This is xnu-11215.1.10. See this file in:
/*
* Copyright (c) 2000-2022 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
*/
/*
* NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
* support for mandatory and extensible security protections. This notice
* is included in support of clause 2.2 (b) of the Apple Public License,
* Version 2.0.
*/
#include "tcp_includes.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/domain.h>
#include <sys/proc.h>
#include <sys/kauth.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/random.h>
#include <sys/syslog.h>
#include <sys/mcache.h>
#include <kern/locks.h>
#include <kern/zalloc.h>
#include <dev/random/randomdev.h>
#include <net/route.h>
#include <net/if.h>
#include <net/content_filter.h>
#include <net/ntstat.h>
#include <net/multi_layer_pkt_log.h>
#define tcp_minmssoverload fring
#define _IP_VHL
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h>
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#include <netinet/in_pcb.h>
#include <netinet6/in6_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#include <netinet/icmp_var.h>
#include <netinet6/ip6_var.h>
#include <netinet/mptcp_var.h>
#include <netinet/tcp.h>
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>
#include <netinet/tcp_cc.h>
#include <netinet/tcp_cache.h>
#include <kern/thread_call.h>
#include <netinet6/tcp6_var.h>
#include <netinet/tcpip.h>
#include <netinet/tcp_log.h>
#include <netinet6/ip6protosw.h>
#if IPSEC
#include <netinet6/ipsec.h>
#include <netinet6/ipsec6.h>
#endif /* IPSEC */
#if NECP
#include <net/necp.h>
#endif /* NECP */
#undef tcp_minmssoverload
#include <net/sockaddr_utils.h>
#include <corecrypto/ccaes.h>
#include <libkern/crypto/aes.h>
#include <libkern/crypto/md5.h>
#include <sys/kdebug.h>
#include <mach/sdt.h>
#include <pexpert/pexpert.h>
#include <mach/mach_time.h>
#define DBG_FNC_TCP_CLOSE NETDBG_CODE(DBG_NETTCP, ((5 << 8) | 2))
static tcp_cc tcp_ccgen;
extern struct tcptimerlist tcp_timer_list;
extern struct tcptailq tcp_tw_tailq;
extern int tcp_awdl_rtobase;
SYSCTL_SKMEM_TCP_INT(TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW | CTLFLAG_LOCKED,
int, tcp_mssdflt, TCP_MSS, "Default TCP Maximum Segment Size");
SYSCTL_SKMEM_TCP_INT(TCPCTL_V6MSSDFLT, v6mssdflt,
CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_v6mssdflt, TCP6_MSS,
"Default TCP Maximum Segment Size for IPv6");
int tcp_sysctl_fastopenkey(struct sysctl_oid *, void *, int,
struct sysctl_req *);
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, fastopen_key, CTLTYPE_STRING | CTLFLAG_WR,
0, 0, tcp_sysctl_fastopenkey, "S", "TCP Fastopen key");
/* Current count of half-open TFO connections */
int tcp_tfo_halfcnt = 0;
/* Maximum of half-open TFO connection backlog */
SYSCTL_SKMEM_TCP_INT(OID_AUTO, fastopen_backlog,
CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_tfo_backlog, 10,
"Backlog queue for half-open TFO connections");
SYSCTL_SKMEM_TCP_INT(OID_AUTO, fastopen, CTLFLAG_RW | CTLFLAG_LOCKED,
int, tcp_fastopen, TCP_FASTOPEN_CLIENT | TCP_FASTOPEN_SERVER,
"Enable TCP Fastopen (RFC 7413)");
SYSCTL_SKMEM_TCP_INT(OID_AUTO, now_init, CTLFLAG_RD | CTLFLAG_LOCKED,
uint32_t, tcp_now_init, 0, "Initial tcp now value");
SYSCTL_SKMEM_TCP_INT(OID_AUTO, microuptime_init, CTLFLAG_RD | CTLFLAG_LOCKED,
uint32_t, tcp_microuptime_init, 0, "Initial tcp uptime value in micro seconds");
/*
* Minimum MSS we accept and use. This prevents DoS attacks where
* we are forced to a ridiculous low MSS like 20 and send hundreds
* of packets instead of one. The effect scales with the available
* bandwidth and quickly saturates the CPU and network interface
* with packet generation and sending. Set to zero to disable MINMSS
* checking. This setting prevents us from sending too small packets.
*/
SYSCTL_SKMEM_TCP_INT(OID_AUTO, minmss, CTLFLAG_RW | CTLFLAG_LOCKED,
int, tcp_minmss, TCP_MINMSS, "Minmum TCP Maximum Segment Size");
SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD | CTLFLAG_LOCKED,
&tcbinfo.ipi_count, 0, "Number of active PCBs");
SYSCTL_SKMEM_TCP_INT(OID_AUTO, icmp_may_rst, CTLFLAG_RW | CTLFLAG_LOCKED,
static int, icmp_may_rst, 1,
"Certain ICMP unreachable messages may abort connections in SYN_SENT");
int tcp_do_timestamps = 1;
#if (DEVELOPMENT || DEBUG)
SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_timestamps,
CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_do_timestamps, 0, "enable TCP timestamps");
#endif /* (DEVELOPMENT || DEBUG) */
SYSCTL_SKMEM_TCP_INT(OID_AUTO, rtt_min, CTLFLAG_RW | CTLFLAG_LOCKED,
int, tcp_TCPTV_MIN, 100, "min rtt value allowed");
SYSCTL_SKMEM_TCP_INT(OID_AUTO, rexmt_slop, CTLFLAG_RW,
int, tcp_rexmt_slop, TCPTV_REXMTSLOP, "Slop added to retransmit timeout");
SYSCTL_SKMEM_TCP_INT(OID_AUTO, randomize_ports, CTLFLAG_RW | CTLFLAG_LOCKED,
__private_extern__ int, tcp_use_randomport, 0,
"Randomize TCP port numbers");
SYSCTL_SKMEM_TCP_INT(OID_AUTO, win_scale_factor, CTLFLAG_RW | CTLFLAG_LOCKED,
__private_extern__ int, tcp_win_scale, 3, "Window scaling factor");
#if (DEVELOPMENT || DEBUG)
SYSCTL_SKMEM_TCP_INT(OID_AUTO, init_rtt_from_cache,
CTLFLAG_RW | CTLFLAG_LOCKED, static int, tcp_init_rtt_from_cache, 1,
"Initalize RTT from route cache");
#else
SYSCTL_SKMEM_TCP_INT(OID_AUTO, init_rtt_from_cache,
CTLFLAG_RD | CTLFLAG_LOCKED, static int, tcp_init_rtt_from_cache, 1,
"Initalize RTT from route cache");
#endif /* (DEVELOPMENT || DEBUG) */
static int tso_debug = 0;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, tso_debug, CTLFLAG_RW | CTLFLAG_LOCKED,
&tso_debug, 0, "TSO verbosity");
static int tcp_rxt_seg_max = 1024;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, rxt_seg_max, CTLFLAG_RW | CTLFLAG_LOCKED,
&tcp_rxt_seg_max, 0, "");
static unsigned long tcp_rxt_seg_drop = 0;
SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, rxt_seg_drop, CTLFLAG_RD | CTLFLAG_LOCKED,
&tcp_rxt_seg_drop, "");
static void tcp_notify(struct inpcb *, int);
static KALLOC_TYPE_DEFINE(tcp_bwmeas_zone, struct bwmeas, NET_KT_DEFAULT);
KALLOC_TYPE_DEFINE(tcp_reass_zone, struct tseg_qent, NET_KT_DEFAULT);
KALLOC_TYPE_DEFINE(tcp_rxt_seg_zone, struct tcp_rxt_seg, NET_KT_DEFAULT);
KALLOC_TYPE_DEFINE(tcp_seg_sent_zone, struct tcp_seg_sent, NET_KT_DEFAULT);
extern int slowlink_wsize; /* window correction for slow links */
extern int path_mtu_discovery;
uint32_t tcp_now_remainder_us = 0; /* remaining micro seconds for tcp_now */
static void tcp_sbrcv_grow_rwin(struct tcpcb *tp, struct sockbuf *sb);
#define TCP_BWMEAS_BURST_MINSIZE 6
#define TCP_BWMEAS_BURST_MAXSIZE 25
/*
* Target size of TCP PCB hash tables. Must be a power of two.
*
* Note that this can be overridden by the kernel environment
* variable net.inet.tcp.tcbhashsize
*/
#ifndef TCBHASHSIZE
#define TCBHASHSIZE CONFIG_TCBHASHSIZE
#endif
__private_extern__ int tcp_tcbhashsize = TCBHASHSIZE;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD | CTLFLAG_LOCKED,
&tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
/*
* This is the actual shape of what we allocate using the zone
* allocator. Doing it this way allows us to protect both structures
* using the same generation count, and also eliminates the overhead
* of allocating tcpcbs separately. By hiding the structure here,
* we avoid changing most of the rest of the code (although it needs
* to be changed, eventually, for greater efficiency).
*/
#define ALIGNMENT 32
struct inp_tp {
struct inpcb inp;
struct tcpcb tcb __attribute__((aligned(ALIGNMENT)));
};
#undef ALIGNMENT
static KALLOC_TYPE_DEFINE(tcpcbzone, struct inp_tp, NET_KT_DEFAULT);
int get_inpcb_str_size(void);
int get_tcp_str_size(void);
os_log_t tcp_mpkl_log_object = NULL;
static void tcpcb_to_otcpcb(struct tcpcb *, struct otcpcb *);
int tcp_notsent_lowat_check(struct socket *so);
static void tcp_flow_lim_stats(struct ifnet_stats_per_flow *ifs,
struct if_lim_perf_stat *stat);
static void tcp_flow_ecn_perf_stats(struct ifnet_stats_per_flow *ifs,
struct if_tcp_ecn_perf_stat *stat);
static aes_encrypt_ctx tfo_ctx; /* Crypto-context for TFO */
void
tcp_tfo_gen_cookie(struct inpcb *inp, u_char *out, size_t blk_size)
{
u_char in[CCAES_BLOCK_SIZE];
int isipv6 = inp->inp_vflag & INP_IPV6;
VERIFY(blk_size == CCAES_BLOCK_SIZE);
bzero(&in[0], CCAES_BLOCK_SIZE);
bzero(&out[0], CCAES_BLOCK_SIZE);
if (isipv6) {
memcpy(in, &inp->in6p_faddr, sizeof(struct in6_addr));
} else {
memcpy(in, &inp->inp_faddr, sizeof(struct in_addr));
}
aes_encrypt_cbc(in, NULL, 1, out, &tfo_ctx);
}
__private_extern__ int
tcp_sysctl_fastopenkey(__unused struct sysctl_oid *oidp, __unused void *arg1,
__unused int arg2, struct sysctl_req *req)
{
int error = 0;
/*
* TFO-key is expressed as a string in hex format
* +1 to account for the \0 char
* +1 because sysctl_io_string() expects a string length but the sysctl command
* now includes the terminating \0 in newlen -- see rdar://77205344
*/
char keystring[TCP_FASTOPEN_KEYLEN * 2 + 2];
u_int32_t key[TCP_FASTOPEN_KEYLEN / sizeof(u_int32_t)];
int i;
/*
* sysctl_io_string copies keystring into the oldptr of the sysctl_req.
* Make sure everything is zero, to avoid putting garbage in there or
* leaking the stack.
*/
bzero(keystring, sizeof(keystring));
error = sysctl_io_string(req, keystring, sizeof(keystring), 0, NULL);
if (error) {
os_log(OS_LOG_DEFAULT,
"%s: sysctl_io_string() error %d, req->newlen %lu, sizeof(keystring) %lu",
__func__, error, req->newlen, sizeof(keystring));
goto exit;
}
if (req->newptr == USER_ADDR_NULL) {
goto exit;
}
if (strlen(keystring) != TCP_FASTOPEN_KEYLEN * 2) {
os_log(OS_LOG_DEFAULT,
"%s: strlen(keystring) %lu != TCP_FASTOPEN_KEYLEN * 2 %u, newlen %lu",
__func__, strlen(keystring), TCP_FASTOPEN_KEYLEN * 2, req->newlen);
error = EINVAL;
goto exit;
}
for (i = 0; i < (TCP_FASTOPEN_KEYLEN / sizeof(u_int32_t)); i++) {
/*
* We jump over the keystring in 8-character (4 byte in hex)
* steps
*/
if (sscanf(&keystring[i * 8], "%8x", &key[i]) != 1) {
error = EINVAL;
os_log(OS_LOG_DEFAULT,
"%s: sscanf() != 1, error EINVAL", __func__);
goto exit;
}
}
aes_encrypt_key128((u_char *)key, &tfo_ctx);
exit:
return error;
}
int
get_inpcb_str_size(void)
{
return sizeof(struct inpcb);
}
int
get_tcp_str_size(void)
{
return sizeof(struct tcpcb);
}
static int scale_to_powerof2(int size);
/*
* This helper routine returns one of the following scaled value of size:
* 1. Rounded down power of two value of size if the size value passed as
* argument is not a power of two and the rounded up value overflows.
