCE_MEMBERSHIP:
if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
error = sooptcopyin(sopt, &mreqs,
sizeof(struct ip_mreq),
sizeof(struct ip_mreq));
/*
* Swap interface and sourceaddr arguments,
* as ip_mreq and ip_mreq_source are laid
* out differently.
*/
mreqs.imr_interface = mreqs.imr_sourceaddr;
mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
} else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
error = sooptcopyin(sopt, &mreqs,
sizeof(struct ip_mreq_source),
sizeof(struct ip_mreq_source));
}
if (error) {
return error;
}
gsa->sin_family = AF_INET;
gsa->sin_len = sizeof(struct sockaddr_in);
gsa->sin_addr = mreqs.imr_multiaddr;
if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
ssa->sin_family = AF_INET;
ssa->sin_len = sizeof(struct sockaddr_in);
ssa->sin_addr = mreqs.imr_sourceaddr;
}
/*
* Attempt to look up hinted ifp from interface address.
* Fallthrough with null ifp iff lookup fails, to
* preserve 4.4BSD mcast API idempotence.
* XXX NOTE WELL: The RFC 3678 API is preferred because
* using an IPv4 address as a key is racy.
*/
if (!in_nullhost(mreqs.imr_interface)) {
ifp = ip_multicast_if(&mreqs.imr_interface, &ifindex);
}
IGMP_INET_PRINTF(mreqs.imr_interface,
("%s: imr_interface = %s, ifp = 0x%llx\n", __func__,
_igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp)));
break;
case MCAST_LEAVE_GROUP:
case MCAST_LEAVE_SOURCE_GROUP:
if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
error = sooptcopyin(sopt, &gsr,
sizeof(struct group_req),
sizeof(struct group_req));
} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
error = sooptcopyin(sopt, &gsr,
sizeof(struct group_source_req),
sizeof(struct group_source_req));
}
if (error) {
return error;
}
if (gsa->sin_family != AF_INET ||
gsa->sin_len != sizeof(struct sockaddr_in)) {
return EINVAL;
}
if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
if (ssa->sin_family != AF_INET ||
ssa->sin_len != sizeof(struct sockaddr_in)) {
return EINVAL;
}
}
ifnet_head_lock_shared();
if (gsr.gsr_interface == 0 ||
!IF_INDEX_IN_RANGE(gsr.gsr_interface)) {
ifnet_head_done();
return EADDRNOTAVAIL;
}
ifp = ifindex2ifnet[gsr.gsr_interface];
ifnet_head_done();
if (ifp == NULL) {
return EADDRNOTAVAIL;
}
break;
default:
IGMP_PRINTF(("%s: unknown sopt_name %d\n",
__func__, sopt->sopt_name));
return EOPNOTSUPP;
}
if (!IN_MULTICAST(ntohl(gsa->sin_addr.s_addr))) {
return EINVAL;
}
/*
* Find the membership in the membership array.
*/
imo = inp_findmoptions(inp);
if (imo == NULL) {
return ENOMEM;
}
IMO_LOCK(imo);
idx = imo_match_group(imo, ifp, gsa);
if (idx == (size_t)-1) {
error = EADDRNOTAVAIL;
goto out_locked;
}
inm = imo->imo_membership[idx];
if (inm == NULL) {
error = EINVAL;
goto out_locked;
}
imf = &imo->imo_mfilters[idx];
if (ssa->sin_family != AF_UNSPEC) {
IGMP_PRINTF(("%s: opt=%d is_final=0\n", __func__,
sopt->sopt_name));
is_final = 0;
}
/*
* Begin state merge transaction at socket layer.
*/
/*
* If we were instructed only to leave a given source, do so.
* MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
*/
if (is_final) {
imf_leave(imf);
} else {
if (imf->imf_st[0] == MCAST_EXCLUDE) {
error = EADDRNOTAVAIL;
goto out_locked;
}
ims = imo_match_source(imo, idx, ssa);
if (ims == NULL) {
IGMP_INET_PRINTF(ssa->sin_addr,
("%s: source %s %spresent\n", __func__,
_igmp_inet_buf, "not "));
error = EADDRNOTAVAIL;
goto out_locked;
}
IGMP_PRINTF(("%s: %s source\n", __func__, "block"));
error = imf_prune(imf, ssa);
if (error) {
IGMP_PRINTF(("%s: merge imf state failed\n",
__func__));
goto out_locked;
}
}
/*
* Begin state merge transaction at IGMP layer.
*/
if (is_final) {
/*
* Give up the multicast address record to which
* the membership points. Reference held in imo
* will be released below.
