/*
* Copyright (c) 2000-2022 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
* Portions Copyright (c) 2000 Akamba Corp.
* All rights reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.84 2004/08/25 09:31:30 pjd Exp $
*/
#define DUMMYNET_DEBUG
/*
* This module implements IP dummynet, a bandwidth limiter/delay emulator
* Description of the data structures used is in ip_dummynet.h
* Here you mainly find the following blocks of code:
* + variable declarations;
* + heap management functions;
* + scheduler and dummynet functions;
* + configuration and initialization.
*
* NOTA BENE: critical sections are protected by the "dummynet lock".
*
* Most important Changes:
*
* 010124: Fixed WF2Q behaviour
* 010122: Fixed spl protection.
* 000601: WF2Q support
* 000106: large rewrite, use heaps to handle very many pipes.
* 980513: initial release
*
* include files marked with XXX are probably not needed
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/queue.h> /* XXX */
#include <sys/kernel.h>
#include <sys/random.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/time.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/route.h>
#include <net/kpi_protocol.h>
#if DUMMYNET
#include <net/kpi_protocol.h>
#endif /* DUMMYNET */
#include <net/nwk_wq.h>
#include <net/pfvar.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/ip_dummynet.h>
#include <netinet/ip_var.h>
#include <netinet/ip6.h> /* for ip6_input, ip6_output prototypes */
#include <netinet6/ip6_var.h>
#include <stdbool.h>
/*
* We keep a private variable for the simulation time, but we could
* probably use an existing one ("softticks" in sys/kern/kern_timer.c)
*/
static dn_key curr_time = 0; /* current simulation time */
/* this is for the timer that fires to call dummynet() - we only enable the timer when
* there are packets to process, otherwise it's disabled */
static int timer_enabled = 0;
static int dn_hash_size = 64; /* default hash size */
/* statistics on number of queue searches and search steps */
static int searches, search_steps;
static int pipe_expire = 1; /* expire queue if empty */
static int dn_max_ratio = 16; /* max queues/buckets ratio */
static int red_lookup_depth = 256; /* RED - default lookup table depth */
static int red_avg_pkt_size = 512; /* RED - default medium packet size */
static int red_max_pkt_size = 1500; /* RED - default max packet size */
static int serialize = 0;
/*
* Three heaps contain queues and pipes that the scheduler handles:
*
* ready_heap contains all dn_flow_queue related to fixed-rate pipes.
*
* wfq_ready_heap contains the pipes associated with WF2Q flows
*
* extract_heap contains pipes associated with delay lines.
*
*/
static struct dn_heap ready_heap, extract_heap, wfq_ready_heap;
static int heap_init(struct dn_heap *h, int size);
static int heap_insert(struct dn_heap *h, dn_key key1, void *p);
static void heap_extract(struct dn_heap *h, void *obj);
static void transmit_event(struct dn_pipe *pipe, struct mbuf **head,
struct mbuf **tail);
static void ready_event(struct dn_flow_queue *q, struct mbuf **head,
struct mbuf **tail);
static void ready_event_wfq(struct dn_pipe *p, struct mbuf **head,
struct mbuf **tail);
/*
* Packets are retrieved from queues in Dummynet in chains instead of
* packet-by-packet. The entire list of packets is first dequeued and
* sent out by the following function.
*/
static void dummynet_send(struct mbuf *m);
#define HASHSIZE 16
#define HASH(num) ((((num) >> 8) ^ ((num) >> 4) ^ (num)) & 0x0f)
static struct dn_pipe_head pipehash[HASHSIZE]; /* all pipes */
static struct dn_flow_set_head flowsethash[HASHSIZE]; /* all flowsets */
#ifdef SYSCTL_NODE
SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet,
CTLFLAG_RW | CTLFLAG_LOCKED, 0, "Dummynet");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size,
CTLFLAG_RW | CTLFLAG_LOCKED, &dn_hash_size, 0, "Default hash table size");
SYSCTL_QUAD(_net_inet_ip_dummynet, OID_AUTO, curr_time,
CTLFLAG_RD | CTLFLAG_LOCKED, &curr_time, "Current tick");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap,
CTLFLAG_RD | CTLFLAG_LOCKED, &ready_heap.size, 0, "Size of ready heap");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap,
CTLFLAG_RD | CTLFLAG_LOCKED, &extract_heap.size, 0, "Size of extract heap");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches,
CTLFLAG_RD | CTLFLAG_LOCKED, &searches, 0, "Number of queue searches");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps,
CTLFLAG_RD | CTLFLAG_LOCKED, &search_steps, 0, "Number of queue search steps");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire,
CTLFLAG_RW | CTLFLAG_LOCKED, &pipe_expire, 0, "Expire queue if empty");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len,
CTLFLAG_RW | CTLFLAG_LOCKED, &dn_max_ratio, 0,
"Max ratio between dynamic queues and buckets");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
CTLFLAG_RD | CTLFLAG_LOCKED, &red_lookup_depth, 0, "Depth of RED lookup table");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
CTLFLAG_RD | CTLFLAG_LOCKED, &red_avg_pkt_size, 0, "RED Medium packet size");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
CTLFLAG_RD | CTLFLAG_LOCKED, &red_max_pkt_size, 0, "RED Max packet size");
#endif
#ifdef DUMMYNET_DEBUG
int dummynet_debug = 0;
#ifdef SYSCTL_NODE
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_LOCKED, &dummynet_debug,
0, "control debugging printfs");
#endif
#define DPRINTF(X) if (dummynet_debug) printf X
#else
#define DPRINTF(X)
#endif
/* dummynet lock */
static LCK_GRP_DECLARE(dn_mutex_grp, "dn");
static LCK_MTX_DECLARE(dn_mutex, &dn_mutex_grp);
static int config_pipe(struct dn_pipe *p);
static int ip_dn_ctl(struct sockopt *sopt);
static void dummynet(void *);
static void dummynet_flush(void);
void dummynet_drain(void);
static ip_dn_io_t dummynet_io;
static void cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp);
static void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp);
static char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp);
static char* dn_copy_set_64(struct dn_flow_set *set, char *bp);
static int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p );
static void cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp);
static void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp);
static char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp);
static char* dn_copy_set_32(struct dn_flow_set *set, char *bp);
static int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p );
static struct m_tag * m_tag_kalloc_dummynet(u_int32_t id, u_int16_t type, uint16_t len, int wait);
static void m_tag_kfree_dummynet(struct m_tag *tag);
struct eventhandler_lists_ctxt dummynet_evhdlr_ctxt;
uint32_t
my_random(void)
{
uint32_t val;
read_frandom(&val, sizeof(val));
val &= 0x7FFFFFFF;
return val;
}
/*
* Heap management functions.
*
* In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
* Some macros help finding parent/children so we can optimize them.
*
* heap_init() is called to expand the heap when needed.
* Increment size in blocks of 16 entries.
* XXX failure to allocate a new element is a pretty bad failure
* as we basically stall a whole queue forever!!
* Returns 1 on error, 0 on success
*/
#define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 )
#define HEAP_LEFT(x) ( 2*(x) + 1 )
#define HEAP_IS_LEFT(x) ( (x) & 1 )
#define HEAP_RIGHT(x) ( 2*(x) + 2 )
#define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
#define HEAP_INCREMENT 15
int
cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p )
{
struct dn_pipe_32 user_pipe_32;
int error = 0;
error = sooptcopyin(sopt, &user_pipe_32, sizeof(struct dn_pipe_32), sizeof(struct dn_pipe_32));
if (!error) {
p->pipe_nr = user_pipe_32.pipe_nr;
p->bandwidth = user_pipe_32.bandwidth;
p->delay = user_pipe_32.delay;
p->V = user_pipe_32.V;
p->sum = user_pipe_32.sum;
p->numbytes = user_pipe_32.numbytes;
p->sched_time = user_pipe_32.sched_time;
bcopy( user_pipe_32.if_name, p->if_name, IFNAMSIZ);
p->ready = user_pipe_32.ready;
p->fs.fs_nr = user_pipe_32.fs.fs_nr;
p->fs.flags_fs = user_pipe_32.fs.flags_fs;
p->fs.parent_nr = user_pipe_32.fs.parent_nr;
p->fs.weight = user_pipe_32.fs.weight;
p->fs.qsize = user_pipe_32.fs.qsize;
p->fs.plr = user_pipe_32.fs.plr;
p->fs.flow_mask = user_pipe_32.fs.flow_mask;
p->fs.rq_size = user_pipe_32.fs.rq_size;
p->fs.rq_elements = user_pipe_32.fs.rq_elements;
p->fs.last_expired = user_pipe_32.fs.last_expired;
p->fs.backlogged = user_pipe_32.fs.backlogged;
p->fs.w_q = user_pipe_32.fs.w_q;
p->fs.max_th = user_pipe_32.fs.max_th;
p->fs.min_th = user_pipe_32.fs.min_th;
p->fs.max_p = user_pipe_32.fs.max_p;
p->fs.c_1 = user_pipe_32.fs.c_1;
p->fs.c_2 = user_pipe_32.fs.c_2;
p->fs.c_3 = user_pipe_32.fs.c_3;
p->fs.c_4 = user_pipe_32.fs.c_4;
p->fs.lookup_depth = user_pipe_32.fs.lookup_depth;
p->fs.lookup_step = user_pipe_32.fs.lookup_step;
p->fs.lookup_weight = user_pipe_32.fs.lookup_weight;
p->fs.avg_pkt_size = user_pipe_32.fs.avg_pkt_size;
p->fs.max_pkt_size = user_pipe_32.fs.max_pkt_size;
}
return error;
}
int
cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p )
{
struct dn_pipe_64 user_pipe_64;
int error = 0;
error = sooptcopyin(sopt, &user_pipe_64, sizeof(struct dn_pipe_64), sizeof(struct dn_pipe_64));
if (!error) {
p->pipe_nr = user_pipe_64.pipe_nr;
p->bandwidth = user_pipe_64.bandwidth;
p->delay = user_pipe_64.delay;
p->V = user_pipe_64.V;
p->sum = user_pipe_64.sum;
p->numbytes = user_pipe_64.numbytes;
p->sched_time = user_pipe_64.sched_time;
bcopy( user_pipe_64.if_name, p->if_name, IFNAMSIZ);
p->ready = user_pipe_64.ready;
p->fs.fs_nr = user_pipe_64.fs.fs_nr;
p->fs.flags_fs = user_pipe_64.fs.flags_fs;
p->fs.parent_nr = user_pipe_64.fs.parent_nr;
p->fs.weight = user_pipe_64.fs.weight;
p->fs.qsize = user_pipe_64.fs.qsize;
p->fs.plr = user_pipe_64.fs.plr;
p->fs.flow_mask = user_pipe_64.fs.flow_mask;
p->fs.rq_size = user_pipe_64.fs.rq_size;
p->fs.rq_elements = user_pipe_64.fs.rq_elements;