* OR
* 2. Rounded up power of two value of size if the size value passed as
* argument is not a power of two and the rounded up value does not overflow
* OR
* 3. Same value as argument size if it is already a power of two.
*/
static int
scale_to_powerof2(int size)
{
/* Handle special case of size = 0 */
int ret = size ? size : 1;
if (!powerof2(ret)) {
while (!powerof2(size)) {
/*
* Clear out least significant
* set bit till size is left with
* its highest set bit at which point
* it is rounded down power of two.
*/
size = size & (size - 1);
}
/* Check for overflow when rounding up */
if (0 == (size << 1)) {
ret = size;
} else {
ret = size << 1;
}
}
return ret;
}
/*
* Round the floating point to the next integer
* Eg. 1.3 will round up to 2.
*/
uint32_t
tcp_ceil(double a)
{
double res = (uint32_t) a;
return (uint32_t)(res + (res < a));
}
uint32_t
tcp_round_to(uint32_t val, uint32_t round)
{
/*
* Round up or down based on the middle. Meaning, if we round upon a
* multiple of 10, 16 will round to 20 and 14 will round to 10.
*/
return ((val + (round / 2)) / round) * round;
}
/*
* Round up to the next multiple of base.
* Eg. for a base of 64, 65 will become 128,
* 2896 will become 2944.
*/
uint32_t
tcp_round_up(uint32_t val, uint32_t base)
{
if (base == 1 || val % base == 0) {
return val;
}
return ((val + base) / base) * base;
}
uint32_t
ntoh24(u_char *p)
{
uint32_t v;
v = (uint32_t)(p[0] << 16);
v |= (uint32_t)(p[1] << 8);
v |= (uint32_t)(p[2] << 0);
return v;
}
uint32_t
tcp_packets_this_ack(struct tcpcb *tp, uint32_t acked)
{
return acked / tp->t_maxseg +
(((acked % tp->t_maxseg) != 0) ? 1 : 0);
}
static void
tcp_tfo_init(void)
{
u_char key[TCP_FASTOPEN_KEYLEN];
read_frandom(key, sizeof(key));
aes_encrypt_key128(key, &tfo_ctx);
}
static u_char isn_secret[32];
/*
* Tcp initialization
*/
void
tcp_init(struct protosw *pp, struct domain *dp)
{
#pragma unused(dp)
static int tcp_initialized = 0;
struct inpcbinfo *pcbinfo;
VERIFY((pp->pr_flags & (PR_INITIALIZED | PR_ATTACHED)) == PR_ATTACHED);
if (tcp_initialized) {
return;
}
tcp_initialized = 1;
#if DEBUG || DEVELOPMENT
(void) PE_parse_boot_argn("tcp_rxt_seg_max", &tcp_rxt_seg_max,
sizeof(tcp_rxt_seg_max));
#endif /* DEBUG || DEVELOPMENT */
tcp_ccgen = 1;
tcp_keepinit = TCPTV_KEEP_INIT;
tcp_keepidle = TCPTV_KEEP_IDLE;
tcp_keepintvl = TCPTV_KEEPINTVL;
tcp_keepcnt = TCPTV_KEEPCNT;
tcp_maxpersistidle = TCPTV_KEEP_IDLE;
tcp_msl = TCPTV_MSL;
microuptime(&tcp_uptime);
read_frandom(&tcp_now, sizeof(tcp_now));
/* Starts tcp internal clock at a random value */
tcp_now = tcp_now & 0x3fffffff;
/* expose initial uptime/now via systcl for utcp to keep time sync */
tcp_now_init = tcp_now;
tcp_microuptime_init =
(uint32_t)(tcp_uptime.tv_usec + (tcp_uptime.tv_sec * USEC_PER_SEC));
SYSCTL_SKMEM_UPDATE_FIELD(tcp.microuptime_init, tcp_microuptime_init);
SYSCTL_SKMEM_UPDATE_FIELD(tcp.now_init, tcp_now_init);
tcp_tfo_init();
LIST_INIT(&tcb);
tcbinfo.ipi_listhead = &tcb;
pcbinfo = &tcbinfo;
/*
* allocate group, lock attributes and lock for tcp pcb mutexes
*/
pcbinfo->ipi_lock_grp = lck_grp_alloc_init("tcppcb",
LCK_GRP_ATTR_NULL);
lck_attr_setdefault(&pcbinfo->ipi_lock_attr);
lck_rw_init(&pcbinfo->ipi_lock, pcbinfo->ipi_lock_grp,
&pcbinfo->ipi_lock_attr);
if (tcp_tcbhashsize == 0) {
/* Set to default */
tcp_tcbhashsize = 512;
}
if (!powerof2(tcp_tcbhashsize)) {
int old_hash_size = tcp_tcbhashsize;
tcp_tcbhashsize = scale_to_powerof2(tcp_tcbhashsize);
/* Lower limit of 16 */
if (tcp_tcbhashsize < 16) {
tcp_tcbhashsize = 16;
}
printf("WARNING: TCB hash size not a power of 2, "
"scaled from %d to %d.\n",
old_hash_size,
tcp_tcbhashsize);
}
hashinit_counted_by(tcp_tcbhashsize, tcbinfo.ipi_hashbase,
tcbinfo.ipi_hashbase_count);
tcbinfo.ipi_hashmask = tcbinfo.ipi_hashbase_count - 1;
hashinit_counted_by(tcp_tcbhashsize, tcbinfo.ipi_porthashbase,
tcbinfo.ipi_porthashbase_count);
tcbinfo.ipi_porthashmask = tcbinfo.ipi_porthashbase_count - 1;
tcbinfo.ipi_zone = tcpcbzone;
tcbinfo.ipi_gc = tcp_gc;
tcbinfo.ipi_timer = tcp_itimer;
in_pcbinfo_attach(&tcbinfo);
#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
if (max_protohdr < TCP_MINPROTOHDR) {
max_protohdr = (int)P2ROUNDUP(TCP_MINPROTOHDR, sizeof(uint32_t));
}
if (max_linkhdr + max_protohdr > MCLBYTES) {
panic("tcp_init");
}
#undef TCP_MINPROTOHDR
/* Initialize time wait and timer lists */
TAILQ_INIT(&tcp_tw_tailq);
bzero(&tcp_timer_list, sizeof(tcp_timer_list));
LIST_INIT(&tcp_timer_list.lhead);
/*
* allocate group and attribute for the tcp timer list
*/
tcp_timer_list.mtx_grp = lck_grp_alloc_init("tcptimerlist",
LCK_GRP_ATTR_NULL);
lck_mtx_init(&tcp_timer_list.mtx, tcp_timer_list.mtx_grp,
LCK_ATTR_NULL);
tcp_timer_list.call = thread_call_allocate(tcp_run_timerlist, NULL);
if (tcp_timer_list.call == NULL) {
panic("failed to allocate call entry 1 in tcp_init");
}
/* Initialize TCP Cache */
tcp_cache_init();
tcp_mpkl_log_object = MPKL_CREATE_LOGOBJECT("com.apple.xnu.tcp");
if (tcp_mpkl_log_object == NULL) {
panic("MPKL_CREATE_LOGOBJECT failed");
}
if (PE_parse_boot_argn("tcp_log", &tcp_log_enable_flags, sizeof(tcp_log_enable_flags))) {
os_log(OS_LOG_DEFAULT, "tcp_init: set tcp_log_enable_flags to 0x%x", tcp_log_enable_flags);
}
/*
* If more than 4GB of actual memory is available, increase the
* maximum allowed receive and send socket buffer size.
*/
if (mem_actual >= (1ULL << (GBSHIFT + 2))) {
if (serverperfmode) {
tcp_autorcvbuf_max = 8 * 1024 * 1024;
tcp_autosndbuf_max = 8 * 1024 * 1024;
} else {
tcp_autorcvbuf_max = 4 * 1024 * 1024;
tcp_autosndbuf_max = 4 * 1024 * 1024;
}
SYSCTL_SKMEM_UPDATE_FIELD(tcp.autorcvbufmax, tcp_autorcvbuf_max);
SYSCTL_SKMEM_UPDATE_FIELD(tcp.autosndbufmax, tcp_autosndbuf_max);
}
/* Initialize the TCP CCA array */
tcp_cc_init();
read_frandom(&isn_secret, sizeof(isn_secret));
}
/*
* Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
* tcp_template used to store this data in mbufs, but we now recopy it out
* of the tcpcb each time to conserve mbufs.
*/
void
tcp_fillheaders(struct mbuf *m, struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
{
struct inpcb *inp = tp->t_inpcb;
struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
if ((inp->inp_vflag & INP_IPV6) != 0) {
struct ip6_hdr *ip6;
ip6 = (struct ip6_hdr *)ip_ptr;
ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
(inp->inp_flow & IPV6_FLOWINFO_MASK);
ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
(IPV6_VERSION & IPV6_VERSION_MASK);
ip6->ip6_plen = htons(sizeof(struct tcphdr));
ip6->ip6_nxt = IPPROTO_TCP;
ip6->ip6_hlim = 0;
ip6->ip6_src = inp->in6p_laddr;
ip6->ip6_dst = inp->in6p_faddr;
if (m->m_flags & M_PKTHDR) {
uint32_t lifscope = inp->inp_lifscope != 0 ? inp->inp_lifscope : inp->inp_fifscope;
uint32_t fifscope = inp->inp_fifscope != 0 ? inp->inp_fifscope : inp->inp_lifscope;
ip6_output_setsrcifscope(m, lifscope, NULL);
ip6_output_setdstifscope(m, fifscope, NULL);
}
tcp_hdr->th_sum = in6_pseudo(&inp->in6p_laddr, &inp->in6p_faddr,
htonl(sizeof(struct tcphdr) + IPPROTO_TCP));
} else {
struct ip *ip = (struct ip *) ip_ptr;
ip->ip_vhl = IP_VHL_BORING;
ip->ip_tos = 0;
ip->ip_len = 0;
ip->ip_id = 0;
ip->ip_off = 0;
ip->ip_ttl = 0;
ip->ip_sum = 0;
ip->ip_p = IPPROTO_TCP;
ip->ip_src = inp->inp_laddr;
ip->ip_dst = inp->inp_faddr;
tcp_hdr->th_sum =
in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
htons(sizeof(struct tcphdr) + IPPROTO_TCP));
}
tcp_hdr->th_sport = inp->inp_lport;
tcp_hdr->th_dport = inp->inp_fport;
tcp_hdr->th_seq = 0;
tcp_hdr->th_ack = 0;
tcp_hdr->th_x2 = 0;
tcp_hdr->th_off = 5;
tcp_hdr->th_flags = 0;
tcp_hdr->th_win = 0;
tcp_hdr->th_urp = 0;
}
/*
* Create template to be used to send tcp packets on a connection.
* Allocates an mbuf and fills in a skeletal tcp/ip header. The only
* use for this function is in keepalives, which use tcp_respond.
*/
struct tcptemp *
tcp_maketemplate(struct tcpcb *tp, struct mbuf **mp)
{
struct mbuf *m;
struct tcptemp *n;
*mp = m = m_get(M_DONTWAIT, MT_HEADER);
if (m == NULL) {
return NULL;
}
m->m_len = sizeof(struct tcptemp);
n = mtod(m, struct tcptemp *);
tcp_fillheaders(m, tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
return n;
}
/*
* Send a single message to the TCP at address specified by
* the given TCP/IP header. If m == 0, then we make a copy
* of the tcpiphdr at ti and send directly to the addressed host.
* This is used to force keep alive messages out using the TCP
* template for a connection. If flags are given then we send
* a message back to the TCP which originated the * segment ti,
* and discard the mbuf containing it and any other attached mbufs.
*
* In any case the ack and sequence number of the transmitted
* segment are as specified by the parameters.