*/
(void) in_leavegroup(inm, imf);
} else {
IGMP_PRINTF(("%s: merge inm state\n", __func__));
INM_LOCK(inm);
error = inm_merge(inm, imf);
if (error) {
IGMP_PRINTF(("%s: failed to merge inm state\n",
__func__));
INM_UNLOCK(inm);
goto out_imf_rollback;
}
IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
error = igmp_change_state(inm, &itp);
if (error) {
IGMP_PRINTF(("%s: failed igmp downcall\n", __func__));
}
INM_UNLOCK(inm);
}
out_imf_rollback:
if (error) {
imf_rollback(imf);
} else {
imf_commit(imf);
}
imf_reap(imf);
if (is_final) {
/* Remove the gap in the membership array and filter array. */
VERIFY(inm == imo->imo_membership[idx]);
INM_REMREF(inm);
for (++idx; idx < imo->imo_num_memberships; ++idx) {
imo->imo_membership[idx - 1] = imo->imo_membership[idx];
imo->imo_mfilters[idx - 1] = imo->imo_mfilters[idx];
}
imo->imo_num_memberships--;
/* Re-initialize the now unused tail of the list */
imo->imo_membership[imo->imo_num_memberships] = NULL;
imf_init(&imo->imo_mfilters[imo->imo_num_memberships], MCAST_UNDEFINED, MCAST_EXCLUDE);
}
out_locked:
IMO_UNLOCK(imo);
IMO_REMREF(imo); /* from inp_findmoptions() */
/* schedule timer now that we've dropped the lock(s) */
igmp_set_fast_timeout(&itp);
return error;
}
/*
* Select the interface for transmitting IPv4 multicast datagrams.
*
* Either an instance of struct in_addr or an instance of struct ip_mreqn
* may be passed to this socket option. An address of INADDR_ANY or an
* interface index of 0 is used to remove a previous selection.
* When no interface is selected, one is chosen for every send.
*/
static int
inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
{
struct in_addr addr;
struct ip_mreqn mreqn;
struct ifnet *ifp;
struct ip_moptions *imo;
int error = 0;
unsigned int ifindex = 0;
bzero(&addr, sizeof(addr));
if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
/*
* An interface index was specified using the
* Linux-derived ip_mreqn structure.
*/
error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
sizeof(struct ip_mreqn));
if (error) {
return error;
}
ifnet_head_lock_shared();
if (mreqn.imr_ifindex < 0 || !IF_INDEX_IN_RANGE(mreqn.imr_ifindex)) {
ifnet_head_done();
return EINVAL;
}
if (mreqn.imr_ifindex == 0) {
ifp = NULL;
} else {
ifp = ifindex2ifnet[mreqn.imr_ifindex];
if (ifp == NULL) {
ifnet_head_done();
return EADDRNOTAVAIL;
}
}
ifnet_head_done();
} else {
/*
* An interface was specified by IPv4 address.
* This is the traditional BSD usage.
*/
error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
sizeof(struct in_addr));
if (error) {
return error;
}
if (in_nullhost(addr)) {
ifp = NULL;
} else {
ifp = ip_multicast_if(&addr, &ifindex);
if (ifp == NULL) {
IGMP_INET_PRINTF(addr,
("%s: can't find ifp for addr=%s\n",
__func__, _igmp_inet_buf));
return EADDRNOTAVAIL;
}
}
}
/* Reject interfaces which do not support multicast. */
if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0) {
return EOPNOTSUPP;
}
imo = inp_findmoptions(inp);
if (imo == NULL) {
return ENOMEM;
}
IMO_LOCK(imo);
imo->imo_multicast_ifp = ifp;
if (ifindex) {
imo->imo_multicast_addr = addr;
} else {
imo->imo_multicast_addr.s_addr = INADDR_ANY;
}
IMO_UNLOCK(imo);
IMO_REMREF(imo); /* from inp_findmoptions() */
return 0;
}
/*
* Atomically set source filters on a socket for an IPv4 multicast group.