p->fs.last_expired = user_pipe_64.fs.last_expired;
p->fs.backlogged = user_pipe_64.fs.backlogged;
p->fs.w_q = user_pipe_64.fs.w_q;
p->fs.max_th = user_pipe_64.fs.max_th;
p->fs.min_th = user_pipe_64.fs.min_th;
p->fs.max_p = user_pipe_64.fs.max_p;
p->fs.c_1 = user_pipe_64.fs.c_1;
p->fs.c_2 = user_pipe_64.fs.c_2;
p->fs.c_3 = user_pipe_64.fs.c_3;
p->fs.c_4 = user_pipe_64.fs.c_4;
p->fs.lookup_depth = user_pipe_64.fs.lookup_depth;
p->fs.lookup_step = user_pipe_64.fs.lookup_step;
p->fs.lookup_weight = user_pipe_64.fs.lookup_weight;
p->fs.avg_pkt_size = user_pipe_64.fs.avg_pkt_size;
p->fs.max_pkt_size = user_pipe_64.fs.max_pkt_size;
}
return error;
}
static void
cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp)
{
fs_bp->fs_nr = set->fs_nr;
fs_bp->flags_fs = set->flags_fs;
fs_bp->parent_nr = set->parent_nr;
fs_bp->weight = set->weight;
fs_bp->qsize = set->qsize;
fs_bp->plr = set->plr;
fs_bp->flow_mask = set->flow_mask;
fs_bp->rq_size = set->rq_size;
fs_bp->rq_elements = set->rq_elements;
fs_bp->last_expired = set->last_expired;
fs_bp->backlogged = set->backlogged;
fs_bp->w_q = set->w_q;
fs_bp->max_th = set->max_th;
fs_bp->min_th = set->min_th;
fs_bp->max_p = set->max_p;
fs_bp->c_1 = set->c_1;
fs_bp->c_2 = set->c_2;
fs_bp->c_3 = set->c_3;
fs_bp->c_4 = set->c_4;
fs_bp->w_q_lookup = CAST_DOWN_EXPLICIT(user32_addr_t, set->w_q_lookup);
fs_bp->lookup_depth = set->lookup_depth;
fs_bp->lookup_step = set->lookup_step;
fs_bp->lookup_weight = set->lookup_weight;
fs_bp->avg_pkt_size = set->avg_pkt_size;
fs_bp->max_pkt_size = set->max_pkt_size;
}
static void
cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp)
{
fs_bp->fs_nr = set->fs_nr;
fs_bp->flags_fs = set->flags_fs;
fs_bp->parent_nr = set->parent_nr;
fs_bp->weight = set->weight;
fs_bp->qsize = set->qsize;
fs_bp->plr = set->plr;
fs_bp->flow_mask = set->flow_mask;
fs_bp->rq_size = set->rq_size;
fs_bp->rq_elements = set->rq_elements;
fs_bp->last_expired = set->last_expired;
fs_bp->backlogged = set->backlogged;
fs_bp->w_q = set->w_q;
fs_bp->max_th = set->max_th;
fs_bp->min_th = set->min_th;
fs_bp->max_p = set->max_p;
fs_bp->c_1 = set->c_1;
fs_bp->c_2 = set->c_2;
fs_bp->c_3 = set->c_3;
fs_bp->c_4 = set->c_4;
fs_bp->w_q_lookup = CAST_DOWN(user64_addr_t, set->w_q_lookup);
fs_bp->lookup_depth = set->lookup_depth;
fs_bp->lookup_step = set->lookup_step;
fs_bp->lookup_weight = set->lookup_weight;
fs_bp->avg_pkt_size = set->avg_pkt_size;
fs_bp->max_pkt_size = set->max_pkt_size;
}
static
void
cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp)
{
qp->id = q->id;
qp->len = q->len;
qp->len_bytes = q->len_bytes;
qp->numbytes = q->numbytes;
qp->tot_pkts = q->tot_pkts;
qp->tot_bytes = q->tot_bytes;
qp->drops = q->drops;
qp->hash_slot = q->hash_slot;
qp->avg = q->avg;
qp->count = q->count;
qp->random = q->random;
qp->q_time = (u_int32_t)q->q_time;
qp->heap_pos = q->heap_pos;
qp->sched_time = q->sched_time;
qp->S = q->S;
qp->F = q->F;
}
static
void
cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp)
{
qp->id = q->id;
qp->len = q->len;
qp->len_bytes = q->len_bytes;
qp->numbytes = q->numbytes;
qp->tot_pkts = q->tot_pkts;
qp->tot_bytes = q->tot_bytes;
qp->drops = q->drops;
qp->hash_slot = q->hash_slot;
qp->avg = q->avg;
qp->count = q->count;
qp->random = q->random;
qp->q_time = (u_int32_t)q->q_time;
qp->heap_pos = q->heap_pos;
qp->sched_time = q->sched_time;
qp->S = q->S;
qp->F = q->F;
}
static
char *
cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp)
{
char *bp;
pipe_bp->pipe_nr = p->pipe_nr;
pipe_bp->bandwidth = p->bandwidth;
pipe_bp->delay = p->delay;
bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_32));
pipe_bp->scheduler_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->scheduler_heap.p);
bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_32));
pipe_bp->not_eligible_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->not_eligible_heap.p);
bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_32));
pipe_bp->idle_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->idle_heap.p);
pipe_bp->V = p->V;
pipe_bp->sum = p->sum;
pipe_bp->numbytes = p->numbytes;
pipe_bp->sched_time = p->sched_time;
bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ);
pipe_bp->ifp = CAST_DOWN_EXPLICIT(user32_addr_t, p->ifp);
pipe_bp->ready = p->ready;
cp_flow_set_to_32_user( &(p->fs), &(pipe_bp->fs));
pipe_bp->delay = (pipe_bp->delay * 1000) / (hz * 10);
/*
* XXX the following is a hack based on ->next being the
* first field in dn_pipe and dn_flow_set. The correct
* solution would be to move the dn_flow_set to the beginning
* of struct dn_pipe.
*/
pipe_bp->next = CAST_DOWN_EXPLICIT( user32_addr_t, DN_IS_PIPE );
/* clean pointers */
pipe_bp->head = pipe_bp->tail = (user32_addr_t) 0;
pipe_bp->fs.next = (user32_addr_t)0;
pipe_bp->fs.pipe = (user32_addr_t)0;
pipe_bp->fs.rq = (user32_addr_t)0;
bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_32);
return dn_copy_set_32( &(p->fs), bp);
}
static
char *
cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp)
{
char *bp;
pipe_bp->pipe_nr = p->pipe_nr;
pipe_bp->bandwidth = p->bandwidth;
pipe_bp->delay = p->delay;
bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_64));
pipe_bp->scheduler_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->scheduler_heap.p);
bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_64));
pipe_bp->not_eligible_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->not_eligible_heap.p);
bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_64));
pipe_bp->idle_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->idle_heap.p);
pipe_bp->V = p->V;
pipe_bp->sum = p->sum;
pipe_bp->numbytes = p->numbytes;
pipe_bp->sched_time = p->sched_time;
bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ);
pipe_bp->ifp = CAST_DOWN(user64_addr_t, p->ifp);
pipe_bp->ready = p->ready;
cp_flow_set_to_64_user( &(p->fs), &(pipe_bp->fs));
pipe_bp->delay = (pipe_bp->delay * 1000) / (hz * 10);
/*
* XXX the following is a hack based on ->next being the
* first field in dn_pipe and dn_flow_set. The correct
* solution would be to move the dn_flow_set to the beginning
* of struct dn_pipe.
*/
pipe_bp->next = CAST_DOWN( user64_addr_t, DN_IS_PIPE );
/* clean pointers */
pipe_bp->head = pipe_bp->tail = USER_ADDR_NULL;
pipe_bp->fs.next = USER_ADDR_NULL;
pipe_bp->fs.pipe = USER_ADDR_NULL;
pipe_bp->fs.rq = USER_ADDR_NULL;
bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_64);
return dn_copy_set_64( &(p->fs), bp);
}
static int
heap_init(struct dn_heap *h, int new_size)
{
struct dn_heap_entry *p;
if (h->size >= new_size) {
printf("dummynet: heap_init, Bogus call, have %d want %d\n",
h->size, new_size);
return 0;
}
new_size = (new_size + HEAP_INCREMENT) & ~HEAP_INCREMENT;
p = krealloc_type(struct dn_heap_entry, h->size, new_size,
h->p, Z_NOWAIT | Z_ZERO);
if (p == NULL) {
printf("dummynet: heap_init, resize %d failed\n", new_size );
return 1; /* error */
}
h->p = p;
h->size = new_size;
return 0;
}
/*
* Insert element in heap. Normally, p != NULL, we insert p in
* a new position and bubble up. If p == NULL, then the element is
* already in place, and key is the position where to start the
* bubble-up.
* Returns 1 on failure (cannot allocate new heap entry)
*
* If offset > 0 the position (index, int) of the element in the heap is
* also stored in the element itself at the given offset in bytes.
*/
#define SET_OFFSET(heap, node) \
if (heap->offset > 0) \
*((int *)(void *)((char *)(heap->p[node].object) + heap->offset)) = node ;
/*
* RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
*/
#define RESET_OFFSET(heap, node) \
if (heap->offset > 0) \
*((int *)(void *)((char *)(heap->p[node].object) + heap->offset)) = -1 ;
static int
heap_insert(struct dn_heap *h, dn_key key1, void *p)
{
int son = h->elements;
if (p == NULL) { /* data already there, set starting point */
VERIFY(key1 < INT_MAX);
son = (int)key1;
} else { /* insert new element at the end, possibly resize */
son = h->elements;
if (son == h->size) { /* need resize... */
if (heap_init(h, h->elements + 1)) {
return 1; /* failure... */
}
}
h->p[son].object = p;
h->p[son].key = key1;
h->elements++;
}
while (son > 0) { /* bubble up */
int father = HEAP_FATHER(son);
struct dn_heap_entry tmp;
if (DN_KEY_LT( h->p[father].key, h->p[son].key )) {
break; /* found right position */
}
/* son smaller than father, swap and repeat */
HEAP_SWAP(h->p[son], h->p[father], tmp);
SET_OFFSET(h, son);
son = father;
}
SET_OFFSET(h, son);
return 0;
}
/*
* remove top element from heap, or obj if obj != NULL
*/
static void
heap_extract(struct dn_heap *h, void *obj)
{
int child, father, maxelt = h->elements - 1;
if (maxelt < 0) {
printf("dummynet: warning, extract from empty heap 0x%llx\n",
(uint64_t)VM_KERNEL_ADDRPERM(h));
return;
}
father = 0; /* default: move up smallest child */
if (obj != NULL) { /* extract specific element, index is at offset */
if (h->offset <= 0) {
panic("dummynet: heap_extract from middle not supported on this heap!!!");
}
father = *((int *)(void *)((char *)obj + h->offset));
if (father < 0 || father >= h->elements) {
printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
father, h->elements);
panic("dummynet: heap_extract");
}
}
RESET_OFFSET(h, father);
child = HEAP_LEFT(father); /* left child */
while (child <= maxelt) { /* valid entry */
if (child != maxelt && DN_KEY_LT(h->p[child + 1].key, h->p[child].key)) {
child = child + 1; /* take right child, otherwise left */
}
h->p[father] = h->p[child];
SET_OFFSET(h, father);
father = child;
child = HEAP_LEFT(child); /* left child for next loop */
}
h->elements--;
if (father != maxelt) {
/*
* Fill hole with last entry and bubble up, reusing the insert code
*/
h->p[father] = h->p[maxelt];
heap_insert(h, father, NULL); /* this one cannot fail */
}
}
/*
* heapify() will reorganize data inside an array to maintain the
* heap property. It is needed when we delete a bunch of entries.