*
* NOTE: If m != NULL, then ti must point to *inside* the mbuf.
*/
void
tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
tcp_seq ack, tcp_seq seq, uint8_t flags, struct tcp_respond_args *tra)
{
uint16_t tlen;
int win = 0;
struct route *ro = 0;
struct route sro;
struct ip *ip;
struct tcphdr *nth;
struct route_in6 *ro6 = 0;
struct route_in6 sro6;
struct ip6_hdr *ip6;
int isipv6;
struct ifnet *outif;
int sotc = SO_TC_UNSPEC;
bool check_qos_marking_again = FALSE;
uint32_t sifscope = IFSCOPE_NONE, fifscope = IFSCOPE_NONE;
isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
ip6 = ipgen;
ip = ipgen;
if (tp) {
check_qos_marking_again = tp->t_inpcb->inp_socket->so_flags1 & SOF1_QOSMARKING_POLICY_OVERRIDE ? FALSE : TRUE;
sifscope = tp->t_inpcb->inp_lifscope;
fifscope = tp->t_inpcb->inp_fifscope;
if (!(flags & TH_RST)) {
win = tcp_sbspace(tp);
if (win > (int32_t)TCP_MAXWIN << tp->rcv_scale) {
win = (int32_t)TCP_MAXWIN << tp->rcv_scale;
}
}
if (isipv6) {
ro6 = &tp->t_inpcb->in6p_route;
} else {
ro = &tp->t_inpcb->inp_route;
}
} else {
if (isipv6) {
ro6 = &sro6;
bzero(ro6, sizeof(*ro6));
} else {
ro = &sro;
bzero(ro, sizeof(*ro));
}
}
if (m == 0) {
m = m_gethdr(M_DONTWAIT, MT_HEADER); /* MAC-OK */
if (m == NULL) {
return;
}
tlen = 0;
m->m_data += max_linkhdr;
if (isipv6) {
VERIFY((MHLEN - max_linkhdr) >=
(sizeof(*ip6) + sizeof(*nth)));
bcopy((caddr_t)ip6, mtod(m, caddr_t),
sizeof(struct ip6_hdr));
ip6 = mtod(m, struct ip6_hdr *);
nth = (struct tcphdr *)(void *)(ip6 + 1);
} else {
VERIFY((MHLEN - max_linkhdr) >=
(sizeof(*ip) + sizeof(*nth)));
bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
ip = mtod(m, struct ip *);
nth = (struct tcphdr *)(void *)(ip + 1);
}
bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
#if MPTCP
if ((tp) && (tp->t_mpflags & TMPF_RESET)) {
flags = (TH_RST | TH_ACK);
} else
#endif
flags = TH_ACK;
} else {
m_freem(m->m_next);
m->m_next = 0;
m->m_data = (uintptr_t)ipgen;
/* m_len is set later */
tlen = 0;
#define xchg(a, b, type) { type t; t = a; a = b; b = t; }
if (isipv6) {
ip6_getsrcifaddr_info(m, &sifscope, NULL);
ip6_getdstifaddr_info(m, &fifscope, NULL);
if (!in6_embedded_scope) {
m->m_pkthdr.pkt_flags &= ~PKTF_IFAINFO;
}
/* Expect 32-bit aligned IP on strict-align platforms */
IP6_HDR_STRICT_ALIGNMENT_CHECK(ip6);
xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
nth = (struct tcphdr *)(void *)(ip6 + 1);
} else {
/* Expect 32-bit aligned IP on strict-align platforms */
IP_HDR_STRICT_ALIGNMENT_CHECK(ip);
xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
nth = (struct tcphdr *)(void *)(ip + 1);
}
if (th != nth) {
/*
* this is usually a case when an extension header
* exists between the IPv6 header and the
* TCP header.
*/
nth->th_sport = th->th_sport;
nth->th_dport = th->th_dport;
}
xchg(nth->th_dport, nth->th_sport, n_short);
#undef xchg
}
if (isipv6) {
ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) +
tlen));
tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
ip6_output_setsrcifscope(m, sifscope, NULL);
ip6_output_setdstifscope(m, fifscope, NULL);
} else {
tlen += sizeof(struct tcpiphdr);
ip->ip_len = tlen;
ip->ip_ttl = (uint8_t)ip_defttl;
}
m->m_len = tlen;
m->m_pkthdr.len = tlen;
m->m_pkthdr.rcvif = 0;
if (tra->keep_alive) {
m->m_pkthdr.pkt_flags |= PKTF_KEEPALIVE;
}
nth->th_seq = htonl(seq);
nth->th_ack = htonl(ack);
nth->th_x2 = 0;
nth->th_off = sizeof(struct tcphdr) >> 2;
nth->th_flags = flags;
if (tp) {
nth->th_win = htons((u_short) (win >> tp->rcv_scale));
} else {
nth->th_win = htons((u_short)win);
}
nth->th_urp = 0;
if (isipv6) {
nth->th_sum = 0;
nth->th_sum = in6_pseudo(&ip6->ip6_src, &ip6->ip6_dst,
htonl((tlen - sizeof(struct ip6_hdr)) + IPPROTO_TCP));
m->m_pkthdr.csum_flags = CSUM_TCPIPV6;
m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
ro6 && ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
} else {
nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
m->m_pkthdr.csum_flags = CSUM_TCP;
m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
}
#if NECP
necp_mark_packet_from_socket(m, tp ? tp->t_inpcb : NULL, 0, 0, 0, 0);
#endif /* NECP */
#if IPSEC
if (tp != NULL && tp->t_inpcb->inp_sp != NULL &&
ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
m_freem(m);
return;
}
#endif
if (tp != NULL) {
u_int32_t svc_flags = 0;
if (isipv6) {
svc_flags |= PKT_SCF_IPV6;
}
sotc = tp->t_inpcb->inp_socket->so_traffic_class;
if ((flags & TH_RST) == 0) {
set_packet_service_class(m, tp->t_inpcb->inp_socket,
sotc, svc_flags);
} else {
m_set_service_class(m, MBUF_SC_BK_SYS);
}
/* Embed flowhash and flow control flags */
m->m_pkthdr.pkt_flowsrc = FLOWSRC_INPCB;
m->m_pkthdr.pkt_flowid = tp->t_inpcb->inp_flowhash;
m->m_pkthdr.pkt_flags |= (PKTF_FLOW_ID | PKTF_FLOW_LOCALSRC | PKTF_FLOW_ADV);
m->m_pkthdr.pkt_proto = IPPROTO_TCP;
m->m_pkthdr.tx_tcp_pid = tp->t_inpcb->inp_socket->last_pid;
m->m_pkthdr.tx_tcp_e_pid = tp->t_inpcb->inp_socket->e_pid;
if (flags & TH_RST) {
m->m_pkthdr.comp_gencnt = tp->t_comp_gencnt;
}
} else {
if (flags & TH_RST) {
m->m_pkthdr.comp_gencnt = TCP_ACK_COMPRESSION_DUMMY;
m_set_service_class(m, MBUF_SC_BK_SYS);
}
}
if (isipv6) {
struct ip6_out_args ip6oa;
bzero(&ip6oa, sizeof(ip6oa));
ip6oa.ip6oa_boundif = tra->ifscope;
ip6oa.ip6oa_flags = IP6OAF_SELECT_SRCIF | IP6OAF_BOUND_SRCADDR;
ip6oa.ip6oa_sotc = SO_TC_UNSPEC;
ip6oa.ip6oa_netsvctype = _NET_SERVICE_TYPE_UNSPEC;
if (tra->ifscope != IFSCOPE_NONE) {
ip6oa.ip6oa_flags |= IP6OAF_BOUND_IF;
}
if (tra->nocell) {
ip6oa.ip6oa_flags |= IP6OAF_NO_CELLULAR;
}
if (tra->noexpensive) {
ip6oa.ip6oa_flags |= IP6OAF_NO_EXPENSIVE;
}
if (tra->noconstrained) {
ip6oa.ip6oa_flags |= IP6OAF_NO_CONSTRAINED;
}
if (tra->awdl_unrestricted) {
ip6oa.ip6oa_flags |= IP6OAF_AWDL_UNRESTRICTED;
}
if (tra->intcoproc_allowed) {
ip6oa.ip6oa_flags |= IP6OAF_INTCOPROC_ALLOWED;
}
if (tra->management_allowed) {
ip6oa.ip6oa_flags |= IP6OAF_MANAGEMENT_ALLOWED;
}
ip6oa.ip6oa_sotc = sotc;
if (tp != NULL) {
if ((tp->t_inpcb->inp_socket->so_flags1 & SOF1_QOSMARKING_ALLOWED)) {
ip6oa.ip6oa_flags |= IP6OAF_QOSMARKING_ALLOWED;
}
ip6oa.qos_marking_gencount = tp->t_inpcb->inp_policyresult.results.qos_marking_gencount;
if (check_qos_marking_again) {
ip6oa.ip6oa_flags |= IP6OAF_REDO_QOSMARKING_POLICY;
}
ip6oa.ip6oa_netsvctype = tp->t_inpcb->inp_socket->so_netsvctype;
}
(void) ip6_output(m, NULL, ro6, IPV6_OUTARGS, NULL,
NULL, &ip6oa);
if (check_qos_marking_again) {
struct inpcb *inp = tp->t_inpcb;
inp->inp_policyresult.results.qos_marking_gencount = ip6oa.qos_marking_gencount;
if (ip6oa.ip6oa_flags & IP6OAF_QOSMARKING_ALLOWED) {
inp->inp_socket->so_flags1 |= SOF1_QOSMARKING_ALLOWED;
} else {
inp->inp_socket->so_flags1 &= ~SOF1_QOSMARKING_ALLOWED;
}
}
if (tp != NULL && ro6 != NULL && ro6->ro_rt != NULL &&
(outif = ro6->ro_rt->rt_ifp) !=
tp->t_inpcb->in6p_last_outifp) {
tp->t_inpcb->in6p_last_outifp = outif;
#if SKYWALK
if (NETNS_TOKEN_VALID(&tp->t_inpcb->inp_netns_token)) {
netns_set_ifnet(&tp->t_inpcb->inp_netns_token,
tp->t_inpcb->in6p_last_outifp);
}
#endif /* SKYWALK */
}
if (ro6 == &sro6) {
ROUTE_RELEASE(ro6);
}
} else {
struct ip_out_args ipoa;
bzero(&ipoa, sizeof(ipoa));
ipoa.ipoa_boundif = tra->ifscope;
ipoa.ipoa_flags = IPOAF_SELECT_SRCIF | IPOAF_BOUND_SRCADDR;
ipoa.ipoa_sotc = SO_TC_UNSPEC;
ipoa.ipoa_netsvctype = _NET_SERVICE_TYPE_UNSPEC;
if (tra->ifscope != IFSCOPE_NONE) {
ipoa.ipoa_flags |= IPOAF_BOUND_IF;
}
if (tra->nocell) {
ipoa.ipoa_flags |= IPOAF_NO_CELLULAR;
}
if (tra->noexpensive) {
ipoa.ipoa_flags |= IPOAF_NO_EXPENSIVE;
}
if (tra->noconstrained) {
ipoa.ipoa_flags |= IPOAF_NO_CONSTRAINED;
}
if (tra->awdl_unrestricted) {
ipoa.ipoa_flags |= IPOAF_AWDL_UNRESTRICTED;
}
if (tra->management_allowed) {
ipoa.ipoa_flags |= IPOAF_MANAGEMENT_ALLOWED;
}
ipoa.ipoa_sotc = sotc;
if (tp != NULL) {
if ((tp->t_inpcb->inp_socket->so_flags1 & SOF1_QOSMARKING_ALLOWED)) {
ipoa.ipoa_flags |= IPOAF_QOSMARKING_ALLOWED;
}
if (!(tp->t_inpcb->inp_socket->so_flags1 & SOF1_QOSMARKING_POLICY_OVERRIDE)) {
ipoa.ipoa_flags |= IPOAF_REDO_QOSMARKING_POLICY;
}
ipoa.qos_marking_gencount = tp->t_inpcb->inp_policyresult.results.qos_marking_gencount;
ipoa.ipoa_netsvctype = tp->t_inpcb->inp_socket->so_netsvctype;
}
if (ro != &sro) {
/* Copy the cached route and take an extra reference */
inp_route_copyout(tp->t_inpcb, &sro);
}
/*
* For consistency, pass a local route copy.