*/
static int
inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
{
struct __msfilterreq64 msfr = {}, msfr64;
struct __msfilterreq32 msfr32;
struct sockaddr_in *gsa;
struct ifnet *ifp;
struct in_mfilter *imf;
struct ip_moptions *imo;
struct in_multi *inm;
size_t idx;
int error;
uint64_t tmp_ptr;
struct igmp_tparams itp;
bzero(&itp, sizeof(itp));
int is_64bit_proc = IS_64BIT_PROCESS(current_proc());
if (is_64bit_proc) {
error = sooptcopyin(sopt, &msfr64,
sizeof(struct __msfilterreq64),
sizeof(struct __msfilterreq64));
if (error) {
return error;
}
/* we never use msfr.msfr_srcs; */
memcpy(&msfr, &msfr64, sizeof(msfr64));
} else {
error = sooptcopyin(sopt, &msfr32,
sizeof(struct __msfilterreq32),
sizeof(struct __msfilterreq32));
if (error) {
return error;
}
/* we never use msfr.msfr_srcs; */
memcpy(&msfr, &msfr32, sizeof(msfr32));
}
if ((size_t) msfr.msfr_nsrcs >
UINT32_MAX / sizeof(struct sockaddr_storage)) {
msfr.msfr_nsrcs = UINT32_MAX / sizeof(struct sockaddr_storage);
}
if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) {
return ENOBUFS;
}
if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
msfr.msfr_fmode != MCAST_INCLUDE)) {
return EINVAL;
}
if (msfr.msfr_group.ss_family != AF_INET ||
msfr.msfr_group.ss_len != sizeof(struct sockaddr_in)) {
return EINVAL;
}
gsa = SIN(&msfr.msfr_group);
if (!IN_MULTICAST(ntohl(gsa->sin_addr.s_addr))) {
return EINVAL;
}
gsa->sin_port = 0; /* ignore port */
ifnet_head_lock_shared();
if (msfr.msfr_ifindex == 0 || !IF_INDEX_IN_RANGE(msfr.msfr_ifindex)) {
ifnet_head_done();
return EADDRNOTAVAIL;
}
ifp = ifindex2ifnet[msfr.msfr_ifindex];
ifnet_head_done();
if (ifp == NULL) {
return EADDRNOTAVAIL;
}
/*
* Check if this socket is a member of this group.
*/
imo = inp_findmoptions(inp);
if (imo == NULL) {
return ENOMEM;
}
IMO_LOCK(imo);
idx = imo_match_group(imo, ifp, gsa);
if (idx == (size_t)-1 || imo->imo_mfilters == NULL) {
error = EADDRNOTAVAIL;
goto out_imo_locked;
}
inm = imo->imo_membership[idx];
imf = &imo->imo_mfilters[idx];
/*
* Begin state merge transaction at socket layer.
*/
imf->imf_st[1] = (uint8_t)msfr.msfr_fmode;
/*
* Apply any new source filters, if present.
* Make a copy of the user-space source vector so
* that we may copy them with a single copyin. This
* allows us to deal with page faults up-front.
*/
if (msfr.msfr_nsrcs > 0) {
struct in_msource *__single lims;
struct sockaddr_in *psin;
struct sockaddr_storage *kss, *pkss;
int i;
if (is_64bit_proc) {
tmp_ptr = msfr64.msfr_srcs;
} else {
tmp_ptr = CAST_USER_ADDR_T(msfr32.msfr_srcs);
}
IGMP_PRINTF(("%s: loading %lu source list entries\n",
__func__, (unsigned long)msfr.msfr_nsrcs));
kss = kalloc_data((size_t)msfr.msfr_nsrcs * sizeof(*kss), Z_WAITOK);
if (kss == NULL) {
error = ENOMEM;
goto out_imo_locked;
}
error = copyin(CAST_USER_ADDR_T(tmp_ptr), kss,
(size_t) msfr.msfr_nsrcs * sizeof(*kss));
if (error) {
kfree_data(kss, (size_t)msfr.msfr_nsrcs * sizeof(*kss));
goto out_imo_locked;
}
/*
* Mark all source filters as UNDEFINED at t1.
* Restore new group filter mode, as imf_leave()
* will set it to INCLUDE.
*/
imf_leave(imf);
imf->imf_st[1] = (uint8_t)msfr.msfr_fmode;
/*
* Update socket layer filters at t1, lazy-allocating
* new entries. This saves a bunch of memory at the
* cost of one RB_FIND() per source entry; duplicate
* entries in the msfr_nsrcs vector are ignored.
* If we encounter an error, rollback transaction.
*
* XXX This too could be replaced with a set-symmetric
* difference like loop to avoid walking from root
* every time, as the key space is common.
*/
for (i = 0, pkss = kss; (u_int)i < msfr.msfr_nsrcs;
i++, pkss++) {
psin = SIN(pkss);
if (psin->sin_family != AF_INET) {
error = EAFNOSUPPORT;
break;
}
if (psin->sin_len != sizeof(struct sockaddr_in)) {
error = EINVAL;
break;
}
error = imf_get_source(imf, psin, &lims);
if (error) {
break;
}
lims->imsl_st[1] = imf->imf_st[1];
}
kfree_data(kss, (size_t)msfr.msfr_nsrcs * sizeof(*kss));
}
if (error) {
goto out_imf_rollback;
}
/*
* Begin state merge transaction at IGMP layer.