*/
static void
heapify(struct dn_heap *h)
{
int i;
for (i = 0; i < h->elements; i++) {
heap_insert(h, i, NULL);
}
}
/*
* cleanup the heap and free data structure
*/
static void
heap_free(struct dn_heap *h)
{
kfree_type(struct dn_heap_entry, h->size, h->p);
bzero(h, sizeof(*h));
}
/*
* --- end of heap management functions ---
*/
/*
* Return the mbuf tag holding the dummynet state. As an optimization
* this is assumed to be the first tag on the list. If this turns out
* wrong we'll need to search the list.
*/
static struct dn_pkt_tag *
dn_tag_get(struct mbuf *m)
{
struct m_tag *mtag = m_tag_first(m);
if (!(mtag != NULL &&
mtag->m_tag_id == KERNEL_MODULE_TAG_ID &&
mtag->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET)) {
panic("packet on dummynet queue w/o dummynet tag: 0x%llx",
(uint64_t)VM_KERNEL_ADDRPERM(m));
}
return (struct dn_pkt_tag *)(mtag->m_tag_data);
}
/*
* Scheduler functions:
*
* transmit_event() is called when the delay-line needs to enter
* the scheduler, either because of existing pkts getting ready,
* or new packets entering the queue. The event handled is the delivery
* time of the packet.
*
* ready_event() does something similar with fixed-rate queues, and the
* event handled is the finish time of the head pkt.
*
* wfq_ready_event() does something similar with WF2Q queues, and the
* event handled is the start time of the head pkt.
*
* In all cases, we make sure that the data structures are consistent
* before passing pkts out, because this might trigger recursive
* invocations of the procedures.
*/
static void
transmit_event(struct dn_pipe *pipe, struct mbuf **head, struct mbuf **tail)
{
struct mbuf *m;
struct dn_pkt_tag *pkt = NULL;
u_int64_t schedule_time;
LCK_MTX_ASSERT(&dn_mutex, LCK_MTX_ASSERT_OWNED);
ASSERT(serialize >= 0);
if (serialize == 0) {
while ((m = pipe->head) != NULL) {
pkt = dn_tag_get(m);
if (!DN_KEY_LEQ(pkt->dn_output_time, curr_time)) {
break;
}
pipe->head = m->m_nextpkt;
if (*tail != NULL) {
(*tail)->m_nextpkt = m;
} else {
*head = m;
}
*tail = m;
}
if (*tail != NULL) {
(*tail)->m_nextpkt = NULL;
}
}
schedule_time = pkt == NULL || DN_KEY_LEQ(pkt->dn_output_time, curr_time) ?
curr_time + 1 : pkt->dn_output_time;
/* if there are leftover packets, put the pipe into the heap for next ready event */
if ((m = pipe->head) != NULL) {
pkt = dn_tag_get(m);
/* XXX should check errors on heap_insert, by draining the
* whole pipe p and hoping in the future we are more successful
*/
heap_insert(&extract_heap, schedule_time, pipe);
}
}
/*
* the following macro computes how many ticks we have to wait
* before being able to transmit a packet. The credit is taken from
* either a pipe (WF2Q) or a flow_queue (per-flow queueing)
*/
/* hz is 100, which gives a granularity of 10ms in the old timer.
* The timer has been changed to fire every 1ms, so the use of
* hz has been modified here. All instances of hz have been left
* in place but adjusted by a factor of 10 so that hz is functionally
* equal to 1000.
*/
#define SET_TICKS(_m, q, p) \
((_m)->m_pkthdr.len*8*(hz*10) - (q)->numbytes + p->bandwidth - 1 ) / \
p->bandwidth ;
/*
* extract pkt from queue, compute output time (could be now)
* and put into delay line (p_queue)
*/
static void
move_pkt(struct mbuf *pkt, struct dn_flow_queue *q,
struct dn_pipe *p, int len)
{
struct dn_pkt_tag *dt = dn_tag_get(pkt);
q->head = pkt->m_nextpkt;
q->len--;
q->len_bytes -= len;
dt->dn_output_time = curr_time + p->delay;
if (p->head == NULL) {
p->head = pkt;
} else {
p->tail->m_nextpkt = pkt;
}
p->tail = pkt;
p->tail->m_nextpkt = NULL;
}
/*
* ready_event() is invoked every time the queue must enter the
* scheduler, either because the first packet arrives, or because
* a previously scheduled event fired.
* On invokation, drain as many pkts as possible (could be 0) and then
* if there are leftover packets reinsert the pkt in the scheduler.
*/
static void
ready_event(struct dn_flow_queue *q, struct mbuf **head, struct mbuf **tail)
{
struct mbuf *pkt;
struct dn_pipe *p = q->fs->pipe;
int p_was_empty;
LCK_MTX_ASSERT(&dn_mutex, LCK_MTX_ASSERT_OWNED);
if (p == NULL) {
printf("dummynet: ready_event pipe is gone\n");
return;
}
p_was_empty = (p->head == NULL);
/*
* schedule fixed-rate queues linked to this pipe:
* Account for the bw accumulated since last scheduling, then
* drain as many pkts as allowed by q->numbytes and move to
* the delay line (in p) computing output time.
* bandwidth==0 (no limit) means we can drain the whole queue,
* setting len_scaled = 0 does the job.
*/
q->numbytes += (curr_time - q->sched_time) * p->bandwidth;
while ((pkt = q->head) != NULL) {
int len = pkt->m_pkthdr.len;
int len_scaled = p->bandwidth ? len * 8 * (hz * 10) : 0;
if (len_scaled > q->numbytes) {
break;
}
q->numbytes -= len_scaled;
move_pkt(pkt, q, p, len);
}
/*
* If we have more packets queued, schedule next ready event
* (can only occur when bandwidth != 0, otherwise we would have
* flushed the whole queue in the previous loop).
* To this purpose we record the current time and compute how many
* ticks to go for the finish time of the packet.
*/
if ((pkt = q->head) != NULL) { /* this implies bandwidth != 0 */
dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
q->sched_time = curr_time;
heap_insert(&ready_heap, curr_time + t, (void *)q );
/* XXX should check errors on heap_insert, and drain the whole
* queue on error hoping next time we are luckier.
*/
} else { /* RED needs to know when the queue becomes empty */
q->q_time = curr_time;
q->numbytes = 0;
}
/*
* If the delay line was empty call transmit_event(p) now.
* Otherwise, the scheduler will take care of it.
*/
if (p_was_empty) {
transmit_event(p, head, tail);
}
}
/*
* Called when we can transmit packets on WF2Q queues. Take pkts out of
* the queues at their start time, and enqueue into the delay line.
* Packets are drained until p->numbytes < 0. As long as
* len_scaled >= p->numbytes, the packet goes into the delay line
* with a deadline p->delay. For the last packet, if p->numbytes<0,
* there is an additional delay.
*/
static void
ready_event_wfq(struct dn_pipe *p, struct mbuf **head, struct mbuf **tail)
{
int p_was_empty = (p->head == NULL);
struct dn_heap *sch = &(p->scheduler_heap);
struct dn_heap *neh = &(p->not_eligible_heap);
int64_t p_numbytes = p->numbytes;
LCK_MTX_ASSERT(&dn_mutex, LCK_MTX_ASSERT_OWNED);
if (p->if_name[0] == 0) { /* tx clock is simulated */
p_numbytes += (curr_time - p->sched_time) * p->bandwidth;
} else { /* tx clock is for real, the ifq must be empty or this is a NOP */
if (p->ifp && !IFCQ_IS_EMPTY(p->ifp->if_snd)) {
return;
} else {
DPRINTF(("dummynet: pipe %d ready from %s --\n",
p->pipe_nr, p->if_name));
}
}
/*
* While we have backlogged traffic AND credit, we need to do
* something on the queue.
*/
while (p_numbytes >= 0 && (sch->elements > 0 || neh->elements > 0)) {
if (sch->elements > 0) { /* have some eligible pkts to send out */
struct dn_flow_queue *q = sch->p[0].object;
struct mbuf *pkt = q->head;
struct dn_flow_set *fs = q->fs;
u_int32_t len = pkt->m_pkthdr.len;
u_int64_t len_scaled = p->bandwidth ? len * 8 * (hz * 10) : 0;
heap_extract(sch, NULL); /* remove queue from heap */
p_numbytes -= len_scaled;
move_pkt(pkt, q, p, len);
p->V += (len << MY_M) / p->sum; /* update V */
q->S = q->F; /* update start time */
if (q->len == 0) { /* Flow not backlogged any more */
fs->backlogged--;
heap_insert(&(p->idle_heap), q->F, q);
} else { /* still backlogged */
/*
* update F and position in backlogged queue, then
* put flow in not_eligible_heap (we will fix this later).
*/
len = (q->head)->m_pkthdr.len;
q->F += (len << MY_M) / (u_int64_t) fs->weight;
if (DN_KEY_LEQ(q->S, p->V)) {
heap_insert(neh, q->S, q);
} else {
heap_insert(sch, q->F, q);
}
}
}
/*
* now compute V = max(V, min(S_i)). Remember that all elements in sch
* have by definition S_i <= V so if sch is not empty, V is surely
* the max and we must not update it. Conversely, if sch is empty
* we only need to look at neh.