*/
(void) ip_output(m, NULL, &sro, IP_OUTARGS, NULL, &ipoa);
if (check_qos_marking_again) {
struct inpcb *inp = tp->t_inpcb;
inp->inp_policyresult.results.qos_marking_gencount = ipoa.qos_marking_gencount;
if (ipoa.ipoa_flags & IPOAF_QOSMARKING_ALLOWED) {
inp->inp_socket->so_flags1 |= SOF1_QOSMARKING_ALLOWED;
} else {
inp->inp_socket->so_flags1 &= ~SOF1_QOSMARKING_ALLOWED;
}
}
if (tp != NULL && sro.ro_rt != NULL &&
(outif = sro.ro_rt->rt_ifp) !=
tp->t_inpcb->inp_last_outifp) {
tp->t_inpcb->inp_last_outifp = outif;
#if SKYWALK
if (NETNS_TOKEN_VALID(&tp->t_inpcb->inp_netns_token)) {
netns_set_ifnet(&tp->t_inpcb->inp_netns_token, outif);
}
#endif /* SKYWALK */
}
if (ro != &sro) {
/* Synchronize cached PCB route */
inp_route_copyin(tp->t_inpcb, &sro);
} else {
ROUTE_RELEASE(&sro);
}
}
}
/*
* Create a new TCP control block, making an
* empty reassembly queue and hooking it to the argument
* protocol control block. The `inp' parameter must have
* come from the zone allocator set up in tcp_init().
*/
struct tcpcb *
tcp_newtcpcb(struct inpcb *inp)
{
struct inp_tp *it;
struct tcpcb *tp;
struct socket *so = inp->inp_socket;
int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
uint32_t random_32;
calculate_tcp_clock();
if ((so->so_flags1 & SOF1_CACHED_IN_SOCK_LAYER) == 0) {
it = (struct inp_tp *)(void *)inp;
tp = &it->tcb;
} else {
tp = (struct tcpcb *)(void *)inp->inp_saved_ppcb;
}
bzero((char *) tp, sizeof(struct tcpcb));
LIST_INIT(&tp->t_segq);
tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
tp->t_flags = TF_REQ_SCALE | (tcp_do_timestamps ? TF_REQ_TSTMP : 0);
tp->t_flagsext |= TF_SACK_ENABLE;
if (tcp_rack) {
tp->t_flagsext |= TF_RACK_ENABLED;
}
TAILQ_INIT(&tp->snd_holes);
SLIST_INIT(&tp->t_rxt_segments);
TAILQ_INIT(&tp->t_segs_sent);
RB_INIT(&tp->t_segs_sent_tree);
TAILQ_INIT(&tp->t_segs_acked);
TAILQ_INIT(&tp->seg_pool.free_segs);
SLIST_INIT(&tp->t_notify_ack);
tp->t_inpcb = inp;
/*
* Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
* rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
* reasonable initial retransmit time.
*/
tp->t_srtt = TCPTV_SRTTBASE;
tp->t_rttvar =
((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
tp->t_rttmin = tcp_TCPTV_MIN;
tp->t_rxtcur = TCPTV_RTOBASE;
if (tcp_use_newreno) {
/* use newreno by default */
tp->tcp_cc_index = TCP_CC_ALGO_NEWRENO_INDEX;
#if (DEVELOPMENT || DEBUG)
} else if (tcp_use_ledbat) {
/* use ledbat for testing */
tp->tcp_cc_index = TCP_CC_ALGO_BACKGROUND_INDEX;
#endif
} else {
if (TCP_L4S_ENABLED(tp)) {
tp->tcp_cc_index = TCP_CC_ALGO_PRAGUE_INDEX;
} else {
tp->tcp_cc_index = TCP_CC_ALGO_CUBIC_INDEX;
}
}
tcp_cc_allocate_state(tp);
if (CC_ALGO(tp)->init != NULL) {
CC_ALGO(tp)->init(tp);
}
/* Initialize rledbat if we are using recv_bg */
if (tcp_rledbat == 1 && TCP_RECV_BG(inp->inp_socket) &&
tcp_cc_rledbat.init != NULL) {
tcp_cc_rledbat.init(tp);
}
tp->snd_cwnd = tcp_initial_cwnd(tp);
tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
tp->snd_ssthresh_prev = TCP_MAXWIN << TCP_MAX_WINSHIFT;
tp->t_rcvtime = tcp_now;
tp->tentry.timer_start = tcp_now;
tp->rcv_unackwin = tcp_now;
tp->t_persist_timeout = tcp_max_persist_timeout;
tp->t_persist_stop = 0;
tp->t_flagsext |= TF_RCVUNACK_WAITSS;
tp->t_rexmtthresh = (uint8_t)tcprexmtthresh;
tp->rack.reo_wnd_multi = 1;
tp->rfbuf_ts = tcp_now;
tp->rfbuf_space = tcp_initial_cwnd(tp);
tp->t_forced_acks = TCP_FORCED_ACKS_COUNT;
tp->bytes_lost = tp->bytes_sacked = tp->bytes_retransmitted = 0;
/* Enable bandwidth measurement on this connection */
tp->t_flagsext |= TF_MEASURESNDBW;
if (tp->t_bwmeas == NULL) {
tp->t_bwmeas = tcp_bwmeas_alloc(tp);
if (tp->t_bwmeas == NULL) {
tp->t_flagsext &= ~TF_MEASURESNDBW;
}
}
/* Clear time wait tailq entry */
tp->t_twentry.tqe_next = NULL;
tp->t_twentry.tqe_prev = NULL;
read_frandom(&random_32, sizeof(random_32));
tp->t_comp_gencnt = random_32;
if (tp->t_comp_gencnt <= TCP_ACK_COMPRESSION_DUMMY) {
tp->t_comp_gencnt = TCP_ACK_COMPRESSION_DUMMY + 1;
}
tp->t_comp_lastinc = tcp_now;
/* Initialize Accurate ECN state */
tp->t_client_accecn_state = tcp_connection_client_accurate_ecn_feature_disabled;
tp->t_server_accecn_state = tcp_connection_server_accurate_ecn_feature_disabled;
/*
* IPv4 TTL initialization is necessary for an IPv6 socket as well,
* because the socket may be bound to an IPv6 wildcard address,
* which may match an IPv4-mapped IPv6 address.
*/
inp->inp_ip_ttl = (uint8_t)ip_defttl;
inp->inp_ppcb = (caddr_t)tp;
return tp; /* XXX */
}
/*
* Drop a TCP connection, reporting
* the specified error. If connection is synchronized,
* then send a RST to peer.
*/
struct tcpcb *
tcp_drop(struct tcpcb *tp, int errno)
{
struct socket *so = tp->t_inpcb->inp_socket;
#if CONFIG_DTRACE
struct inpcb *inp = tp->t_inpcb;
#endif
if (TCPS_HAVERCVDSYN(tp->t_state)) {
DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
struct tcpcb *, tp, int32_t, TCPS_CLOSED);
TCP_LOG_STATE(tp, TCPS_CLOSED);
tp->t_state = TCPS_CLOSED;
(void) tcp_output(tp);
tcpstat.tcps_drops++;
} else {
tcpstat.tcps_conndrops++;
}
if (errno == ETIMEDOUT && tp->t_softerror) {
errno = tp->t_softerror;
}
so->so_error = (u_short)errno;
TCP_LOG_CONNECTION_SUMMARY(tp);
return tcp_close(tp);
}
void
tcp_getrt_rtt(struct tcpcb *tp, struct rtentry *rt)
{
u_int32_t rtt = rt->rt_rmx.rmx_rtt;
int isnetlocal = (tp->t_flags & TF_LOCAL);
TCP_LOG_RTM_RTT(tp, rt);
if (rtt != 0 && tcp_init_rtt_from_cache != 0) {
/*
* XXX the lock bit for RTT indicates that the value
* is also a minimum value; this is subject to time.
*/
if (rt->rt_rmx.rmx_locks & RTV_RTT) {
tp->t_rttmin = rtt / (RTM_RTTUNIT / TCP_RETRANSHZ);
} else {
tp->t_rttmin = isnetlocal ? tcp_TCPTV_MIN :
TCPTV_REXMTMIN;
}
tp->t_srtt =
rtt / (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTT_SCALE));
tcpstat.tcps_usedrtt++;
if (rt->rt_rmx.rmx_rttvar) {
tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
(RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTTVAR_SCALE));
tcpstat.tcps_usedrttvar++;
} else {
/* default variation is +- 1 rtt */
tp->t_rttvar =
tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
}
/*
* The RTO formula in the route metric case is based on:
* srtt + 4 * rttvar
* modulo the min, max and slop
*/
TCPT_RANGESET(tp->t_rxtcur,
TCP_REXMTVAL(tp),
tp->t_rttmin, TCPTV_REXMTMAX,
TCP_ADD_REXMTSLOP(tp));
} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_srtt == 0 &&
tp->t_rxtshift == 0) {
struct ifnet *ifp = rt->rt_ifp;
if (ifp != NULL && (ifp->if_eflags & IFEF_AWDL) != 0) {
/*
* AWDL needs a special value for the default initial retransmission timeout
*/
if (tcp_awdl_rtobase > tcp_TCPTV_MIN) {
tp->t_rttvar = ((tcp_awdl_rtobase - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
} else {
tp->t_rttvar = ((tcp_TCPTV_MIN - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
}
TCPT_RANGESET(tp->t_rxtcur,
TCP_REXMTVAL(tp),
tp->t_rttmin, TCPTV_REXMTMAX,
TCP_ADD_REXMTSLOP(tp));
}
}
TCP_LOG_RTT_INFO(tp);
}
static inline void
tcp_create_ifnet_stats_per_flow(struct tcpcb *tp,
struct ifnet_stats_per_flow *ifs)
{
struct inpcb *inp;
struct socket *so;
if (tp == NULL || ifs == NULL) {
return;
}
bzero(ifs, sizeof(*ifs));
inp = tp->t_inpcb;
so = inp->inp_socket;
ifs->ipv4 = (inp->inp_vflag & INP_IPV6) ? 0 : 1;
ifs->local = (tp->t_flags & TF_LOCAL) ? 1 : 0;
ifs->connreset = (so->so_error == ECONNRESET) ? 1 : 0;
ifs->conntimeout = (so->so_error == ETIMEDOUT) ? 1 : 0;
ifs->ecn_flags = tp->ecn_flags;
ifs->txretransmitbytes = tp->t_stat.txretransmitbytes;
ifs->rxoutoforderbytes = tp->t_stat.rxoutoforderbytes;
ifs->rxmitpkts = tp->t_stat.rxmitpkts;
ifs->rcvoopack = tp->t_rcvoopack;
ifs->pawsdrop = tp->t_pawsdrop;
ifs->sack_recovery_episodes = tp->t_sack_recovery_episode;
ifs->reordered_pkts = tp->t_reordered_pkts;
ifs->dsack_sent = tp->t_dsack_sent;
ifs->dsack_recvd = tp->t_dsack_recvd;
ifs->srtt = tp->t_srtt;
ifs->rttupdated = tp->t_rttupdated;
ifs->rttvar = tp->t_rttvar;
ifs->rttmin = get_base_rtt(tp);
if (tp->t_bwmeas != NULL && tp->t_bwmeas->bw_sndbw_max > 0) {
ifs->bw_sndbw_max = tp->t_bwmeas->bw_sndbw_max;
} else {
ifs->bw_sndbw_max = 0;
}
if (tp->t_bwmeas != NULL && tp->t_bwmeas->bw_rcvbw_max > 0) {
ifs->bw_rcvbw_max = tp->t_bwmeas->bw_rcvbw_max;
} else {
ifs->bw_rcvbw_max = 0;
}
ifs->bk_txpackets = so->so_tc_stats[MBUF_TC_BK].txpackets;
ifs->txpackets = inp->inp_stat->txpackets;
ifs->rxpackets = inp->inp_stat->rxpackets;
}
static inline void
tcp_flow_ecn_perf_stats(struct ifnet_stats_per_flow *ifs,
struct if_tcp_ecn_perf_stat *stat)
{
u_int64_t curval, oldval;
stat->total_txpkts += ifs->txpackets;
stat->total_rxpkts += ifs->rxpackets;
stat->total_rxmitpkts += ifs->rxmitpkts;
stat->total_oopkts += ifs->rcvoopack;
stat->total_reorderpkts += (ifs->reordered_pkts +
ifs->pawsdrop + ifs->dsack_sent + ifs->dsack_recvd);
/* Average RTT */
curval = ifs->srtt >> TCP_RTT_SHIFT;
if (curval > 0 && ifs->rttupdated >= 16) {
if (stat->rtt_avg == 0) {
stat->rtt_avg = curval;
} else {
oldval = stat->rtt_avg;
stat->rtt_avg = ((oldval << 4) - oldval + curval) >> 4;
}
}
/* RTT variance */
curval = ifs->rttvar >> TCP_RTTVAR_SHIFT;
if (curval > 0 && ifs->rttupdated >= 16) {
if (stat->rtt_var == 0) {
stat->rtt_var = curval;
} else {
oldval = stat->rtt_var;
stat->rtt_var =
((oldval << 4) - oldval + curval) >> 4;
}
}
/* SACK episodes */
stat->sack_episodes += ifs->sack_recovery_episodes;
if (ifs->connreset) {
stat->rst_drop++;
}
}
static inline void
tcp_flow_lim_stats(struct ifnet_stats_per_flow *ifs,
struct if_lim_perf_stat *stat)
{
u_int64_t curval, oldval;
stat->lim_total_txpkts += ifs->txpackets;