*/
INM_LOCK(inm);
IGMP_PRINTF(("%s: merge inm state\n", __func__));
error = inm_merge(inm, imf);
if (error) {
IGMP_PRINTF(("%s: failed to merge inm state\n", __func__));
INM_UNLOCK(inm);
goto out_imf_rollback;
}
IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
error = igmp_change_state(inm, &itp);
INM_UNLOCK(inm);
#ifdef IGMP_DEBUG
if (error) {
IGMP_PRINTF(("%s: failed igmp downcall\n", __func__));
}
#endif
out_imf_rollback:
if (error) {
imf_rollback(imf);
} else {
imf_commit(imf);
}
imf_reap(imf);
out_imo_locked:
IMO_UNLOCK(imo);
IMO_REMREF(imo); /* from inp_findmoptions() */
/* schedule timer now that we've dropped the lock(s) */
igmp_set_fast_timeout(&itp);
return error;
}
/*
* Set the IP multicast options in response to user setsockopt().
*
* Many of the socket options handled in this function duplicate the
* functionality of socket options in the regular unicast API. However,
* it is not possible to merge the duplicate code, because the idempotence
* of the IPv4 multicast part of the BSD Sockets API must be preserved;
* the effects of these options must be treated as separate and distinct.
*/
int
inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
{
struct ip_moptions *imo;
int error;
unsigned int ifindex;
struct ifnet *ifp;
error = 0;
/*
* If socket is neither of type SOCK_RAW or SOCK_DGRAM,
* or is a divert socket, reject it.
*/
if (SOCK_PROTO(inp->inp_socket) == IPPROTO_DIVERT ||
(SOCK_TYPE(inp->inp_socket) != SOCK_RAW &&
SOCK_TYPE(inp->inp_socket) != SOCK_DGRAM)) {
return EOPNOTSUPP;
}
switch (sopt->sopt_name) {
case IP_MULTICAST_IF:
error = inp_set_multicast_if(inp, sopt);
break;
case IP_MULTICAST_IFINDEX:
/*
* Select the interface for outgoing multicast packets.
*/
error = sooptcopyin(sopt, &ifindex, sizeof(ifindex),
sizeof(ifindex));
if (error) {
break;
}
imo = inp_findmoptions(inp);
if (imo == NULL) {
error = ENOMEM;
break;
}
/*
* Index 0 is used to remove a previous selection.
* When no interface is selected, a default one is
* chosen every time a multicast packet is sent.
*/
if (ifindex == 0) {
IMO_LOCK(imo);
imo->imo_multicast_ifp = NULL;
IMO_UNLOCK(imo);
IMO_REMREF(imo); /* from inp_findmoptions() */
break;
}
ifnet_head_lock_shared();
/* Don't need to check is ifindex is < 0 since it's unsigned */
if (!IF_INDEX_IN_RANGE(ifindex)) {
ifnet_head_done();
IMO_REMREF(imo); /* from inp_findmoptions() */
error = ENXIO; /* per IPV6_MULTICAST_IF */
break;
}
ifp = ifindex2ifnet[ifindex];
ifnet_head_done();
/* If it's detached or isn't a multicast interface, bail out */
if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
IMO_REMREF(imo); /* from inp_findmoptions() */
error = EADDRNOTAVAIL;
break;
}
IMO_LOCK(imo);
imo->imo_multicast_ifp = ifp;
/*
* Clear out any remnants of past IP_MULTICAST_IF. The addr
* isn't really used anywhere in the kernel; we could have
* iterated thru the addresses of the interface and pick one
* here, but that is redundant since ip_getmoptions() already
* takes care of that for INADDR_ANY.
*/
imo->imo_multicast_addr.s_addr = INADDR_ANY;
IMO_UNLOCK(imo);
IMO_REMREF(imo); /* from inp_findmoptions() */
break;
case IP_MULTICAST_TTL: {
u_char ttl;
/*
* Set the IP time-to-live for outgoing multicast packets.
* The original multicast API required a char argument,
* which is inconsistent with the rest of the socket API.
* We allow either a char or an int.