*/
if (sch->elements == 0 && neh->elements > 0) {
p->V = MAX64( p->V, neh->p[0].key );
}
/* move from neh to sch any packets that have become eligible */
while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V)) {
struct dn_flow_queue *q = neh->p[0].object;
heap_extract(neh, NULL);
heap_insert(sch, q->F, q);
}
if (p->if_name[0] != '\0') {/* tx clock is from a real thing */
p_numbytes = -1; /* mark not ready for I/O */
break;
}
}
if (sch->elements == 0 && neh->elements == 0 && p_numbytes >= 0
&& p->idle_heap.elements > 0) {
/*
* no traffic and no events scheduled. We can get rid of idle-heap.
*/
int i;
for (i = 0; i < p->idle_heap.elements; i++) {
struct dn_flow_queue *q = p->idle_heap.p[i].object;
q->F = 0;
q->S = q->F + 1;
}
p->sum = 0;
p->V = 0;
p->idle_heap.elements = 0;
}
/*
* If we are getting clocks from dummynet (not a real interface) and
* If we are under credit, schedule the next ready event.
* Also fix the delivery time of the last packet.
*/
if (p->if_name[0] == 0 && p_numbytes < 0) { /* this implies bandwidth >0 */
dn_key t = 0; /* number of ticks i have to wait */
if (p->bandwidth > 0) {
t = (p->bandwidth - 1 - p_numbytes) / p->bandwidth;
}
dn_tag_get(p->tail)->dn_output_time += t;
p->sched_time = curr_time;
heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
/* XXX should check errors on heap_insert, and drain the whole
* queue on error hoping next time we are luckier.
*/
}
/* Fit (adjust if necessary) 64bit result into 32bit variable. */
if (p_numbytes > INT_MAX) {
p->numbytes = INT_MAX;
} else if (p_numbytes < INT_MIN) {
p->numbytes = INT_MIN;
} else {
p->numbytes = (int)p_numbytes;
}
/*
* If the delay line was empty call transmit_event(p) now.
* Otherwise, the scheduler will take care of it.
*/
if (p_was_empty) {
transmit_event(p, head, tail);
}
}
/*
* This is called every 1ms. It is used to
* increment the current tick counter and schedule expired events.
*/
static void
dummynet(__unused void * unused)
{
void *p; /* generic parameter to handler */
struct dn_heap *h;
struct dn_heap *heaps[3];
struct mbuf *head = NULL, *tail = NULL;
int i;
struct dn_pipe *pe;
struct timespec ts;
struct timeval tv;
heaps[0] = &ready_heap; /* fixed-rate queues */
heaps[1] = &wfq_ready_heap; /* wfq queues */
heaps[2] = &extract_heap; /* delay line */
lck_mtx_lock(&dn_mutex);
/* make all time measurements in milliseconds (ms) -
* here we convert secs and usecs to msecs (just divide the
* usecs and take the closest whole number).
*/
microuptime(&tv);
curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
for (i = 0; i < 3; i++) {
h = heaps[i];
while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time)) {
if (h->p[0].key > curr_time) {
printf("dummynet: warning, heap %d is %d ticks late\n",
i, (int)(curr_time - h->p[0].key));
}
p = h->p[0].object; /* store a copy before heap_extract */
heap_extract(h, NULL); /* need to extract before processing */
if (i == 0) {
ready_event(p, &head, &tail);
} else if (i == 1) {
struct dn_pipe *pipe = p;
if (pipe->if_name[0] != '\0') {
printf("dummynet: bad ready_event_wfq for pipe %s\n",
pipe->if_name);
} else {
ready_event_wfq(p, &head, &tail);
}
} else {
transmit_event(p, &head, &tail);
}
}
}
/* sweep pipes trying to expire idle flow_queues */
for (i = 0; i < HASHSIZE; i++) {
SLIST_FOREACH(pe, &pipehash[i], next) {
if (pe->idle_heap.elements > 0 &&
DN_KEY_LT(pe->idle_heap.p[0].key, pe->V)) {
struct dn_flow_queue *q = pe->idle_heap.p[0].object;
heap_extract(&(pe->idle_heap), NULL);
q->S = q->F + 1; /* mark timestamp as invalid */
pe->sum -= q->fs->weight;
}
}
}
/* check the heaps to see if there's still stuff in there, and
* only set the timer if there are packets to process
*/
timer_enabled = 0;
for (i = 0; i < 3; i++) {
h = heaps[i];
if (h->elements > 0) { // set the timer
ts.tv_sec = 0;
ts.tv_nsec = 1 * 1000000; // 1ms
timer_enabled = 1;
bsd_timeout(dummynet, NULL, &ts);
break;
}
}
if (head != NULL) {
serialize++;
}
lck_mtx_unlock(&dn_mutex);
/* Send out the de-queued list of ready-to-send packets */
if (head != NULL) {
dummynet_send(head);
lck_mtx_lock(&dn_mutex);
serialize--;
lck_mtx_unlock(&dn_mutex);
}
}
static void
dummynet_send(struct mbuf *m)
{
struct dn_pkt_tag *pkt;
struct mbuf *n;
for (; m != NULL; m = n) {
n = m->m_nextpkt;
m->m_nextpkt = NULL;
pkt = dn_tag_get(m);
DPRINTF(("dummynet_send m: 0x%llx dn_dir: %d dn_flags: 0x%x\n",
(uint64_t)VM_KERNEL_ADDRPERM(m), pkt->dn_dir,
pkt->dn_flags));
switch (pkt->dn_dir) {
case DN_TO_IP_OUT: {
struct route tmp_rt;
/* route is already in the packet's dn_ro */
bzero(&tmp_rt, sizeof(tmp_rt));
/* Force IP_RAWOUTPUT as the IP header is fully formed */
pkt->dn_flags |= IP_RAWOUTPUT | IP_FORWARDING;
(void)ip_output(m, NULL, &tmp_rt, pkt->dn_flags, NULL, NULL);
ROUTE_RELEASE(&tmp_rt);
break;
}
case DN_TO_IP_IN:
proto_inject(PF_INET, m);
break;
case DN_TO_IP6_OUT: {
/* routes already in the packet's dn_{ro6,pmtu} */
if (pkt->dn_origifp != NULL) {
ip6_output_setsrcifscope(m, pkt->dn_origifp->if_index, NULL);
ip6_output_setdstifscope(m, pkt->dn_origifp->if_index, NULL);
} else {
ip6_output_setsrcifscope(m, IFSCOPE_UNKNOWN, NULL);
ip6_output_setdstifscope(m, IFSCOPE_UNKNOWN, NULL);
}
ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL);
break;
}
case DN_TO_IP6_IN:
proto_inject(PF_INET6, m);
break;
default:
printf("dummynet: bad switch %d!\n", pkt->dn_dir);
m_freem(m);
break;
}
}
}
/*
* Unconditionally expire empty queues in case of shortage.
* Returns the number of queues freed.
*/
static int
expire_queues(struct dn_flow_set *fs)
{
struct dn_flow_queue *q, *prev;
int i, initial_elements = fs->rq_elements;
struct timeval timenow;
/* reviewed for getmicrotime usage */
getmicrotime(&timenow);
if (fs->last_expired == timenow.tv_sec) {
return 0;
}
fs->last_expired = (int)timenow.tv_sec;
for (i = 0; i <= fs->rq_size; i++) { /* last one is overflow */
for (prev = NULL, q = fs->rq[i]; q != NULL;) {
if (q->head != NULL || q->S != q->F + 1) {
prev = q;
q = q->next;
} else { /* entry is idle, expire it */
struct dn_flow_queue *old_q = q;
if (prev != NULL) {
prev->next = q = q->next;
} else {
fs->rq[i] = q = q->next;
}
fs->rq_elements--;
kfree_type(struct dn_flow_queue, old_q);
}
}
}
return initial_elements - fs->rq_elements;
}
/*
* If room, create a new queue and put at head of slot i;
* otherwise, create or use the default queue.
*/
static struct dn_flow_queue *
create_queue(struct dn_flow_set *fs, int i)
{
struct dn_flow_queue *q;
if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
expire_queues(fs) == 0) {
/*
* No way to get room, use or create overflow queue.
*/
i = fs->rq_size;
if (fs->rq[i] != NULL) {
return fs->rq[i];
}
}
q = kalloc_type(struct dn_flow_queue, Z_NOWAIT | Z_ZERO);
if (q == NULL) {
printf("dummynet: sorry, cannot allocate queue for new flow\n");
return NULL;
}
q->fs = fs;
q->hash_slot = i;
q->next = fs->rq[i];
q->S = q->F + 1; /* hack - mark timestamp as invalid */
fs->rq[i] = q;
fs->rq_elements++;
return q;
}
/*
* Given a flow_set and a pkt in last_pkt, find a matching queue
* after appropriate masking. The queue is moved to front
* so that further searches take less time.