stat->lim_total_rxpkts += ifs->rxpackets;
stat->lim_total_retxpkts += ifs->rxmitpkts;
stat->lim_total_oopkts += ifs->rcvoopack;
if (ifs->bw_sndbw_max > 0) {
/* convert from bytes per ms to bits per second */
ifs->bw_sndbw_max *= 8000;
stat->lim_ul_max_bandwidth = MAX(stat->lim_ul_max_bandwidth,
ifs->bw_sndbw_max);
}
if (ifs->bw_rcvbw_max > 0) {
/* convert from bytes per ms to bits per second */
ifs->bw_rcvbw_max *= 8000;
stat->lim_dl_max_bandwidth = MAX(stat->lim_dl_max_bandwidth,
ifs->bw_rcvbw_max);
}
/* Average RTT */
curval = ifs->srtt >> TCP_RTT_SHIFT;
if (curval > 0 && ifs->rttupdated >= 16) {
if (stat->lim_rtt_average == 0) {
stat->lim_rtt_average = curval;
} else {
oldval = stat->lim_rtt_average;
stat->lim_rtt_average =
((oldval << 4) - oldval + curval) >> 4;
}
}
/* RTT variance */
curval = ifs->rttvar >> TCP_RTTVAR_SHIFT;
if (curval > 0 && ifs->rttupdated >= 16) {
if (stat->lim_rtt_variance == 0) {
stat->lim_rtt_variance = curval;
} else {
oldval = stat->lim_rtt_variance;
stat->lim_rtt_variance =
((oldval << 4) - oldval + curval) >> 4;
}
}
if (stat->lim_rtt_min == 0) {
stat->lim_rtt_min = ifs->rttmin;
} else {
stat->lim_rtt_min = MIN(stat->lim_rtt_min, ifs->rttmin);
}
/* connection timeouts */
stat->lim_conn_attempts++;
if (ifs->conntimeout) {
stat->lim_conn_timeouts++;
}
/* bytes sent using background delay-based algorithms */
stat->lim_bk_txpkts += ifs->bk_txpackets;
}
/*
* Close a TCP control block:
* discard all space held by the tcp
* discard internet protocol block
* wake up any sleepers
*/
struct tcpcb *
tcp_close(struct tcpcb *tp)
{
struct inpcb *inp = tp->t_inpcb;
struct socket *so = inp->inp_socket;
int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
struct route *ro;
struct rtentry *rt;
int dosavessthresh;
struct ifnet_stats_per_flow ifs;
/* tcp_close was called previously, bail */
if (inp->inp_ppcb == NULL) {
return NULL;
}
tcp_del_fsw_flow(tp);
tcp_canceltimers(tp);
KERNEL_DEBUG(DBG_FNC_TCP_CLOSE | DBG_FUNC_START, tp, 0, 0, 0, 0);
/*
* If another thread for this tcp is currently in ip (indicated by
* the TF_SENDINPROG flag), defer the cleanup until after it returns
* back to tcp. This is done to serialize the close until after all
* pending output is finished, in order to avoid having the PCB be
* detached and the cached route cleaned, only for ip to cache the
* route back into the PCB again. Note that we've cleared all the
* timers at this point. Set TF_CLOSING to indicate to tcp_output()
* that is should call us again once it returns from ip; at that
* point both flags should be cleared and we can proceed further
* with the cleanup.
*/
if ((tp->t_flags & TF_CLOSING) ||
inp->inp_sndinprog_cnt > 0) {
tp->t_flags |= TF_CLOSING;
return NULL;
}
TCP_LOG_CONNECTION_SUMMARY(tp);
DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
struct tcpcb *, tp, int32_t, TCPS_CLOSED);
ro = (isipv6 ? (struct route *)&inp->in6p_route : &inp->inp_route);
rt = ro->ro_rt;
if (rt != NULL) {
RT_LOCK_SPIN(rt);
}
/*
* If we got enough samples through the srtt filter,
* save the rtt and rttvar in the routing entry.
* 'Enough' is arbitrarily defined as the 16 samples.
* 16 samples is enough for the srtt filter to converge
* to within 5% of the correct value; fewer samples and
* we could save a very bogus rtt.
*
* Don't update the default route's characteristics and don't
* update anything that the user "locked".
*/
if (tp->t_rttupdated >= 16) {
u_int32_t i = 0;
bool log_rtt = false;
if (isipv6) {
struct sockaddr_in6 *sin6;
if (rt == NULL) {
goto no_valid_rt;
}
sin6 = SIN6(rt_key(rt));
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
goto no_valid_rt;
}
} else if (ROUTE_UNUSABLE(ro) ||
SIN(rt_key(rt))->sin_addr.s_addr == INADDR_ANY) {
DTRACE_TCP4(state__change, void, NULL,
struct inpcb *, inp, struct tcpcb *, tp,
int32_t, TCPS_CLOSED);
TCP_LOG_STATE(tp, TCPS_CLOSED);
tp->t_state = TCPS_CLOSED;
goto no_valid_rt;
}
RT_LOCK_ASSERT_HELD(rt);
if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
i = tp->t_srtt *
(RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTT_SCALE));
if (rt->rt_rmx.rmx_rtt && i) {
/*
* filter this update to half the old & half
* the new values, converting scale.
* See route.h and tcp_var.h for a
* description of the scaling constants.
*/
rt->rt_rmx.rmx_rtt =
(rt->rt_rmx.rmx_rtt + i) / 2;
} else {
rt->rt_rmx.rmx_rtt = i;
}
tcpstat.tcps_cachedrtt++;
log_rtt = true;
}
if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
i = tp->t_rttvar *
(RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTTVAR_SCALE));
if (rt->rt_rmx.rmx_rttvar && i) {
rt->rt_rmx.rmx_rttvar =
(rt->rt_rmx.rmx_rttvar + i) / 2;
} else {
rt->rt_rmx.rmx_rttvar = i;
}
tcpstat.tcps_cachedrttvar++;
log_rtt = true;
}
if (log_rtt) {
TCP_LOG_RTM_RTT(tp, rt);
TCP_LOG_RTT_INFO(tp);
}
/*
* The old comment here said:
* update the pipelimit (ssthresh) if it has been updated
* already or if a pipesize was specified & the threshhold
* got below half the pipesize. I.e., wait for bad news
* before we start updating, then update on both good
* and bad news.
*
* But we want to save the ssthresh even if no pipesize is
* specified explicitly in the route, because such
* connections still have an implicit pipesize specified
* by the global tcp_sendspace. In the absence of a reliable
* way to calculate the pipesize, it will have to do.
*/
i = tp->snd_ssthresh;
if (rt->rt_rmx.rmx_sendpipe != 0) {
dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
} else {
dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
}
if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
i != 0 && rt->rt_rmx.rmx_ssthresh != 0) ||
dosavessthresh) {
/*
* convert the limit from user data bytes to
* packets then to packet data bytes.
*/
i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
if (i < 2) {
i = 2;
}
i *= (u_int32_t)(tp->t_maxseg +
isipv6 ? sizeof(struct ip6_hdr) +
sizeof(struct tcphdr) :
sizeof(struct tcpiphdr));
if (rt->rt_rmx.rmx_ssthresh) {
rt->rt_rmx.rmx_ssthresh =
(rt->rt_rmx.rmx_ssthresh + i) / 2;
} else {
rt->rt_rmx.rmx_ssthresh = i;
}
tcpstat.tcps_cachedssthresh++;
}
}
/*
* Mark route for deletion if no information is cached.
*/
if (rt != NULL && (so->so_flags & SOF_OVERFLOW)) {
if (!(rt->rt_rmx.rmx_locks & RTV_RTT) &&
rt->rt_rmx.rmx_rtt == 0) {
rt->rt_flags |= RTF_DELCLONE;
}
}
no_valid_rt:
if (rt != NULL) {
RT_UNLOCK(rt);
}
/* free the reassembly queue, if any */
(void) tcp_freeq(tp);
/* performance stats per interface */
tcp_create_ifnet_stats_per_flow(tp, &ifs);
tcp_update_stats_per_flow(&ifs, inp->inp_last_outifp);
tcp_free_sackholes(tp);
tcp_notify_ack_free(tp);
inp_decr_sndbytes_allunsent(so, tp->snd_una);
if (tp->t_bwmeas != NULL) {
tcp_bwmeas_free(tp);
}
tcp_rxtseg_clean(tp);
tcp_segs_sent_clean(tp, true);
/* Free the packet list */
if (tp->t_pktlist_head != NULL) {
m_freem_list(tp->t_pktlist_head);
}
TCP_PKTLIST_CLEAR(tp);
if (so->so_flags1 & SOF1_CACHED_IN_SOCK_LAYER) {
inp->inp_saved_ppcb = (caddr_t) tp;
}
TCP_LOG_STATE(tp, TCPS_CLOSED);
tp->t_state = TCPS_CLOSED;
/*
* Issue a wakeup before detach so that we don't miss
* a wakeup
*/
sodisconnectwakeup(so);
/*
* Make sure to clear the TCP Keep Alive Offload as it is
* ref counted on the interface
*/
tcp_clear_keep_alive_offload(so);
/*
* If this is a socket that does not want to wakeup the device
* for it's traffic, the application might need to know that the
* socket is closed, send a notification.
*/
if ((so->so_options & SO_NOWAKEFROMSLEEP) &&
inp->inp_state != INPCB_STATE_DEAD &&
!(inp->inp_flags2 & INP2_TIMEWAIT)) {
socket_post_kev_msg_closed(so);
}
if (CC_ALGO(tp)->cleanup != NULL) {
CC_ALGO(tp)->cleanup(tp);
}
tp->tcp_cc_index = TCP_CC_ALGO_NONE;
if (TCP_USE_RLEDBAT(tp, so) && tcp_cc_rledbat.cleanup != NULL) {
tcp_cc_rledbat.cleanup(tp);
}
/* Can happen if we close the socket before receiving the third ACK */
if ((tp->t_tfo_flags & TFO_F_COOKIE_VALID)) {
OSDecrementAtomic(&tcp_tfo_halfcnt);
/* Panic if something has gone terribly wrong. */
VERIFY(tcp_tfo_halfcnt >= 0);
tp->t_tfo_flags &= ~TFO_F_COOKIE_VALID;
}
if (SOCK_CHECK_DOM(so, PF_INET6)) {
in6_pcbdetach(inp);
} else {
in_pcbdetach(inp);
}
/*
* Call soisdisconnected after detach because it might unlock the socket
*/
soisdisconnected(so);
tcpstat.tcps_closed++;
KERNEL_DEBUG(DBG_FNC_TCP_CLOSE | DBG_FUNC_END,
tcpstat.tcps_closed, 0, 0, 0, 0);
return NULL;
}
int
tcp_freeq(struct tcpcb *tp)
{
struct tseg_qent *q;
int rv = 0;
int count = 0;
while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
LIST_REMOVE(q, tqe_q);
tp->t_reassq_mbcnt -= _MSIZE + (q->tqe_m->m_flags & M_EXT) ?
q->tqe_m->m_ext.ext_size : 0;
m_freem(q->tqe_m);
zfree(tcp_reass_zone, q);
rv = 1;
count++;
}
tp->t_reassqlen = 0;
if (count > 0) {
OSAddAtomic(-count, &tcp_reass_total_qlen);
}
return rv;
}
void
tcp_drain(void)
{
struct inpcb *inp;
struct tcpcb *tp;
if (!lck_rw_try_lock_exclusive(&tcbinfo.ipi_lock)) {
return;
}
LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) {
if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) !=
WNT_STOPUSING) {
socket_lock(inp->inp_socket, 1);
if (in_pcb_checkstate(inp, WNT_RELEASE, 1)
== WNT_STOPUSING) {
/* lost a race, try the next one */
socket_unlock(inp->inp_socket, 1);
continue;
}
tp = intotcpcb(inp);
so_drain_extended_bk_idle(inp->inp_socket);
socket_unlock(inp->inp_socket, 1);
}
}
lck_rw_done(&tcbinfo.ipi_lock);
}
/*
* Notify a tcp user of an asynchronous error;
* store error as soft error, but wake up user
* (for now, won't do anything until can select for soft error).