*/
if (sopt->sopt_valsize == sizeof(u_char)) {
error = sooptcopyin(sopt, &ttl, sizeof(u_char),
sizeof(u_char));
if (error) {
break;
}
} else {
u_int ittl;
error = sooptcopyin(sopt, &ittl, sizeof(u_int),
sizeof(u_int));
if (error) {
break;
}
if (ittl > 255) {
error = EINVAL;
break;
}
ttl = (u_char)ittl;
}
imo = inp_findmoptions(inp);
if (imo == NULL) {
error = ENOMEM;
break;
}
IMO_LOCK(imo);
imo->imo_multicast_ttl = ttl;
IMO_UNLOCK(imo);
IMO_REMREF(imo); /* from inp_findmoptions() */
break;
}
case IP_MULTICAST_LOOP: {
u_char loop;
/*
* Set the loopback flag for outgoing multicast packets.
* Must be zero or one. The original multicast API required a
* char argument, which is inconsistent with the rest
* of the socket API. We allow either a char or an int.
*/
if (sopt->sopt_valsize == sizeof(u_char)) {
error = sooptcopyin(sopt, &loop, sizeof(u_char),
sizeof(u_char));
if (error) {
break;
}
} else {
u_int iloop;
error = sooptcopyin(sopt, &iloop, sizeof(u_int),
sizeof(u_int));
if (error) {
break;
}
loop = (u_char)iloop;
}
imo = inp_findmoptions(inp);
if (imo == NULL) {
error = ENOMEM;
break;
}
IMO_LOCK(imo);
imo->imo_multicast_loop = !!loop;
IMO_UNLOCK(imo);
IMO_REMREF(imo); /* from inp_findmoptions() */
break;
}
case IP_ADD_MEMBERSHIP:
case IP_ADD_SOURCE_MEMBERSHIP:
case MCAST_JOIN_GROUP:
case MCAST_JOIN_SOURCE_GROUP:
error = inp_join_group(inp, sopt);
break;
case IP_DROP_MEMBERSHIP:
case IP_DROP_SOURCE_MEMBERSHIP:
case MCAST_LEAVE_GROUP:
case MCAST_LEAVE_SOURCE_GROUP:
error = inp_leave_group(inp, sopt);
break;
case IP_BLOCK_SOURCE:
case IP_UNBLOCK_SOURCE:
case MCAST_BLOCK_SOURCE:
case MCAST_UNBLOCK_SOURCE:
error = inp_block_unblock_source(inp, sopt);
break;
case IP_MSFILTER:
error = inp_set_source_filters(inp, sopt);
break;
default:
error = EOPNOTSUPP;
break;
}
return error;
}
/*
* Expose IGMP's multicast filter mode and source list(s) to userland,
* keyed by (ifindex, group).
* The filter mode is written out as a uint32_t, followed by
* 0..n of struct in_addr.
* For use by ifmcstat(8).
*/
static int
sysctl_ip_mcast_filters SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp)
DECLARE_SYSCTL_HANDLER_ARG_ARRAY(int, 2, name, namelen);
struct in_addr src = {}, group;
struct ifnet *ifp;
struct in_multi *inm;
struct in_multistep step;
struct ip_msource *ims;
int retval = 0;
uint32_t fmode, ifindex;
if (req->newptr != USER_ADDR_NULL) {
return EPERM;
}
ifindex = name[0];
ifnet_head_lock_shared();
if (!IF_INDEX_IN_RANGE(ifindex)) {
IGMP_PRINTF(("%s: ifindex %u out of range\n",
__func__, ifindex));
ifnet_head_done();
return ENOENT;
}
group.s_addr = name[1];
if (!IN_MULTICAST(ntohl(group.s_addr))) {
IGMP_INET_PRINTF(group,
("%s: group %s is not multicast\n",
__func__, _igmp_inet_buf));
ifnet_head_done();
return EINVAL;
}
ifp = ifindex2ifnet[ifindex];
ifnet_head_done();
if (ifp == NULL) {
IGMP_PRINTF(("%s: no ifp for ifindex %u\n", __func__, ifindex));
return ENOENT;
}
in_multihead_lock_shared();
IN_FIRST_MULTI(step, inm);
while (inm != NULL) {
INM_LOCK(inm);
if (inm->inm_ifp != ifp) {
goto next;
}
if (!in_hosteq(inm->inm_addr, group)) {
goto next;
}
fmode = inm->inm_st[1].iss_fmode;
retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
if (retval != 0) {
INM_UNLOCK(inm);
break; /* abort */
}
RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
#ifdef IGMP_DEBUG
struct in_addr ina;
ina.s_addr = htonl(ims->ims_haddr);
IGMP_INET_PRINTF(ina,
("%s: visit node %s\n", __func__, _igmp_inet_buf));
#endif
/*
* Only copy-out sources which are in-mode.