*/
static struct dn_flow_queue *
find_queue(struct dn_flow_set *fs, struct ip_flow_id *id)
{
int i = 0; /* we need i and q for new allocations */
struct dn_flow_queue *q, *prev;
int is_v6 = IS_IP6_FLOW_ID(id);
if (!(fs->flags_fs & DN_HAVE_FLOW_MASK)) {
q = fs->rq[0];
} else {
/* first, do the masking, then hash */
id->dst_port &= fs->flow_mask.dst_port;
id->src_port &= fs->flow_mask.src_port;
id->proto &= fs->flow_mask.proto;
id->flags = 0; /* we don't care about this one */
if (is_v6) {
APPLY_MASK(&id->dst_ip6, &fs->flow_mask.dst_ip6);
APPLY_MASK(&id->src_ip6, &fs->flow_mask.src_ip6);
id->flow_id6 &= fs->flow_mask.flow_id6;
i = ((id->dst_ip6.__u6_addr.__u6_addr32[0]) & 0xffff) ^
((id->dst_ip6.__u6_addr.__u6_addr32[1]) & 0xffff) ^
((id->dst_ip6.__u6_addr.__u6_addr32[2]) & 0xffff) ^
((id->dst_ip6.__u6_addr.__u6_addr32[3]) & 0xffff) ^
((id->dst_ip6.__u6_addr.__u6_addr32[0] >> 15) & 0xffff) ^
((id->dst_ip6.__u6_addr.__u6_addr32[1] >> 15) & 0xffff) ^
((id->dst_ip6.__u6_addr.__u6_addr32[2] >> 15) & 0xffff) ^
((id->dst_ip6.__u6_addr.__u6_addr32[3] >> 15) & 0xffff) ^
((id->src_ip6.__u6_addr.__u6_addr32[0] << 1) & 0xfffff) ^
((id->src_ip6.__u6_addr.__u6_addr32[1] << 1) & 0xfffff) ^
((id->src_ip6.__u6_addr.__u6_addr32[2] << 1) & 0xfffff) ^
((id->src_ip6.__u6_addr.__u6_addr32[3] << 1) & 0xfffff) ^
((id->src_ip6.__u6_addr.__u6_addr32[0] >> 16) & 0xffff) ^
((id->src_ip6.__u6_addr.__u6_addr32[1] >> 16) & 0xffff) ^
((id->src_ip6.__u6_addr.__u6_addr32[2] >> 16) & 0xffff) ^
((id->src_ip6.__u6_addr.__u6_addr32[3] >> 16) & 0xffff) ^
(id->dst_port << 1) ^ (id->src_port) ^
(id->proto) ^
(id->flow_id6);
} else {
id->dst_ip &= fs->flow_mask.dst_ip;
id->src_ip &= fs->flow_mask.src_ip;
i = ((id->dst_ip) & 0xffff) ^
((id->dst_ip >> 15) & 0xffff) ^
((id->src_ip << 1) & 0xffff) ^
((id->src_ip >> 16) & 0xffff) ^
(id->dst_port << 1) ^ (id->src_port) ^
(id->proto);
}
i = i % fs->rq_size;
/* finally, scan the current list for a match */
searches++;
for (prev = NULL, q = fs->rq[i]; q;) {
search_steps++;
if (is_v6 &&
IN6_ARE_ADDR_EQUAL(&id->dst_ip6, &q->id.dst_ip6) &&
IN6_ARE_ADDR_EQUAL(&id->src_ip6, &q->id.src_ip6) &&
id->dst_port == q->id.dst_port &&
id->src_port == q->id.src_port &&
id->proto == q->id.proto &&
id->flags == q->id.flags &&
id->flow_id6 == q->id.flow_id6) {
break; /* found */
}
if (!is_v6 && id->dst_ip == q->id.dst_ip &&
id->src_ip == q->id.src_ip &&
id->dst_port == q->id.dst_port &&
id->src_port == q->id.src_port &&
id->proto == q->id.proto &&
id->flags == q->id.flags) {
break; /* found */
}
/* No match. Check if we can expire the entry */
if (pipe_expire && q->head == NULL && q->S == q->F + 1) {
/* entry is idle and not in any heap, expire it */
struct dn_flow_queue *old_q = q;
if (prev != NULL) {
prev->next = q = q->next;
} else {
fs->rq[i] = q = q->next;
}
fs->rq_elements--;
kfree_type(struct dn_flow_queue, old_q);
continue;
}
prev = q;
q = q->next;
}
if (q && prev != NULL) { /* found and not in front */
prev->next = q->next;
q->next = fs->rq[i];
fs->rq[i] = q;
}
}
if (q == NULL) { /* no match, need to allocate a new entry */
q = create_queue(fs, i);
if (q != NULL) {
q->id = *id;
}
}
return q;
}
static int
red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
{
/*
* RED algorithm
*
* RED calculates the average queue size (avg) using a low-pass filter
* with an exponential weighted (w_q) moving average:
* avg <- (1-w_q) * avg + w_q * q_size
* where q_size is the queue length (measured in bytes or * packets).
*
* If q_size == 0, we compute the idle time for the link, and set
* avg = (1 - w_q)^(idle/s)
* where s is the time needed for transmitting a medium-sized packet.
*
* Now, if avg < min_th the packet is enqueued.
* If avg > max_th the packet is dropped. Otherwise, the packet is
* dropped with probability P function of avg.
*
*/
int64_t p_b = 0;
/* queue in bytes or packets ? */
u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
DPRINTF(("\ndummynet: %d q: %2u ", (int) curr_time, q_size));
/* average queue size estimation */
if (q_size != 0) {
/*
* queue is not empty, avg <- avg + (q_size - avg) * w_q
*/
int diff = SCALE(q_size) - q->avg;
int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q);
q->avg += (int) v;
} else {
/*
* queue is empty, find for how long the queue has been
* empty and use a lookup table for computing
* (1 - * w_q)^(idle_time/s) where s is the time to send a
* (small) packet.
* XXX check wraps...
*/
if (q->avg) {
u_int64_t t = (curr_time - q->q_time) / fs->lookup_step;
q->avg = (t < fs->lookup_depth) ?
SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
}
}
DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q->avg)));
/* should i drop ? */
if (q->avg < fs->min_th) {
q->count = -1;
return 0; /* accept packet ; */
}
if (q->avg >= fs->max_th) { /* average queue >= max threshold */
if (fs->flags_fs & DN_IS_GENTLE_RED) {
/*
* According to Gentle-RED, if avg is greater than max_th the
* packet is dropped with a probability
* p_b = c_3 * avg - c_4
* where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
*/
p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4;
} else {
q->count = -1;
DPRINTF(("dummynet: - drop"));
return 1;
}
} else if (q->avg > fs->min_th) {
/*
* we compute p_b using the linear dropping function p_b = c_1 *
* avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
* max_p * min_th / (max_th - min_th)
*/
p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2;
}
if (fs->flags_fs & DN_QSIZE_IS_BYTES) {
p_b = (p_b * len) / fs->max_pkt_size;
}
if (++q->count == 0) {
q->random = (my_random() & 0xffff);
} else {
/*
* q->count counts packets arrived since last drop, so a greater
* value of q->count means a greater packet drop probability.
*/
if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) {
q->count = 0;
DPRINTF(("dummynet: - red drop"));
/* after a drop we calculate a new random value */
q->random = (my_random() & 0xffff);
return 1; /* drop */
}
}
/* end of RED algorithm */
return 0; /* accept */
}
static __inline
struct dn_flow_set *
locate_flowset(int fs_nr)
{
struct dn_flow_set *fs;
SLIST_FOREACH(fs, &flowsethash[HASH(fs_nr)], next) {
if (fs->fs_nr == fs_nr) {
return fs;
}
}
return NULL;
}
static __inline struct dn_pipe *
locate_pipe(int pipe_nr)
{
struct dn_pipe *pipe;
SLIST_FOREACH(pipe, &pipehash[HASH(pipe_nr)], next) {
if (pipe->pipe_nr == pipe_nr) {
return pipe;
}
}
return NULL;
}
/*
* dummynet hook for packets. Below 'pipe' is a pipe or a queue
* depending on whether WF2Q or fixed bw is used.
*
* pipe_nr pipe or queue the packet is destined for.
* dir where shall we send the packet after dummynet.
* m the mbuf with the packet
* ifp the 'ifp' parameter from the caller.
* NULL in ip_input, destination interface in ip_output,
* real_dst in bdg_forward
* ro route parameter (only used in ip_output, NULL otherwise)
* dst destination address, only used by ip_output
* rule matching rule, in case of multiple passes
* flags flags from the caller, only used in ip_output
*
*/
static int
dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa)
{
struct mbuf *head = NULL, *tail = NULL;
struct dn_pkt_tag *pkt;
struct m_tag *mtag;
struct dn_flow_set *fs = NULL;
struct dn_pipe *pipe;
u_int32_t len = m->m_pkthdr.len;
struct dn_flow_queue *q = NULL;
int is_pipe = 0;
struct timespec ts;
struct timeval tv;
DPRINTF(("dummynet_io m: 0x%llx pipe: %d dir: %d\n",
(uint64_t)VM_KERNEL_ADDRPERM(m), pipe_nr, dir));
#if DUMMYNET
is_pipe = fwa->fwa_flags == DN_IS_PIPE ? 1 : 0;
#endif /* DUMMYNET */
pipe_nr &= 0xffff;
lck_mtx_lock(&dn_mutex);
/* make all time measurements in milliseconds (ms) -
* here we convert secs and usecs to msecs (just divide the
* usecs and take the closest whole number).
*/
microuptime(&tv);
curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
/*
* This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
*/
if (is_pipe) {
pipe = locate_pipe(pipe_nr);
if (pipe != NULL) {
fs = &(pipe->fs);
}
} else {
fs = locate_flowset(pipe_nr);
}
if (fs == NULL) {
goto dropit; /* this queue/pipe does not exist! */
}
pipe = fs->pipe;
if (pipe == NULL) { /* must be a queue, try find a matching pipe */
pipe = locate_pipe(fs->parent_nr);
if (pipe != NULL) {
fs->pipe = pipe;
} else {
printf("dummynet: no pipe %d for queue %d, drop pkt\n",
fs->parent_nr, fs->fs_nr);
goto dropit;
}
}
q = find_queue(fs, &(fwa->fwa_id));
if (q == NULL) {
goto dropit; /* cannot allocate queue */
}
/*
* update statistics, then check reasons to drop pkt
*/
q->tot_bytes += len;
q->tot_pkts++;
if (fs->plr && (my_random() < fs->plr)) {
goto dropit; /* random pkt drop */
}
if (fs->flags_fs & DN_QSIZE_IS_BYTES) {
if (q->len_bytes > fs->qsize) {
goto dropit; /* queue size overflow */
}
} else {
if (q->len >= fs->qsize) {
goto dropit; /* queue count overflow */
}
}
if (fs->flags_fs & DN_IS_RED && red_drops(fs, q, len)) {
goto dropit;
}
/* XXX expensive to zero, see if we can remove it*/
mtag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET,
sizeof(struct dn_pkt_tag), M_NOWAIT, m);
if (mtag == NULL) {
goto dropit; /* cannot allocate packet header */
}
m_tag_prepend(m, mtag); /* attach to mbuf chain */
pkt = (struct dn_pkt_tag *)(mtag->m_tag_data);
bzero(pkt, sizeof(struct dn_pkt_tag));
/* ok, i can handle the pkt now... */
/* build and enqueue packet + parameters */
pkt->dn_pf_rule = fwa->fwa_pf_rule;
pkt->dn_dir = dir;
pkt->dn_ifp = fwa->fwa_oif;
if (dir == DN_TO_IP_OUT) {
/*
* We need to copy *ro because for ICMP pkts (and maybe others)
* the caller passed a pointer into the stack; dst might also be
* a pointer into *ro so it needs to be updated.