*
* Do not wake up user since there currently is no mechanism for
* reporting soft errors (yet - a kqueue filter may be added).
*/
static void
tcp_notify(struct inpcb *inp, int error)
{
struct tcpcb *tp;
if (inp == NULL || (inp->inp_state == INPCB_STATE_DEAD)) {
return; /* pcb is gone already */
}
tp = (struct tcpcb *)inp->inp_ppcb;
VERIFY(tp != NULL);
/*
* Ignore some errors if we are hooked up.
* If connection hasn't completed, has retransmitted several times,
* and receives a second error, give up now. This is better
* than waiting a long time to establish a connection that
* can never complete.
*/
if (tp->t_state == TCPS_ESTABLISHED &&
(error == EHOSTUNREACH || error == ENETUNREACH ||
error == EHOSTDOWN)) {
if (inp->inp_route.ro_rt) {
rtfree(inp->inp_route.ro_rt);
inp->inp_route.ro_rt = (struct rtentry *)NULL;
}
} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
tp->t_softerror) {
tcp_drop(tp, error);
} else {
tp->t_softerror = error;
}
}
struct bwmeas *
tcp_bwmeas_alloc(struct tcpcb *tp)
{
struct bwmeas *elm;
elm = zalloc_flags(tcp_bwmeas_zone, Z_ZERO | Z_WAITOK);
elm->bw_minsizepkts = TCP_BWMEAS_BURST_MINSIZE;
elm->bw_minsize = elm->bw_minsizepkts * tp->t_maxseg;
return elm;
}
void
tcp_bwmeas_free(struct tcpcb *tp)
{
zfree(tcp_bwmeas_zone, tp->t_bwmeas);
tp->t_bwmeas = NULL;
tp->t_flagsext &= ~(TF_MEASURESNDBW);
}
int
get_tcp_inp_list(struct inpcb * __single *inp_list __counted_by(n), size_t n, inp_gen_t gencnt)
{
struct tcpcb *tp;
struct inpcb *inp;
int i = 0;
LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) {
if (i >= n) {
break;
}
if (inp->inp_gencnt <= gencnt &&
inp->inp_state != INPCB_STATE_DEAD) {
inp_list[i++] = inp;
}
}
TAILQ_FOREACH(tp, &tcp_tw_tailq, t_twentry) {
if (i >= n) {
break;
}
inp = tp->t_inpcb;
if (inp->inp_gencnt <= gencnt &&
inp->inp_state != INPCB_STATE_DEAD) {
inp_list[i++] = inp;
}
}
return i;
}
/*
* tcpcb_to_otcpcb copies specific bits of a tcpcb to a otcpcb format.
* The otcpcb data structure is passed to user space and must not change.
*/
static void
tcpcb_to_otcpcb(struct tcpcb *tp, struct otcpcb *otp)
{
otp->t_segq = (uint32_t)VM_KERNEL_ADDRHASH(tp->t_segq.lh_first);
otp->t_dupacks = tp->t_dupacks;
otp->t_timer[TCPT_REXMT_EXT] = tp->t_timer[TCPT_REXMT];
otp->t_timer[TCPT_PERSIST_EXT] = tp->t_timer[TCPT_PERSIST];
otp->t_timer[TCPT_KEEP_EXT] = tp->t_timer[TCPT_KEEP];
otp->t_timer[TCPT_2MSL_EXT] = tp->t_timer[TCPT_2MSL];
otp->t_inpcb =
(_TCPCB_PTR(struct inpcb *))VM_KERNEL_ADDRHASH(tp->t_inpcb);
otp->t_state = tp->t_state;
otp->t_flags = tp->t_flags;
otp->t_force = (tp->t_flagsext & TF_FORCE) ? 1 : 0;
otp->snd_una = tp->snd_una;
otp->snd_max = tp->snd_max;
otp->snd_nxt = tp->snd_nxt;
otp->snd_up = tp->snd_up;
otp->snd_wl1 = tp->snd_wl1;
otp->snd_wl2 = tp->snd_wl2;
otp->iss = tp->iss;
otp->irs = tp->irs;
otp->rcv_nxt = tp->rcv_nxt;
otp->rcv_adv = tp->rcv_adv;
otp->rcv_wnd = tp->rcv_wnd;
otp->rcv_up = tp->rcv_up;
otp->snd_wnd = tp->snd_wnd;
otp->snd_cwnd = tp->snd_cwnd;
otp->snd_ssthresh = tp->snd_ssthresh;
otp->t_maxopd = tp->t_maxopd;
otp->t_rcvtime = tp->t_rcvtime;
otp->t_starttime = tp->t_starttime;
otp->t_rtttime = tp->t_rtttime;
otp->t_rtseq = tp->t_rtseq;
otp->t_rxtcur = tp->t_rxtcur;
otp->t_maxseg = tp->t_maxseg;
otp->t_srtt = tp->t_srtt;
otp->t_rttvar = tp->t_rttvar;
otp->t_rxtshift = tp->t_rxtshift;
otp->t_rttmin = tp->t_rttmin;
otp->t_rttupdated = tp->t_rttupdated;
otp->max_sndwnd = tp->max_sndwnd;
otp->t_softerror = tp->t_softerror;
otp->t_oobflags = tp->t_oobflags;
otp->t_iobc = tp->t_iobc;
otp->snd_scale = tp->snd_scale;
otp->rcv_scale = tp->rcv_scale;
otp->request_r_scale = tp->request_r_scale;
otp->requested_s_scale = tp->requested_s_scale;
otp->ts_recent = tp->ts_recent;
otp->ts_recent_age = tp->ts_recent_age;
otp->last_ack_sent = tp->last_ack_sent;
otp->cc_send = 0;
otp->cc_recv = 0;
otp->snd_recover = tp->snd_recover;
otp->snd_cwnd_prev = tp->snd_cwnd_prev;
otp->snd_ssthresh_prev = tp->snd_ssthresh_prev;
otp->t_badrxtwin = 0;
}
static int
tcp_pcblist SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int error, i = 0, n, sz;
struct inpcb **inp_list;
inp_gen_t gencnt;
struct xinpgen xig;
/*
* The process of preparing the TCB list is too time-consuming and
* resource-intensive to repeat twice on every request.
*/
lck_rw_lock_shared(&tcbinfo.ipi_lock);
if (req->oldptr == USER_ADDR_NULL) {
n = tcbinfo.ipi_count;
req->oldidx = 2 * (sizeof(xig))
+ (n + n / 8) * sizeof(struct xtcpcb);
lck_rw_done(&tcbinfo.ipi_lock);
return 0;
}
if (req->newptr != USER_ADDR_NULL) {
lck_rw_done(&tcbinfo.ipi_lock);
return EPERM;
}
/*
* OK, now we're committed to doing something.
*/
gencnt = tcbinfo.ipi_gencnt;
sz = n = tcbinfo.ipi_count;
bzero(&xig, sizeof(xig));
xig.xig_len = sizeof(xig);
xig.xig_count = n;
xig.xig_gen = gencnt;
xig.xig_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xig, sizeof(xig));
if (error) {
lck_rw_done(&tcbinfo.ipi_lock);
return error;
}
/*
* We are done if there is no pcb
*/
if (n == 0) {
lck_rw_done(&tcbinfo.ipi_lock);
return 0;
}
inp_list = kalloc_type(struct inpcb *, n, Z_WAITOK);
if (inp_list == NULL) {
lck_rw_done(&tcbinfo.ipi_lock);
return ENOMEM;
}
n = get_tcp_inp_list(inp_list, n, gencnt);
error = 0;
for (i = 0; i < n; i++) {
struct xtcpcb xt;
caddr_t inp_ppcb;
struct inpcb *inp;
inp = inp_list[i];
if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) {
continue;
}
socket_lock(inp->inp_socket, 1);
if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
socket_unlock(inp->inp_socket, 1);
continue;
}
if (inp->inp_gencnt > gencnt) {
socket_unlock(inp->inp_socket, 1);
continue;
}
bzero(&xt, sizeof(xt));
xt.xt_len = sizeof(xt);
/* XXX should avoid extra copy */
inpcb_to_compat(inp, &xt.xt_inp);
inp_ppcb = inp->inp_ppcb;
if (inp_ppcb != NULL) {
tcpcb_to_otcpcb((struct tcpcb *)(void *)inp_ppcb,
&xt.xt_tp);
} else {
bzero((char *) &xt.xt_tp, sizeof(xt.xt_tp));
}
if (inp->inp_socket) {
sotoxsocket(inp->inp_socket, &xt.xt_socket);
}
socket_unlock(inp->inp_socket, 1);
error = SYSCTL_OUT(req, &xt, sizeof(xt));
}
if (!error) {
/*
* Give the user an updated idea of our state.
* If the generation differs from what we told
* her before, she knows that something happened
* while we were processing this request, and it
* might be necessary to retry.
*/
bzero(&xig, sizeof(xig));
xig.xig_len = sizeof(xig);
xig.xig_gen = tcbinfo.ipi_gencnt;
xig.xig_sogen = so_gencnt;
xig.xig_count = tcbinfo.ipi_count;
error = SYSCTL_OUT(req, &xig, sizeof(xig));
}
lck_rw_done(&tcbinfo.ipi_lock);
kfree_type(struct inpcb *, sz, inp_list);
return error;
}
SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
#if XNU_TARGET_OS_OSX
static void
tcpcb_to_xtcpcb64(struct tcpcb *tp, struct xtcpcb64 *otp)
{
otp->t_segq = (uint32_t)VM_KERNEL_ADDRHASH(tp->t_segq.lh_first);
otp->t_dupacks = tp->t_dupacks;
otp->t_timer[TCPT_REXMT_EXT] = tp->t_timer[TCPT_REXMT];
otp->t_timer[TCPT_PERSIST_EXT] = tp->t_timer[TCPT_PERSIST];
otp->t_timer[TCPT_KEEP_EXT] = tp->t_timer[TCPT_KEEP];
otp->t_timer[TCPT_2MSL_EXT] = tp->t_timer[TCPT_2MSL];
otp->t_state = tp->t_state;
otp->t_flags = tp->t_flags;
otp->t_force = (tp->t_flagsext & TF_FORCE) ? 1 : 0;
otp->snd_una = tp->snd_una;
otp->snd_max = tp->snd_max;
otp->snd_nxt = tp->snd_nxt;
otp->snd_up = tp->snd_up;
otp->snd_wl1 = tp->snd_wl1;
otp->snd_wl2 = tp->snd_wl2;
otp->iss = tp->iss;
otp->irs = tp->irs;
otp->rcv_nxt = tp->rcv_nxt;
otp->rcv_adv = tp->rcv_adv;
otp->rcv_wnd = tp->rcv_wnd;
otp->rcv_up = tp->rcv_up;
otp->snd_wnd = tp->snd_wnd;
otp->snd_cwnd = tp->snd_cwnd;
otp->snd_ssthresh = tp->snd_ssthresh;
otp->t_maxopd = tp->t_maxopd;
otp->t_rcvtime = tp->t_rcvtime;
otp->t_starttime = tp->t_starttime;
otp->t_rtttime = tp->t_rtttime;
otp->t_rtseq = tp->t_rtseq;
otp->t_rxtcur = tp->t_rxtcur;
otp->t_maxseg = tp->t_maxseg;
otp->t_srtt = tp->t_srtt;
otp->t_rttvar = tp->t_rttvar;
otp->t_rxtshift = tp->t_rxtshift;
otp->t_rttmin = tp->t_rttmin;
otp->t_rttupdated = tp->t_rttupdated;
otp->max_sndwnd = tp->max_sndwnd;
otp->t_softerror = tp->t_softerror;
otp->t_oobflags = tp->t_oobflags;
otp->t_iobc = tp->t_iobc;
otp->snd_scale = tp->snd_scale;
otp->rcv_scale = tp->rcv_scale;
otp->request_r_scale = tp->request_r_scale;
otp->requested_s_scale = tp->requested_s_scale;
otp->ts_recent = tp->ts_recent;
otp->ts_recent_age = tp->ts_recent_age;
otp->last_ack_sent = tp->last_ack_sent;
otp->cc_send = 0;
otp->cc_recv = 0;
otp->snd_recover = tp->snd_recover;
otp->snd_cwnd_prev = tp->snd_cwnd_prev;
otp->snd_ssthresh_prev = tp->snd_ssthresh_prev;
otp->t_badrxtwin = 0;
}
static int
tcp_pcblist64 SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int error, i = 0, n, sz;
struct inpcb **inp_list;
inp_gen_t gencnt;
struct xinpgen xig;
/*
* The process of preparing the TCB list is too time-consuming and
* resource-intensive to repeat twice on every request.