*/
if (fmode != ims_get_mode(inm, ims, 1)) {
IGMP_PRINTF(("%s: skip non-in-mode\n",
__func__));
continue; /* process next source */
}
src.s_addr = htonl(ims->ims_haddr);
retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
if (retval != 0) {
break; /* process next inm */
}
}
next:
INM_UNLOCK(inm);
IN_NEXT_MULTI(step, inm);
}
in_multihead_lock_done();
return retval;
}
/*
* XXX
* The whole multicast option thing needs to be re-thought.
* Several of these options are equally applicable to non-multicast
* transmission, and one (IP_MULTICAST_TTL) totally duplicates a
* standard option (IP_TTL).
*/
/*
* following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
*/
static struct ifnet *
ip_multicast_if(struct in_addr *a, unsigned int *ifindexp)
{
unsigned int ifindex;
struct ifnet *ifp;
if (ifindexp != NULL) {
*ifindexp = 0;
}
if (ntohl(a->s_addr) >> 24 == 0) {
ifindex = ntohl(a->s_addr) & 0xffffff;
ifnet_head_lock_shared();
/* Don't need to check is ifindex is < 0 since it's unsigned */
if (!IF_INDEX_IN_RANGE(ifindex)) {
ifnet_head_done();
return NULL;
}
ifp = ifindex2ifnet[ifindex];
ifnet_head_done();
if (ifp != NULL && ifindexp != NULL) {
*ifindexp = ifindex;
}
} else {
INADDR_TO_IFP(*a, ifp);
}
return ifp;
}
static struct in_multi *
in_multi_alloc(zalloc_flags_t how)
{
struct in_multi *inm;
if (inm_debug == 0) {
inm = kalloc_type(struct in_multi, how | Z_ZERO);
} else {
struct in_multi_dbg *__single inm_dbg;
inm_dbg = kalloc_type(struct in_multi_dbg, how | Z_ZERO);
inm = (struct in_multi *__single)inm_dbg;
}
if (inm != NULL) {
lck_mtx_init(&inm->inm_lock, &in_multihead_lock_grp,
&in_multihead_lock_attr);
inm->inm_debug |= IFD_ALLOC;
if (inm_debug != 0) {
inm->inm_debug |= IFD_DEBUG;
inm->inm_trace = inm_trace;
}
}
return inm;
}
static void
in_multi_free(struct in_multi *inm)
{
INM_LOCK(inm);
if (inm->inm_debug & IFD_ATTACHED) {
panic("%s: attached inm=%p is being freed", __func__, inm);
/* NOTREACHED */
} else if (inm->inm_ifma != NULL) {
panic("%s: ifma not NULL for inm=%p", __func__, inm);
/* NOTREACHED */
} else if (!(inm->inm_debug & IFD_ALLOC)) {
panic("%s: inm %p cannot be freed", __func__, inm);
/* NOTREACHED */
} else if (inm->inm_refcount != 0) {
panic("%s: non-zero refcount inm=%p", __func__, inm);
/* NOTREACHED */
} else if (inm->inm_reqcnt != 0) {
panic("%s: non-zero reqcnt inm=%p", __func__, inm);
/* NOTREACHED */
}
/* Free any pending IGMPv3 state-change records */
IF_DRAIN(&inm->inm_scq);
inm->inm_debug &= ~IFD_ALLOC;
if ((inm->inm_debug & (IFD_DEBUG | IFD_TRASHED)) ==
(IFD_DEBUG | IFD_TRASHED)) {
lck_mtx_lock(&inm_trash_lock);
TAILQ_REMOVE(&inm_trash_head, (struct in_multi_dbg *)inm,
inm_trash_link);
lck_mtx_unlock(&inm_trash_lock);
inm->inm_debug &= ~IFD_TRASHED;
}
INM_UNLOCK(inm);
lck_mtx_destroy(&inm->inm_lock, &in_multihead_lock_grp);
if (inm_debug == 0) {
kfree_type(struct in_multi, inm);
} else {
struct in_multi_dbg *__single inm_dbg =
(struct in_multi_dbg *__single)inm;
kfree_type(struct in_multi_dbg, inm_dbg);
inm = NULL;
}
}
static void
in_multi_attach(struct in_multi *inm)
{
in_multihead_lock_assert(LCK_RW_ASSERT_EXCLUSIVE);
INM_LOCK_ASSERT_HELD(inm);
if (inm->inm_debug & IFD_ATTACHED) {
panic("%s: Attempt to attach an already attached inm=%p",
__func__, inm);
/* NOTREACHED */
} else if (inm->inm_debug & IFD_TRASHED) {
panic("%s: Attempt to reattach a detached inm=%p",
__func__, inm);
/* NOTREACHED */
}
inm->inm_reqcnt++;
VERIFY(inm->inm_reqcnt == 1);
INM_ADDREF_LOCKED(inm);
inm->inm_debug |= IFD_ATTACHED;
/*
* Reattach case: If debugging is enabled, take it
* out of the trash list and clear IFD_TRASHED.