*/
if (fwa->fwa_ro) {
route_copyout(&pkt->dn_ro, fwa->fwa_ro, sizeof(pkt->dn_ro));
}
if (fwa->fwa_dst) {
if (fwa->fwa_dst == (struct sockaddr_in *)(void *)&fwa->fwa_ro->ro_dst) { /* dst points into ro */
fwa->fwa_dst = (struct sockaddr_in *)(void *)&(pkt->dn_ro.ro_dst);
}
bcopy(fwa->fwa_dst, &pkt->dn_dst, sizeof(pkt->dn_dst));
}
} else if (dir == DN_TO_IP6_OUT) {
if (fwa->fwa_ro6) {
route_copyout((struct route *)&pkt->dn_ro6,
(struct route *)fwa->fwa_ro6, sizeof(pkt->dn_ro6));
}
if (fwa->fwa_ro6_pmtu) {
route_copyout((struct route *)&pkt->dn_ro6_pmtu,
(struct route *)fwa->fwa_ro6_pmtu, sizeof(pkt->dn_ro6_pmtu));
}
if (fwa->fwa_dst6) {
if (fwa->fwa_dst6 == (struct sockaddr_in6 *)&fwa->fwa_ro6->ro_dst) { /* dst points into ro */
fwa->fwa_dst6 = (struct sockaddr_in6 *)&(pkt->dn_ro6.ro_dst);
}
bcopy(fwa->fwa_dst6, &pkt->dn_dst6, sizeof(pkt->dn_dst6));
}
pkt->dn_origifp = fwa->fwa_origifp;
pkt->dn_mtu = fwa->fwa_mtu;
pkt->dn_unfragpartlen = fwa->fwa_unfragpartlen;
if (fwa->fwa_exthdrs) {
bcopy(fwa->fwa_exthdrs, &pkt->dn_exthdrs, sizeof(pkt->dn_exthdrs));
/*
* Need to zero out the source structure so the mbufs
* won't be freed by ip6_output()
*/
bzero(fwa->fwa_exthdrs, sizeof(struct ip6_exthdrs));
}
}
if (dir == DN_TO_IP_OUT || dir == DN_TO_IP6_OUT) {
pkt->dn_flags = fwa->fwa_oflags;
if (fwa->fwa_ipoa != NULL) {
pkt->dn_ipoa = *(fwa->fwa_ipoa);
}
}
if (q->head == NULL) {
q->head = m;
} else {
q->tail->m_nextpkt = m;
}
q->tail = m;
q->len++;
q->len_bytes += len;
if (q->head != m) { /* flow was not idle, we are done */
goto done;
}
/*
* If we reach this point the flow was previously idle, so we need
* to schedule it. This involves different actions for fixed-rate or
* WF2Q queues.
*/
if (is_pipe) {
/*
* Fixed-rate queue: just insert into the ready_heap.
*/
dn_key t = 0;
if (pipe->bandwidth) {
t = SET_TICKS(m, q, pipe);
}
q->sched_time = curr_time;
if (t == 0) { /* must process it now */
ready_event( q, &head, &tail );
} else {
heap_insert(&ready_heap, curr_time + t, q );
}
} else {
/*
* WF2Q. First, compute start time S: if the flow was idle (S=F+1)
* set S to the virtual time V for the controlling pipe, and update
* the sum of weights for the pipe; otherwise, remove flow from
* idle_heap and set S to max(F,V).
* Second, compute finish time F = S + len/weight.
* Third, if pipe was idle, update V=max(S, V).
* Fourth, count one more backlogged flow.
*/
if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */
q->S = pipe->V;
pipe->sum += fs->weight; /* add weight of new queue */
} else {
heap_extract(&(pipe->idle_heap), q);
q->S = MAX64(q->F, pipe->V );
}
q->F = q->S + (len << MY_M) / (u_int64_t) fs->weight;
if (pipe->not_eligible_heap.elements == 0 &&
pipe->scheduler_heap.elements == 0) {
pipe->V = MAX64( q->S, pipe->V );
}
fs->backlogged++;
/*
* Look at eligibility. A flow is not eligibile if S>V (when
* this happens, it means that there is some other flow already
* scheduled for the same pipe, so the scheduler_heap cannot be
* empty). If the flow is not eligible we just store it in the
* not_eligible_heap. Otherwise, we store in the scheduler_heap
* and possibly invoke ready_event_wfq() right now if there is
* leftover credit.
* Note that for all flows in scheduler_heap (SCH), S_i <= V,
* and for all flows in not_eligible_heap (NEH), S_i > V .
* So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH,
* we only need to look into NEH.
*/
if (DN_KEY_GT(q->S, pipe->V)) { /* not eligible */
if (pipe->scheduler_heap.elements == 0) {
printf("dummynet: ++ ouch! not eligible but empty scheduler!\n");
}
heap_insert(&(pipe->not_eligible_heap), q->S, q);
} else {
heap_insert(&(pipe->scheduler_heap), q->F, q);
if (pipe->numbytes >= 0) { /* pipe is idle */
if (pipe->scheduler_heap.elements != 1) {
printf("dummynet: OUCH! pipe should have been idle!\n");
}
DPRINTF(("dummynet: waking up pipe %d at %d\n",
pipe->pipe_nr, (int)(q->F >> MY_M)));
pipe->sched_time = curr_time;
ready_event_wfq(pipe, &head, &tail);
}
}
}
done:
/* start the timer and set global if not already set */
if (!timer_enabled) {
ts.tv_sec = 0;
ts.tv_nsec = 1 * 1000000; // 1ms
timer_enabled = 1;
bsd_timeout(dummynet, NULL, &ts);
}
lck_mtx_unlock(&dn_mutex);
if (head != NULL) {
dummynet_send(head);
}
return 0;
dropit:
if (q) {
q->drops++;
}
lck_mtx_unlock(&dn_mutex);
m_freem(m);
return (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS;
}
/*
* Below, the ROUTE_RELEASE is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
* Doing this would probably save us the initial bzero of dn_pkt
*/
#define DN_FREE_PKT(_m) do { \
struct m_tag *tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET); \
if (tag) { \
struct dn_pkt_tag *n = (struct dn_pkt_tag *)(tag->m_tag_data); \
ROUTE_RELEASE(&n->dn_ro); \
} \
m_tag_delete(_m, tag); \
m_freem(_m); \
} while (0)
/*
* Dispose all packets and flow_queues on a flow_set.
* If all=1, also remove red lookup table and other storage,
* including the descriptor itself.
* For the one in dn_pipe MUST also cleanup ready_heap...
*/
static void
purge_flow_set(struct dn_flow_set *fs, int all)
{
struct dn_flow_queue *q, *qn;
int i;
LCK_MTX_ASSERT(&dn_mutex, LCK_MTX_ASSERT_OWNED);
for (i = 0; i <= fs->rq_size; i++) {
for (q = fs->rq[i]; q; q = qn) {
struct mbuf *m, *mnext;
mnext = q->head;
while ((m = mnext) != NULL) {
mnext = m->m_nextpkt;
DN_FREE_PKT(m);
}
qn = q->next;
kfree_type(struct dn_flow_queue, q);
}
fs->rq[i] = NULL;
}
fs->rq_elements = 0;
if (all) {
/* RED - free lookup table */
if (fs->w_q_lookup) {
kfree_data(fs->w_q_lookup, fs->lookup_depth * sizeof(int));
}
kfree_type(struct dn_flow_queue *, fs->rq_size + 1, fs->rq);
/* if this fs is not part of a pipe, free it */
if (fs->pipe && fs != &(fs->pipe->fs)) {
kfree_type(struct dn_flow_set, fs);
}
}
}
/*
* Dispose all packets queued on a pipe (not a flow_set).
* Also free all resources associated to a pipe, which is about
* to be deleted.
*/
static void
purge_pipe(struct dn_pipe *pipe)
{
struct mbuf *m, *mnext;
purge_flow_set( &(pipe->fs), 1 );
mnext = pipe->head;
while ((m = mnext) != NULL) {
mnext = m->m_nextpkt;
DN_FREE_PKT(m);
}
heap_free( &(pipe->scheduler_heap));
heap_free( &(pipe->not_eligible_heap));
heap_free( &(pipe->idle_heap));
}
/*
* Delete all pipes and heaps returning memory.
*/
static void
dummynet_flush(void)
{
struct dn_pipe *pipe, *pipe1;
struct dn_flow_set *fs, *fs1;
int i;
lck_mtx_lock(&dn_mutex);
/* Free heaps so we don't have unwanted events. */
heap_free(&ready_heap);
heap_free(&wfq_ready_heap);
heap_free(&extract_heap);
/*
* Now purge all queued pkts and delete all pipes.
*
* XXXGL: can we merge the for(;;) cycles into one or not?
*/
for (i = 0; i < HASHSIZE; i++) {
SLIST_FOREACH_SAFE(fs, &flowsethash[i], next, fs1) {
SLIST_REMOVE(&flowsethash[i], fs, dn_flow_set, next);
purge_flow_set(fs, 1);
}
}
for (i = 0; i < HASHSIZE; i++) {
SLIST_FOREACH_SAFE(pipe, &pipehash[i], next, pipe1) {
SLIST_REMOVE(&pipehash[i], pipe, dn_pipe, next);
purge_pipe(pipe);
kfree_type(struct dn_pipe, pipe);
}
}
lck_mtx_unlock(&dn_mutex);
}
/*
* setup RED parameters
*/
static int
config_red(struct dn_flow_set *p, struct dn_flow_set * x)
{
int i;
x->w_q = p->w_q;
x->min_th = SCALE(p->min_th);
x->max_th = SCALE(p->max_th);
x->max_p = p->max_p;
x->c_1 = p->max_p / (p->max_th - p->min_th);
x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th));
if (x->flags_fs & DN_IS_GENTLE_RED) {
x->c_3 = (SCALE(1) - p->max_p) / p->max_th;
x->c_4 = (SCALE(1) - 2 * p->max_p);
}
/* if the lookup table already exist, free and create it again */
if (x->w_q_lookup) {
kfree_data(x->w_q_lookup, x->lookup_depth * sizeof(int));
x->w_q_lookup = NULL;
}
if (red_lookup_depth == 0) {
printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n");
return EINVAL;
}
x->lookup_depth = red_lookup_depth;
x->w_q_lookup = (u_int *) kalloc_data(x->lookup_depth * sizeof(int),
Z_NOWAIT);
if (x->w_q_lookup == NULL) {
printf("dummynet: sorry, cannot allocate red lookup table\n");
return ENOSPC;
}
/* fill the lookup table with (1 - w_q)^x */
x->lookup_step = p->lookup_step;
x->lookup_weight = p->lookup_weight;
x->w_q_lookup[0] = SCALE(1) - x->w_q;
for (i = 1; i < x->lookup_depth; i++) {
x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
}
if (red_avg_pkt_size < 1) {
red_avg_pkt_size = 512;
}
x->avg_pkt_size = red_avg_pkt_size;
if (red_max_pkt_size < 1) {
red_max_pkt_size = 1500;
}
x->max_pkt_size = red_max_pkt_size;
return 0;
}
static int
alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs)
{
if (x->flags_fs & DN_HAVE_FLOW_MASK) { /* allocate some slots */
int l = pfs->rq_size;
if (l == 0) {
l = dn_hash_size;
}
if (l < 4) {
l = 4;
} else if (l > DN_MAX_HASH_SIZE) {
l = DN_MAX_HASH_SIZE;
}
x->rq_size = l;
} else { /* one is enough for null mask */
x->rq_size = 1;
}
x->rq = kalloc_type(struct dn_flow_queue *, x->rq_size + 1,
Z_NOWAIT | Z_ZERO);
if (x->rq == NULL) {
printf("dummynet: sorry, cannot allocate queue\n");
return ENOSPC;
}
x->rq_elements = 0;
return 0;
}
static int
set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src)
{
x->flags_fs = src->flags_fs;
x->qsize = src->qsize;
x->plr = src->plr;
x->flow_mask = src->flow_mask;
if (x->flags_fs & DN_QSIZE_IS_BYTES) {
if (x->qsize > 1024 * 1024) {
x->qsize = 1024 * 1024;
}
} else {
if (x->qsize == 0) {
x->qsize = 50;
}
if (x->qsize > 100) {
x->qsize = 50;
}
}
/* configuring RED */
if (x->flags_fs & DN_IS_RED) {
return config_red(src, x); /* XXX should check errors */
}
return 0;
}
/*
* setup pipe or queue parameters.