*/
lck_rw_lock_shared(&tcbinfo.ipi_lock);
if (req->oldptr == USER_ADDR_NULL) {
n = tcbinfo.ipi_count;
req->oldidx = 2 * (sizeof(xig))
+ (n + n / 8) * sizeof(struct xtcpcb64);
lck_rw_done(&tcbinfo.ipi_lock);
return 0;
}
if (req->newptr != USER_ADDR_NULL) {
lck_rw_done(&tcbinfo.ipi_lock);
return EPERM;
}
/*
* OK, now we're committed to doing something.
*/
gencnt = tcbinfo.ipi_gencnt;
sz = n = tcbinfo.ipi_count;
bzero(&xig, sizeof(xig));
xig.xig_len = sizeof(xig);
xig.xig_count = n;
xig.xig_gen = gencnt;
xig.xig_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xig, sizeof(xig));
if (error) {
lck_rw_done(&tcbinfo.ipi_lock);
return error;
}
/*
* We are done if there is no pcb
*/
if (n == 0) {
lck_rw_done(&tcbinfo.ipi_lock);
return 0;
}
inp_list = kalloc_type(struct inpcb *, n, Z_WAITOK);
if (inp_list == NULL) {
lck_rw_done(&tcbinfo.ipi_lock);
return ENOMEM;
}
n = get_tcp_inp_list(inp_list, n, gencnt);
error = 0;
for (i = 0; i < n; i++) {
struct xtcpcb64 xt;
struct inpcb *inp;
inp = inp_list[i];
if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) {
continue;
}
socket_lock(inp->inp_socket, 1);
if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
socket_unlock(inp->inp_socket, 1);
continue;
}
if (inp->inp_gencnt > gencnt) {
socket_unlock(inp->inp_socket, 1);
continue;
}
bzero(&xt, sizeof(xt));
xt.xt_len = sizeof(xt);
inpcb_to_xinpcb64(inp, &xt.xt_inpcb);
xt.xt_inpcb.inp_ppcb =
(uint64_t)VM_KERNEL_ADDRHASH(inp->inp_ppcb);
if (inp->inp_ppcb != NULL) {
tcpcb_to_xtcpcb64((struct tcpcb *)inp->inp_ppcb,
&xt);
}
if (inp->inp_socket) {
sotoxsocket64(inp->inp_socket,
&xt.xt_inpcb.xi_socket);
}
socket_unlock(inp->inp_socket, 1);
error = SYSCTL_OUT(req, &xt, sizeof(xt));
}
if (!error) {
/*
* Give the user an updated idea of our state.
* If the generation differs from what we told
* her before, she knows that something happened
* while we were processing this request, and it
* might be necessary to retry.
*/
bzero(&xig, sizeof(xig));
xig.xig_len = sizeof(xig);
xig.xig_gen = tcbinfo.ipi_gencnt;
xig.xig_sogen = so_gencnt;
xig.xig_count = tcbinfo.ipi_count;
error = SYSCTL_OUT(req, &xig, sizeof(xig));
}
lck_rw_done(&tcbinfo.ipi_lock);
kfree_type(struct inpcb *, sz, inp_list);
return error;
}
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, pcblist64,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
tcp_pcblist64, "S,xtcpcb64", "List of active TCP connections");
#endif /* XNU_TARGET_OS_OSX */
static int
tcp_pcblist_n SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int error = 0;
error = get_pcblist_n(IPPROTO_TCP, req, &tcbinfo);
return error;
}
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, pcblist_n,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
tcp_pcblist_n, "S,xtcpcb_n", "List of active TCP connections");
static int
tcp_progress_probe_enable SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
return ntstat_tcp_progress_enable(req);
}
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, progress_enable,
CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY, 0, 0,
tcp_progress_probe_enable, "S", "Enable/disable TCP keepalive probing on the specified link(s)");
__private_extern__ void
tcp_get_ports_used(ifnet_t ifp, int protocol, uint32_t flags,
bitstr_t *bitfield)
{
inpcb_get_ports_used(ifp, protocol, flags, bitfield,
&tcbinfo);
}
__private_extern__ uint32_t
tcp_count_opportunistic(unsigned int ifindex, u_int32_t flags)
{
return inpcb_count_opportunistic(ifindex, &tcbinfo, flags);
}
__private_extern__ uint32_t
tcp_find_anypcb_byaddr(struct ifaddr *ifa)
{
#if SKYWALK
if (netns_is_enabled()) {
return netns_find_anyres_byaddr(ifa, IPPROTO_TCP);
} else
#endif /* SKYWALK */
return inpcb_find_anypcb_byaddr(ifa, &tcbinfo);
}
static void
tcp_handle_msgsize(struct ip *ip, struct inpcb *inp)
{
struct rtentry *rt = NULL;
u_short ifscope = IFSCOPE_NONE;
int mtu;
struct sockaddr_in icmpsrc = {
.sin_len = sizeof(struct sockaddr_in),
.sin_family = AF_INET, .sin_port = 0, .sin_addr = { .s_addr = 0 },
.sin_zero = { 0, 0, 0, 0, 0, 0, 0, 0 }
};
struct icmp *icp = NULL;
icp = (struct icmp *)(void *)
((caddr_t)ip - offsetof(struct icmp, icmp_ip));
icmpsrc.sin_addr = icp->icmp_ip.ip_dst;
/*
* MTU discovery:
* If we got a needfrag and there is a host route to the
* original destination, and the MTU is not locked, then
* set the MTU in the route to the suggested new value
* (if given) and then notify as usual. The ULPs will
* notice that the MTU has changed and adapt accordingly.
* If no new MTU was suggested, then we guess a new one
* less than the current value. If the new MTU is
* unreasonably small (defined by sysctl tcp_minmss), then
* we reset the MTU to the interface value and enable the
* lock bit, indicating that we are no longer doing MTU
* discovery.
*/
if (ROUTE_UNUSABLE(&(inp->inp_route)) == false) {
rt = inp->inp_route.ro_rt;
}
/*
* icmp6_mtudisc_update scopes the routing lookup
* to the incoming interface (delivered from mbuf
* packet header.
* That is mostly ok but for asymmetric networks
* that may be an issue.
* Frag needed OR Packet too big really communicates
* MTU for the out data path.
* Take the interface scope from cached route or
* the last outgoing interface from inp
*/
if (rt != NULL) {
ifscope = (rt->rt_ifp != NULL) ?
rt->rt_ifp->if_index : IFSCOPE_NONE;
} else {
ifscope = (inp->inp_last_outifp != NULL) ?
inp->inp_last_outifp->if_index : IFSCOPE_NONE;
}
if ((rt == NULL) ||
!(rt->rt_flags & RTF_HOST) ||
(rt->rt_flags & (RTF_CLONING | RTF_PRCLONING))) {
rt = rtalloc1_scoped(SA(&icmpsrc), 0, RTF_CLONING | RTF_PRCLONING, ifscope);
} else if (rt) {
RT_LOCK(rt);
rtref(rt);
RT_UNLOCK(rt);
}
if (rt != NULL) {
RT_LOCK(rt);
if ((rt->rt_flags & RTF_HOST) &&
!(rt->rt_rmx.rmx_locks & RTV_MTU)) {
mtu = ntohs(icp->icmp_nextmtu);
/*
* XXX Stock BSD has changed the following
* to compare with icp->icmp_ip.ip_len
* to converge faster when sent packet
* < route's MTU. We may want to adopt
* that change.
*/
if (mtu == 0) {
mtu = ip_next_mtu(rt->rt_rmx.
rmx_mtu, 1);
}
#if DEBUG_MTUDISC
printf("MTU for %s reduced to %d\n",
inet_ntop(AF_INET,
&icmpsrc.sin_addr, ipv4str,
sizeof(ipv4str)), mtu);
#endif
if (mtu < max(296, (tcp_minmss +
sizeof(struct tcpiphdr)))) {
rt->rt_rmx.rmx_locks |= RTV_MTU;
} else if (rt->rt_rmx.rmx_mtu > mtu) {
rt->rt_rmx.rmx_mtu = mtu;
}
}
RT_UNLOCK(rt);
rtfree(rt);
}
}
void
tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip, __unused struct ifnet *ifp)
{
tcp_seq icmp_tcp_seq;
struct ipctlparam *ctl_param = vip;
struct ip *ip = NULL;
struct mbuf *m = NULL;
struct in_addr faddr;
struct inpcb *inp;
struct tcpcb *tp;
struct tcphdr *th;
struct icmp *icp;
size_t off;
#if SKYWALK
union sockaddr_in_4_6 sock_laddr;
struct protoctl_ev_val prctl_ev_val;
#endif /* SKYWALK */
void (*notify)(struct inpcb *, int) = tcp_notify;
if (ctl_param != NULL) {
ip = ctl_param->ipc_icmp_ip;
icp = ctl_param->ipc_icmp;
m = ctl_param->ipc_m;
off = ctl_param->ipc_off;
} else {
ip = NULL;
icp = NULL;
m = NULL;
off = 0;
}
faddr = SIN(sa)->sin_addr;
if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) {
return;
}
if ((unsigned)cmd >= PRC_NCMDS) {
return;
}
/* Source quench is deprecated */
if (cmd == PRC_QUENCH) {
return;
}
if (cmd == PRC_MSGSIZE) {
notify = tcp_mtudisc;
} else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
cmd == PRC_UNREACH_PORT || cmd == PRC_UNREACH_PROTOCOL ||
cmd == PRC_TIMXCEED_INTRANS) && ip) {
notify = tcp_drop_syn_sent;
}
/*
* Hostdead is ugly because it goes linearly through all PCBs.
* XXX: We never get this from ICMP, otherwise it makes an
* excellent DoS attack on machines with many connections.