*/
if ((inm->inm_debug & (IFD_DEBUG | IFD_TRASHED)) ==
(IFD_DEBUG | IFD_TRASHED)) {
/* Become a regular mutex, just in case */
INM_CONVERT_LOCK(inm);
lck_mtx_lock(&inm_trash_lock);
TAILQ_REMOVE(&inm_trash_head, (struct in_multi_dbg *)inm,
inm_trash_link);
lck_mtx_unlock(&inm_trash_lock);
inm->inm_debug &= ~IFD_TRASHED;
}
LIST_INSERT_HEAD(&in_multihead, inm, inm_link);
}
int
in_multi_detach(struct in_multi *inm)
{
in_multihead_lock_assert(LCK_RW_ASSERT_EXCLUSIVE);
INM_LOCK_ASSERT_HELD(inm);
if (inm->inm_reqcnt == 0) {
panic("%s: inm=%p negative reqcnt", __func__, inm);
/* NOTREACHED */
}
--inm->inm_reqcnt;
if (inm->inm_reqcnt > 0) {
return 0;
}
if (!(inm->inm_debug & IFD_ATTACHED)) {
panic("%s: Attempt to detach an unattached record inm=%p",
__func__, inm);
/* NOTREACHED */
} else if (inm->inm_debug & IFD_TRASHED) {
panic("%s: inm %p is already in trash list", __func__, inm);
/* NOTREACHED */
}
/*
* NOTE: Caller calls IFMA_REMREF
*/
inm->inm_debug &= ~IFD_ATTACHED;
LIST_REMOVE(inm, inm_link);
if (inm->inm_debug & IFD_DEBUG) {
/* Become a regular mutex, just in case */
INM_CONVERT_LOCK(inm);
lck_mtx_lock(&inm_trash_lock);
TAILQ_INSERT_TAIL(&inm_trash_head,
(struct in_multi_dbg *)inm, inm_trash_link);
lck_mtx_unlock(&inm_trash_lock);
inm->inm_debug |= IFD_TRASHED;
}
return 1;
}
void
inm_addref(struct in_multi *inm, int locked)
{
if (!locked) {
INM_LOCK_SPIN(inm);
} else {
INM_LOCK_ASSERT_HELD(inm);
}
if (++inm->inm_refcount == 0) {
panic("%s: inm=%p wraparound refcnt", __func__, inm);
/* NOTREACHED */
} else if (inm->inm_trace != NULL) {
(*inm->inm_trace)(inm, TRUE);
}
if (!locked) {
INM_UNLOCK(inm);
}
}
void
inm_remref(struct in_multi *inm, int locked)
{
struct ifmultiaddr *ifma;
struct igmp_ifinfo *igi;
if (!locked) {
INM_LOCK_SPIN(inm);
} else {
INM_LOCK_ASSERT_HELD(inm);
}
if (inm->inm_refcount == 0 || (inm->inm_refcount == 1 && locked)) {
panic("%s: inm=%p negative/missing refcnt", __func__, inm);
/* NOTREACHED */
} else if (inm->inm_trace != NULL) {
(*inm->inm_trace)(inm, FALSE);
}
--inm->inm_refcount;
if (inm->inm_refcount > 0) {
if (!locked) {
INM_UNLOCK(inm);
}
return;
}
/*
* Synchronization with in_getmulti(). In the event the inm has been
* detached, the underlying ifma would still be in the if_multiaddrs
* list, and thus can be looked up via if_addmulti(). At that point,
* the only way to find this inm is via ifma_protospec. To avoid
* race conditions between the last inm_remref() of that inm and its
* use via ifma_protospec, in_multihead lock is used for serialization.
* In order to avoid violating the lock order, we must drop inm_lock
* before acquiring in_multihead lock. To prevent the inm from being
* freed prematurely, we hold an extra reference.