*/
static int
config_pipe(struct dn_pipe *p)
{
int i, r;
struct dn_flow_set *pfs = &(p->fs);
struct dn_flow_queue *q;
bool is_new = false;
/*
* The config program passes parameters as follows:
* bw = bits/second (0 means no limits),
* delay = ms, must be translated into ticks.
* qsize = slots/bytes
*/
p->delay = (p->delay * (hz * 10)) / 1000;
/* We need either a pipe number or a flow_set number */
if (p->pipe_nr == 0 && pfs->fs_nr == 0) {
return EINVAL;
}
if (p->pipe_nr != 0 && pfs->fs_nr != 0) {
return EINVAL;
}
if (p->pipe_nr != 0) { /* this is a pipe */
struct dn_pipe *x, *b;
struct dummynet_event dn_event;
lck_mtx_lock(&dn_mutex);
/* locate pipe */
b = locate_pipe(p->pipe_nr);
if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */
is_new = true;
x = kalloc_type(struct dn_pipe, Z_NOWAIT | Z_ZERO);
if (x == NULL) {
lck_mtx_unlock(&dn_mutex);
printf("dummynet: no memory for new pipe\n");
return ENOSPC;
}
x->pipe_nr = p->pipe_nr;
x->fs.pipe = x;
/* idle_heap is the only one from which we extract from the middle.
*/
x->idle_heap.size = x->idle_heap.elements = 0;
x->idle_heap.offset = offsetof(struct dn_flow_queue, heap_pos);
} else {
x = b;
/* Flush accumulated credit for all queues */
for (i = 0; i <= x->fs.rq_size; i++) {
for (q = x->fs.rq[i]; q; q = q->next) {
q->numbytes = 0;
}
}
}
x->bandwidth = p->bandwidth;
x->numbytes = 0; /* just in case... */
bcopy(p->if_name, x->if_name, sizeof(p->if_name));
x->ifp = NULL; /* reset interface ptr */
x->delay = p->delay;
r = set_fs_parms(&(x->fs), pfs);
if (r != 0) {
lck_mtx_unlock(&dn_mutex);
if (is_new) { /* a new pipe */
kfree_type(struct dn_pipe, x);
}
return r;
}
if (x->fs.rq == NULL) { /* a new pipe */
r = alloc_hash(&(x->fs), pfs);
if (r) {
lck_mtx_unlock(&dn_mutex);
if (is_new) {
kfree_type(struct dn_pipe, x);
}
return r;
}
SLIST_INSERT_HEAD(&pipehash[HASH(x->pipe_nr)],
x, next);
}
lck_mtx_unlock(&dn_mutex);
bzero(&dn_event, sizeof(dn_event));
dn_event.dn_event_code = DUMMYNET_PIPE_CONFIG;
dn_event.dn_event_pipe_config.bandwidth = p->bandwidth;
dn_event.dn_event_pipe_config.delay = p->delay;
dn_event.dn_event_pipe_config.plr = pfs->plr;
dummynet_event_enqueue_nwk_wq_entry(&dn_event);
} else { /* config queue */
struct dn_flow_set *x, *b;
lck_mtx_lock(&dn_mutex);
/* locate flow_set */
b = locate_flowset(pfs->fs_nr);
if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new */
is_new = true;
if (pfs->parent_nr == 0) { /* need link to a pipe */
lck_mtx_unlock(&dn_mutex);
return EINVAL;
}
x = kalloc_type(struct dn_flow_set, Z_NOWAIT | Z_ZERO);
if (x == NULL) {
lck_mtx_unlock(&dn_mutex);
printf("dummynet: no memory for new flow_set\n");
return ENOSPC;
}
x->fs_nr = pfs->fs_nr;
x->parent_nr = pfs->parent_nr;
x->weight = pfs->weight;
if (x->weight == 0) {
x->weight = 1;
} else if (x->weight > 100) {
x->weight = 100;
}
} else {
/* Change parent pipe not allowed; must delete and recreate */
if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr) {
lck_mtx_unlock(&dn_mutex);
return EINVAL;
}
x = b;
}
r = set_fs_parms(x, pfs);
if (r != 0) {
lck_mtx_unlock(&dn_mutex);
printf("dummynet: no memory for new flow_set\n");
if (is_new) {
kfree_type(struct dn_flow_set, x);
}
return r;
}
if (x->rq == NULL) { /* a new flow_set */
r = alloc_hash(x, pfs);
if (r) {
lck_mtx_unlock(&dn_mutex);
kfree_type(struct dn_flow_set, x);
return r;
}
SLIST_INSERT_HEAD(&flowsethash[HASH(x->fs_nr)],
x, next);
}
lck_mtx_unlock(&dn_mutex);
}
return 0;
}
/*
* Helper function to remove from a heap queues which are linked to
* a flow_set about to be deleted.
*/
static void
fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
{
int i = 0, found = 0;
for (; i < h->elements;) {
if (((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
h->elements--;
h->p[i] = h->p[h->elements];
found++;
} else {
i++;
}
}
if (found) {
heapify(h);
}
}
/*
* helper function to remove a pipe from a heap (can be there at most once)
*/
static void
pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
{
if (h->elements > 0) {
int i = 0;
for (i = 0; i < h->elements; i++) {
if (h->p[i].object == p) { /* found it */
h->elements--;
h->p[i] = h->p[h->elements];
heapify(h);
break;
}
}
}
}
/*
* drain all queues. Called in case of severe mbuf shortage.
*/
void
dummynet_drain(void)
{
struct dn_flow_set *fs;
struct dn_pipe *p;
struct mbuf *m, *mnext;
int i;
LCK_MTX_ASSERT(&dn_mutex, LCK_MTX_ASSERT_OWNED);
heap_free(&ready_heap);
heap_free(&wfq_ready_heap);
heap_free(&extract_heap);
/* remove all references to this pipe from flow_sets */
for (i = 0; i < HASHSIZE; i++) {
SLIST_FOREACH(fs, &flowsethash[i], next) {
purge_flow_set(fs, 0);
}
}
for (i = 0; i < HASHSIZE; i++) {
SLIST_FOREACH(p, &pipehash[i], next) {
purge_flow_set(&(p->fs), 0);
mnext = p->head;
while ((m = mnext) != NULL) {
mnext = m->m_nextpkt;
DN_FREE_PKT(m);
}
p->head = p->tail = NULL;
}
}
}
/*
* Fully delete a pipe or a queue, cleaning up associated info.
*/
static int
delete_pipe(struct dn_pipe *p)
{
if (p->pipe_nr == 0 && p->fs.fs_nr == 0) {
return EINVAL;
}
if (p->pipe_nr != 0 && p->fs.fs_nr != 0) {
return EINVAL;
}
if (p->pipe_nr != 0) { /* this is an old-style pipe */
struct dn_pipe *b;
struct dn_flow_set *fs;
int i;
lck_mtx_lock(&dn_mutex);
/* locate pipe */
b = locate_pipe(p->pipe_nr);
if (b == NULL) {
lck_mtx_unlock(&dn_mutex);
return EINVAL; /* not found */
}
/* Unlink from list of pipes. */
SLIST_REMOVE(&pipehash[HASH(b->pipe_nr)], b, dn_pipe, next);
/* Remove all references to this pipe from flow_sets. */
for (i = 0; i < HASHSIZE; i++) {
SLIST_FOREACH(fs, &flowsethash[i], next) {
if (fs->pipe == b) {
printf("dummynet: ++ ref to pipe %d from fs %d\n",
p->pipe_nr, fs->fs_nr);
fs->pipe = NULL;
purge_flow_set(fs, 0);
}
}
}
fs_remove_from_heap(&ready_heap, &(b->fs));
purge_pipe(b); /* remove all data associated to this pipe */
/* remove reference to here from extract_heap and wfq_ready_heap */
pipe_remove_from_heap(&extract_heap, b);
pipe_remove_from_heap(&wfq_ready_heap, b);
lck_mtx_unlock(&dn_mutex);
kfree_type(struct dn_pipe, b);
} else { /* this is a WF2Q queue (dn_flow_set) */
struct dn_flow_set *b;
lck_mtx_lock(&dn_mutex);
/* locate set */
b = locate_flowset(p->fs.fs_nr);
if (b == NULL) {
lck_mtx_unlock(&dn_mutex);
return EINVAL; /* not found */
}
/* Unlink from list of flowsets. */
SLIST_REMOVE( &flowsethash[HASH(b->fs_nr)], b, dn_flow_set, next);
if (b->pipe != NULL) {
/* Update total weight on parent pipe and cleanup parent heaps */
b->pipe->sum -= b->weight * b->backlogged;
fs_remove_from_heap(&(b->pipe->not_eligible_heap), b);
fs_remove_from_heap(&(b->pipe->scheduler_heap), b);
#if 1 /* XXX should i remove from idle_heap as well ? */
fs_remove_from_heap(&(b->pipe->idle_heap), b);
#endif
}
purge_flow_set(b, 1);
lck_mtx_unlock(&dn_mutex);
}
return 0;
}
/*
* helper function used to copy data from kernel in DUMMYNET_GET
*/
static
char*
dn_copy_set_32(struct dn_flow_set *set, char *bp)
{
int i, copied = 0;
struct dn_flow_queue *q;
struct dn_flow_queue_32 *qp = (struct dn_flow_queue_32 *)(void *)bp;
LCK_MTX_ASSERT(&dn_mutex, LCK_MTX_ASSERT_OWNED);
for (i = 0; i <= set->rq_size; i++) {
for (q = set->rq[i]; q; q = q->next, qp++) {
if (q->hash_slot != i) {
printf("dummynet: ++ at %d: wrong slot (have %d, "
"should be %d)\n", copied, q->hash_slot, i);
}
if (q->fs != set) {
printf("dummynet: ++ at %d: wrong fs ptr "
"(have 0x%llx, should be 0x%llx)\n", i,
(uint64_t)VM_KERNEL_ADDRPERM(q->fs),
(uint64_t)VM_KERNEL_ADDRPERM(set));
}
copied++;
cp_queue_to_32_user( q, qp );
/* cleanup pointers */
qp->next = (user32_addr_t)0;
qp->head = qp->tail = (user32_addr_t)0;
qp->fs = (user32_addr_t)0;
}
}
if (copied != set->rq_elements) {
printf("dummynet: ++ wrong count, have %d should be %d\n",
copied, set->rq_elements);
}
return (char *)qp;
}
static
char*
dn_copy_set_64(struct dn_flow_set *set, char *bp)
{
int i, copied = 0;
struct dn_flow_queue *q;
struct dn_flow_queue_64 *qp = (struct dn_flow_queue_64 *)(void *)bp;
LCK_MTX_ASSERT(&dn_mutex, LCK_MTX_ASSERT_OWNED);
for (i = 0; i <= set->rq_size; i++) {
for (q = set->rq[i]; q; q = q->next, qp++) {
if (q->hash_slot != i) {
printf("dummynet: ++ at %d: wrong slot (have %d, "
"should be %d)\n", copied, q->hash_slot, i);
}
if (q->fs != set) {
printf("dummynet: ++ at %d: wrong fs ptr "
"(have 0x%llx, should be 0x%llx)\n", i,
(uint64_t)VM_KERNEL_ADDRPERM(q->fs),
(uint64_t)VM_KERNEL_ADDRPERM(set));
}
copied++;
//bcopy(q, qp, sizeof(*q));
cp_queue_to_64_user( q, qp );
/* cleanup pointers */
qp->next = USER_ADDR_NULL;
qp->head = qp->tail = USER_ADDR_NULL;
qp->fs = USER_ADDR_NULL;
}
}
if (copied != set->rq_elements) {
printf("dummynet: ++ wrong count, have %d should be %d\n",
copied, set->rq_elements);
}
return (char *)qp;
}
static size_t
dn_calc_size(int is64user)
{
struct dn_flow_set *set;
struct dn_pipe *p;
size_t size = 0;
size_t pipesize;
size_t queuesize;
size_t setsize;
int i;
LCK_MTX_ASSERT(&dn_mutex, LCK_MTX_ASSERT_OWNED);
if (is64user) {
pipesize = sizeof(struct dn_pipe_64);
queuesize = sizeof(struct dn_flow_queue_64);
setsize = sizeof(struct dn_flow_set_64);
} else {
pipesize = sizeof(struct dn_pipe_32);
queuesize = sizeof(struct dn_flow_queue_32);
setsize = sizeof(struct dn_flow_set_32);
}
/*
* compute size of data structures: list of pipes and flow_sets.