*/
++inm->inm_refcount;
INM_UNLOCK(inm);
in_multihead_lock_shared();
INM_LOCK_SPIN(inm);
--inm->inm_refcount;
if (inm->inm_refcount > 0) {
/* We've lost the race, so abort since inm is still in use */
INM_UNLOCK(inm);
in_multihead_lock_done();
/* If it was locked, return it as such */
if (locked) {
INM_LOCK(inm);
}
return;
}
inm_purge(inm);
ifma = inm->inm_ifma;
inm->inm_ifma = NULL;
inm->inm_ifp = NULL;
igi = inm->inm_igi;
inm->inm_igi = NULL;
INM_UNLOCK(inm);
IFMA_LOCK_SPIN(ifma);
ifma->ifma_protospec = NULL;
IFMA_UNLOCK(ifma);
in_multihead_lock_done();
in_multi_free(inm);
if_delmulti_ifma(ifma);
/* Release reference held to the underlying ifmultiaddr */
IFMA_REMREF(ifma);
if (igi != NULL) {
IGI_REMREF(igi);
}
}
static void
inm_trace(struct in_multi *inm, int refhold)
{
struct in_multi_dbg *__single inm_dbg =
(struct in_multi_dbg *__single)inm;
ctrace_t *tr;
u_int32_t idx;
u_int16_t *cnt;
if (!(inm->inm_debug & IFD_DEBUG)) {
panic("%s: inm %p has no debug structure", __func__, inm);
/* NOTREACHED */
}
if (refhold) {
cnt = &inm_dbg->inm_refhold_cnt;
tr = inm_dbg->inm_refhold;
} else {
cnt = &inm_dbg->inm_refrele_cnt;
tr = inm_dbg->inm_refrele;
}
idx = os_atomic_inc_orig(cnt, relaxed) % INM_TRACE_HIST_SIZE;
ctrace_record(&tr[idx]);
}
void
in_multihead_lock_exclusive(void)
{
lck_rw_lock_exclusive(&in_multihead_lock);
}
void
in_multihead_lock_shared(void)
{
lck_rw_lock_shared(&in_multihead_lock);
}
void
in_multihead_lock_assert(int what)
{
#if !MACH_ASSERT
#pragma unused(what)
#endif
LCK_RW_ASSERT(&in_multihead_lock, what);
}
void
in_multihead_lock_done(void)
{
lck_rw_done(&in_multihead_lock);
}
static struct ip_msource *
ipms_alloc(zalloc_flags_t how)
{
return zalloc_flags(ipms_zone, how | Z_ZERO);
}
static void
ipms_free(struct ip_msource *ims)
{
zfree(ipms_zone, ims);
}
static struct in_msource *
inms_alloc(zalloc_flags_t how)
{
return zalloc_flags(inms_zone, how | Z_ZERO);
}
static void
inms_free(struct in_msource *inms)
{
zfree(inms_zone, inms);
}
#ifdef IGMP_DEBUG
static const char *inm_modestrs[] = { "un", "in", "ex" };
static const char *
inm_mode_str(const int mode)
{
if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) {
return inm_modestrs[mode];
}
return "??";
}
static const char *inm_statestrs[] = {
"not-member",
"silent",
"reporting",
"idle",
"lazy",
"sleeping",
"awakening",
"query-pending",
"sg-query-pending",
"leaving"
};
static const char *
inm_state_str(const int state)
{
if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER) {
return inm_statestrs[state];
}
return "??";
}
/*
* Dump an in_multi structure to the console.
*/
void
inm_print(const struct in_multi *inm)
{
int t;
char buf[MAX_IPv4_STR_LEN];
INM_LOCK_ASSERT_HELD(__DECONST(struct in_multi *, inm));
if (igmp_debug == 0) {
return;
}
inet_ntop(AF_INET, &inm->inm_addr, buf, sizeof(buf));
printf("%s: --- begin inm 0x%llx ---\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(inm));
printf("addr %s ifp 0x%llx(%s) ifma 0x%llx\n",
buf,
(uint64_t)VM_KERNEL_ADDRPERM(inm->inm_ifp),
if_name(inm->inm_ifp),
(uint64_t)VM_KERNEL_ADDRPERM(inm->inm_ifma));
printf("timer %u state %s refcount %u scq.len %u\n",
inm->inm_timer,
inm_state_str(inm->inm_state),
inm->inm_refcount,
inm->inm_scq.ifq_len);
printf("igi 0x%llx nsrc %lu sctimer %u scrv %u\n",
(uint64_t)VM_KERNEL_ADDRPERM(inm->inm_igi),
inm->inm_nsrc,
inm->inm_sctimer,
inm->inm_scrv);
for (t = 0; t < 2; t++) {
printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
inm_mode_str(inm->inm_st[t].iss_fmode),
inm->inm_st[t].iss_asm,
inm->inm_st[t].iss_ex,
inm->inm_st[t].iss_in,
inm->inm_st[t].iss_rec);
}
printf("%s: --- end inm 0x%llx ---\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(inm));
}
#else
void
inm_print(__unused const struct in_multi *inm)
{
}
#endif