*/
for (i = 0; i < HASHSIZE; i++) {
SLIST_FOREACH(p, &pipehash[i], next) {
size += sizeof(*p) +
p->fs.rq_elements * sizeof(struct dn_flow_queue);
}
SLIST_FOREACH(set, &flowsethash[i], next) {
size += sizeof(*set) +
set->rq_elements * sizeof(struct dn_flow_queue);
}
}
return size;
}
static int
dummynet_get(struct sockopt *sopt)
{
char *buf = NULL, *bp = NULL; /* bp is the "copy-pointer" */
size_t size = 0;
struct dn_flow_set *set;
struct dn_pipe *p;
int error = 0, i;
int is64user = 0;
/* XXX lock held too long */
lck_mtx_lock(&dn_mutex);
/*
* XXX: Ugly, but we need to allocate memory with M_WAITOK flag
* and we cannot use this flag while holding a mutex.
*/
if (proc_is64bit(sopt->sopt_p)) {
is64user = 1;
}
for (i = 0; i < 10; i++) {
size = dn_calc_size(is64user);
lck_mtx_unlock(&dn_mutex);
buf = kalloc_data(size, Z_WAITOK | Z_ZERO);
if (buf == NULL) {
return ENOBUFS;
}
lck_mtx_lock(&dn_mutex);
if (size == dn_calc_size(is64user)) {
break;
}
kfree_data(buf, size);
buf = NULL;
}
if (buf == NULL) {
lck_mtx_unlock(&dn_mutex);
return ENOBUFS;
}
bp = buf;
for (i = 0; i < HASHSIZE; i++) {
SLIST_FOREACH(p, &pipehash[i], next) {
/*
* copy pipe descriptor into *bp, convert delay
* back to ms, then copy the flow_set descriptor(s)
* one at a time. After each flow_set, copy the
* queue descriptor it owns.
*/
if (is64user) {
bp = cp_pipe_to_64_user(p,
(struct dn_pipe_64 *)(void *)bp);
} else {
bp = cp_pipe_to_32_user(p,
(struct dn_pipe_32 *)(void *)bp);
}
}
}
for (i = 0; i < HASHSIZE; i++) {
SLIST_FOREACH(set, &flowsethash[i], next) {
struct dn_flow_set_64 *fs_bp =
(struct dn_flow_set_64 *)(void *)bp;
cp_flow_set_to_64_user(set, fs_bp);
/* XXX same hack as above */
fs_bp->next = CAST_DOWN(user64_addr_t,
DN_IS_QUEUE);
fs_bp->pipe = USER_ADDR_NULL;
fs_bp->rq = USER_ADDR_NULL;
bp += sizeof(struct dn_flow_set_64);
bp = dn_copy_set_64( set, bp );
}
}
lck_mtx_unlock(&dn_mutex);
error = sooptcopyout(sopt, buf, size);
kfree_data(buf, size);
return error;
}
/*
* Handler for the various dummynet socket options (get, flush, config, del)
*/
static int
ip_dn_ctl(struct sockopt *sopt)
{
int error = 0;
struct dn_pipe *p, tmp_pipe;
/* Disallow sets in really-really secure mode. */
if (sopt->sopt_dir == SOPT_SET && securelevel >= 3) {
return EPERM;
}
switch (sopt->sopt_name) {
default:
printf("dummynet: -- unknown option %d", sopt->sopt_name);
return EINVAL;
case IP_DUMMYNET_GET:
error = dummynet_get(sopt);
break;
case IP_DUMMYNET_FLUSH:
dummynet_flush();
break;
case IP_DUMMYNET_CONFIGURE:
p = &tmp_pipe;
if (proc_is64bit(sopt->sopt_p)) {
error = cp_pipe_from_user_64( sopt, p );
} else {
error = cp_pipe_from_user_32( sopt, p );
}
if (error) {
break;
}
error = config_pipe(p);
break;
case IP_DUMMYNET_DEL: /* remove a pipe or queue */
p = &tmp_pipe;
if (proc_is64bit(sopt->sopt_p)) {
error = cp_pipe_from_user_64( sopt, p );
} else {
error = cp_pipe_from_user_32( sopt, p );
}
if (error) {
break;
}
error = delete_pipe(p);
break;
}
return error;
}
void
dummynet_init(void)
{
eventhandler_lists_ctxt_init(&dummynet_evhdlr_ctxt);
}
void
ip_dn_init(void)
{
/* setup locks */
ready_heap.size = ready_heap.elements = 0;
ready_heap.offset = 0;
wfq_ready_heap.size = wfq_ready_heap.elements = 0;
wfq_ready_heap.offset = 0;
extract_heap.size = extract_heap.elements = 0;
extract_heap.offset = 0;
ip_dn_ctl_ptr = ip_dn_ctl;
ip_dn_io_ptr = dummynet_io;
}
struct dn_event_nwk_wq_entry {
struct nwk_wq_entry nwk_wqe;
struct dummynet_event dn_ev_arg;
};
static void
dummynet_event_callback(struct nwk_wq_entry *nwk_item)
{
struct dn_event_nwk_wq_entry *p_ev;
p_ev = __container_of(nwk_item, struct dn_event_nwk_wq_entry, nwk_wqe);
EVENTHANDLER_INVOKE(&dummynet_evhdlr_ctxt, dummynet_event, &p_ev->dn_ev_arg);
kfree_type(struct dn_event_nwk_wq_entry, p_ev);
}
void
dummynet_event_enqueue_nwk_wq_entry(struct dummynet_event *p_dn_event)
{
struct dn_event_nwk_wq_entry *p_ev = NULL;
p_ev = kalloc_type(struct dn_event_nwk_wq_entry,
Z_WAITOK | Z_ZERO | Z_NOFAIL);
p_ev->nwk_wqe.func = dummynet_event_callback;
p_ev->dn_ev_arg = *p_dn_event;
nwk_wq_enqueue(&p_ev->nwk_wqe);
}
struct dummynet_tag_container {
struct m_tag dtc_m_tag;
struct dn_pkt_tag dtc_dn_pkt_tag;
};
struct m_tag *
m_tag_kalloc_dummynet(u_int32_t id, u_int16_t type, uint16_t len, int wait)
{
struct dummynet_tag_container *tag_container;
struct m_tag *tag = NULL;
zalloc_flags_t flags = M_ZERO;
assert3u(id, ==, KERNEL_MODULE_TAG_ID);
assert3u(type, ==, KERNEL_TAG_TYPE_DUMMYNET);
assert3u(len, ==, sizeof(struct dn_pkt_tag));
if (len != sizeof(struct dn_pkt_tag)) {
return NULL;
}
/*
* Using Z_NOWAIT could cause retransmission delays when there aren't
* many other colocated types in the zone that would prime it. Use
* Z_NOPAGEWAIT instead which will only fail to allocate when zalloc
* needs to block on the VM for pages.
*/
if (wait == M_NOWAIT) {
flags |= Z_NOPAGEWAIT;
}
tag_container = kalloc_type(struct dummynet_tag_container, flags);
if (tag_container != NULL) {
tag = &tag_container->dtc_m_tag;
assert3p(tag, ==, tag_container);
M_TAG_INIT(tag, id, type, len, &tag_container->dtc_dn_pkt_tag, NULL);
}
return tag;
}
void
m_tag_kfree_dummynet(struct m_tag *tag)
{
struct dummynet_tag_container *tag_container = (struct dummynet_tag_container *)tag;
assert3u(tag->m_tag_len, ==, sizeof(struct dn_pkt_tag));
kfree_type(struct dummynet_tag_container, tag_container);
}
void
dummynet_register_m_tag(void)
{
int error;
error = m_register_internal_tag_type(KERNEL_TAG_TYPE_DUMMYNET, sizeof(struct dn_pkt_tag),
m_tag_kalloc_dummynet, m_tag_kfree_dummynet);
assert3u(error, ==, 0);
}