*/
else if (cmd == PRC_HOSTDEAD) {
ip = NULL;
} else if (inetctlerrmap[cmd] == 0 && !PRC_IS_REDIRECT(cmd)) {
return;
}
#if SKYWALK
bzero(&prctl_ev_val, sizeof(prctl_ev_val));
bzero(&sock_laddr, sizeof(sock_laddr));
#endif /* SKYWALK */
if (ip == NULL) {
in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
#if SKYWALK
protoctl_event_enqueue_nwk_wq_entry(ifp, NULL,
sa, 0, 0, IPPROTO_TCP, cmd, NULL);
#endif /* SKYWALK */
return;
}
/* Check if we can safely get the sport, dport and the sequence number from the tcp header. */
if (m == NULL ||
(m->m_len < off + (sizeof(unsigned short) + sizeof(unsigned short) + sizeof(tcp_seq)))) {
/* Insufficient length */
return;
}
th = (struct tcphdr*)(void*)(mtod(m, uint8_t*) + off);
icmp_tcp_seq = ntohl(th->th_seq);
inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
ip->ip_src, th->th_sport, 0, NULL);
if (inp == NULL ||
inp->inp_socket == NULL) {
#if SKYWALK
if (cmd == PRC_MSGSIZE) {
prctl_ev_val.val = ntohs(icp->icmp_nextmtu);
}
prctl_ev_val.tcp_seq_number = icmp_tcp_seq;
sock_laddr.sin.sin_family = AF_INET;
sock_laddr.sin.sin_len = sizeof(sock_laddr.sin);
sock_laddr.sin.sin_addr = ip->ip_src;
protoctl_event_enqueue_nwk_wq_entry(ifp,
SA(&sock_laddr), sa,
th->th_sport, th->th_dport, IPPROTO_TCP,
cmd, &prctl_ev_val);
#endif /* SKYWALK */
return;
}
socket_lock(inp->inp_socket, 1);
if (in_pcb_checkstate(inp, WNT_RELEASE, 1) ==
WNT_STOPUSING) {
socket_unlock(inp->inp_socket, 1);
return;
}
if (PRC_IS_REDIRECT(cmd)) {
/* signal EHOSTDOWN, as it flushes the cached route */
(*notify)(inp, EHOSTDOWN);
} else {
tp = intotcpcb(inp);
if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
if (cmd == PRC_MSGSIZE) {
tcp_handle_msgsize(ip, inp);
}
(*notify)(inp, inetctlerrmap[cmd]);
}
}
socket_unlock(inp->inp_socket, 1);
}
void
tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d, __unused struct ifnet *ifp)
{
tcp_seq icmp_tcp_seq;
struct in6_addr *dst;
void (*notify)(struct inpcb *, int) = tcp_notify;
struct ip6_hdr *ip6;
struct mbuf *m;
struct inpcb *inp;
struct tcpcb *tp;
struct icmp6_hdr *icmp6;
struct ip6ctlparam *ip6cp = NULL;
const struct sockaddr_in6 *sa6_src = NULL;
unsigned int mtu;
unsigned int off;
struct tcp_ports {
uint16_t th_sport;
uint16_t th_dport;
} t_ports;
#if SKYWALK
union sockaddr_in_4_6 sock_laddr;
struct protoctl_ev_val prctl_ev_val;
#endif /* SKYWALK */
if (sa->sa_family != AF_INET6 ||
sa->sa_len != sizeof(struct sockaddr_in6)) {
return;
}
/* Source quench is deprecated */
if (cmd == PRC_QUENCH) {
return;
}
if ((unsigned)cmd >= PRC_NCMDS) {
return;
}
/* if the parameter is from icmp6, decode it. */
if (d != NULL) {
ip6cp = (struct ip6ctlparam *)d;
icmp6 = ip6cp->ip6c_icmp6;
m = ip6cp->ip6c_m;
ip6 = ip6cp->ip6c_ip6;
off = ip6cp->ip6c_off;
sa6_src = ip6cp->ip6c_src;
dst = ip6cp->ip6c_finaldst;
} else {
m = NULL;
ip6 = NULL;
off = 0; /* fool gcc */
sa6_src = &sa6_any;
dst = NULL;
}
if (cmd == PRC_MSGSIZE) {
notify = tcp_mtudisc;
} else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) &&
ip6 != NULL) {
notify = tcp_drop_syn_sent;
}
/*
* Hostdead is ugly because it goes linearly through all PCBs.
* XXX: We never get this from ICMP, otherwise it makes an
* excellent DoS attack on machines with many connections.
*/
else if (cmd == PRC_HOSTDEAD) {
ip6 = NULL;
} else if (inet6ctlerrmap[cmd] == 0 && !PRC_IS_REDIRECT(cmd)) {
return;
}
#if SKYWALK
bzero(&prctl_ev_val, sizeof(prctl_ev_val));
bzero(&sock_laddr, sizeof(sock_laddr));
#endif /* SKYWALK */
if (ip6 == NULL) {
in6_pcbnotify(&tcbinfo, sa, 0, SA(sa6_src), 0, cmd, NULL, notify);
#if SKYWALK
protoctl_event_enqueue_nwk_wq_entry(ifp, NULL, sa,
0, 0, IPPROTO_TCP, cmd, NULL);
#endif /* SKYWALK */
return;
}
/* Check if we can safely get the ports from the tcp hdr */
if (m == NULL ||
(m->m_pkthdr.len <
(int32_t) (off + sizeof(struct tcp_ports)))) {
return;
}
bzero(&t_ports, sizeof(struct tcp_ports));
m_copydata(m, off, sizeof(struct tcp_ports), (caddr_t)&t_ports);
off += sizeof(struct tcp_ports);
if (m->m_pkthdr.len < (int32_t) (off + sizeof(tcp_seq))) {
return;
}
m_copydata(m, off, sizeof(tcp_seq), (caddr_t)&icmp_tcp_seq);
icmp_tcp_seq = ntohl(icmp_tcp_seq);
if (cmd == PRC_MSGSIZE) {
mtu = ntohl(icmp6->icmp6_mtu);
/*
* If no alternative MTU was proposed, or the proposed
* MTU was too small, set to the min.
*/
if (mtu < IPV6_MMTU) {
mtu = IPV6_MMTU - 8;
}
}
inp = in6_pcblookup_hash(&tcbinfo, &ip6->ip6_dst, t_ports.th_dport, ip6_input_getdstifscope(m),
&ip6->ip6_src, t_ports.th_sport, ip6_input_getsrcifscope(m), 0, NULL);
if (inp == NULL ||
inp->inp_socket == NULL) {
#if SKYWALK
if (cmd == PRC_MSGSIZE) {
prctl_ev_val.val = mtu;
}
prctl_ev_val.tcp_seq_number = icmp_tcp_seq;
sock_laddr.sin6.sin6_family = AF_INET6;
sock_laddr.sin6.sin6_len = sizeof(sock_laddr.sin6);
sock_laddr.sin6.sin6_addr = ip6->ip6_src;
protoctl_event_enqueue_nwk_wq_entry(ifp,
SA(&sock_laddr), sa,
t_ports.th_sport, t_ports.th_dport, IPPROTO_TCP,
cmd, &prctl_ev_val);
#endif /* SKYWALK */
return;
}
socket_lock(inp->inp_socket, 1);
if (in_pcb_checkstate(inp, WNT_RELEASE, 1) ==
WNT_STOPUSING) {
socket_unlock(inp->inp_socket, 1);
return;
}
if (PRC_IS_REDIRECT(cmd)) {
/* signal EHOSTDOWN, as it flushes the cached route */
(*notify)(inp, EHOSTDOWN);
} else {
tp = intotcpcb(inp);
if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
if (cmd == PRC_MSGSIZE) {
/*
* Only process the offered MTU if it
* is smaller than the current one.
*/
if (mtu < tp->t_maxseg +
(sizeof(struct tcphdr) + sizeof(struct ip6_hdr))) {
(*notify)(inp, inetctlerrmap[cmd]);
}
} else {
(*notify)(inp, inetctlerrmap[cmd]);
}
}
}
socket_unlock(inp->inp_socket, 1);
}
/*
* Following is where TCP initial sequence number generation occurs.
*
* There are two places where we must use initial sequence numbers:
* 1. In SYN-ACK packets.
* 2. In SYN packets.
*
* The ISNs in SYN-ACK packets have no monotonicity requirement,
* and should be as unpredictable as possible to avoid the possibility
* of spoofing and/or connection hijacking. To satisfy this
* requirement, SYN-ACK ISNs are generated via the arc4random()
* function. If exact RFC 1948 compliance is requested via sysctl,
* these ISNs will be generated just like those in SYN packets.
*
* The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
* depends on this property. In addition, these ISNs should be
* unguessable so as to prevent connection hijacking. To satisfy
* the requirements of this situation, the algorithm outlined in
* RFC 9293 is used to generate sequence numbers.
*
* For more information on the theory of operation, please see
* RFC 9293.
*
* Implementation details:
*
* Time is based off the system timer, and is corrected so that it
* increases by one megabyte per second. This allows for proper
* recycling on high speed LANs while still leaving over an hour
* before rollover.
*
*/
#define ISN_BYTES_PER_SECOND 1048576
tcp_seq
tcp_new_isn(struct tcpcb *tp)
{
uint32_t md5_buffer[4];
tcp_seq new_isn;
struct timespec timenow;
MD5_CTX isn_ctx;
nanouptime(&timenow);
/* Compute the md5 hash and return the ISN. */
MD5Init(&isn_ctx);
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport,
sizeof(u_short));
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport,
sizeof(u_short));
if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
sizeof(struct in6_addr));
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
sizeof(struct in6_addr));
} else {
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
sizeof(struct in_addr));
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
sizeof(struct in_addr));
}
MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
MD5Final((u_char *) &md5_buffer, &isn_ctx);
new_isn = (tcp_seq) md5_buffer[0];
/*
* We use a 128ns clock, which is equivalent to 600 Mbps and wraps at
* 549 seconds, thus safe for 2 MSL lifetime of TIME-WAIT-state.
*/
new_isn += (timenow.tv_sec * NSEC_PER_SEC + timenow.tv_nsec) >> 7;
if (__probable(tcp_randomize_timestamps)) {
tp->t_ts_offset = md5_buffer[1];
}
return new_isn;
}
/*
* When a specific ICMP unreachable message is received and the
* connection state is SYN-SENT, drop the connection. This behavior
* is controlled by the icmp_may_rst sysctl.
*/
void
tcp_drop_syn_sent(struct inpcb *inp, int errno)
{
struct tcpcb *tp = intotcpcb(inp);
if (tp && tp->t_state == TCPS_SYN_SENT) {
tcp_drop(tp, errno);
}
}
/*
* When `need fragmentation' ICMP is received, update our idea of the MSS
* based on the new value in the route. Also nudge TCP to send something,
* since we know the packet we just sent was dropped.
* This duplicates some code in the tcp_mss() function in tcp_input.c.
*/
void
tcp_mtudisc(struct inpcb *inp, __unused int errno)
{
struct tcpcb *tp = intotcpcb(inp);
struct rtentry *rt;
struct socket *so = inp->inp_socket;
int mss;
u_int32_t mtu;
u_int32_t protoHdrOverhead = sizeof(struct tcpiphdr);
int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
/*
* Nothing left to send after the socket is defunct or TCP is in the closed state
*/
if ((so->so_state & SS_DEFUNCT) || (tp != NULL && tp->t_state == TCPS_CLOSED)) {
return;
}
if (isipv6) {
protoHdrOverhead = sizeof(struct ip6_hdr) +
sizeof(struct tcphdr);
}
if (tp != NULL) {
if (isipv6) {
rt = tcp_rtlookup6(inp, IFSCOPE_NONE);
} else {
rt = tcp_rtlookup(inp, IFSCOPE_NONE);
}
if (!rt || !rt->rt_rmx.rmx_mtu) {
tp->t_maxopd = tp->t_maxseg =
isipv6 ? tcp_v6mssdflt :
tcp_mssdflt;
/* Route locked during lookup above */
if (rt != NULL) {
RT_UNLOCK(rt);
}
return;
}
mtu = rt->rt_rmx.rmx_mtu;
/* Route locked during lookup above */
RT_UNLOCK(rt);
#if NECP
// Adjust MTU if necessary.
mtu = necp_socket_get_effective_mtu(inp, mtu);
#endif /* NECP */
mss = mtu - protoHdrOverhead;
if (tp->t_maxopd) {
mss = min(mss, tp->t_maxopd);
}
/*
* XXX - The above conditional probably violates the TCP
* spec. The problem is that, since we don't know the
* other end's MSS, we are supposed to use a conservative
* default. But, if we do that, then MTU discovery will
* never actually take place, because the conservative
* default is much less than the MTUs typically seen
* on the Internet today. For the moment, we'll sweep
* this under the carpet.
*
* The conservative default might not actually be a problem
* if the only case this occurs is when sending an initial
* SYN with options and data to a host we've never talked
* to before. Then, they will reply with an MSS value which
* will get recorded and the new parameters should get
* recomputed. For Further Study.
*/
if (tp->t_maxopd <= mss) {
return;
}
tp->t_maxopd = mss;
if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
(tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP) {
mss -= TCPOLEN_TSTAMP_APPA;
}
#if MPTCP
mss -= mptcp_adj_mss(tp, TRUE);
#endif
if (so->so_snd.sb_hiwat < mss) {
mss = so->so_snd.sb_hiwat;
}
tp->t_maxseg = mss;
ASSERT(tp->t_maxseg);
/*
* Reset the slow-start flight size as it may depends on the
* new MSS
*/
if (CC_ALGO(tp)->cwnd_init != NULL) {
CC_ALGO(tp)->cwnd_init(tp);
}
if (TCP_USE_RLEDBAT(tp, so) && tcp_cc_rledbat.rwnd_init != NULL) {
tcp_cc_rledbat.rwnd_init(tp);
}
tcpstat.tcps_mturesent++;
tp->t_rtttime = 0;
tp->snd_nxt = tp->snd_una;
tcp_output(tp);
}
}
/*
* Look-up the routing entry to the peer of this inpcb. If no route
* is found and it cannot be allocated the return NULL. This routine
* is called by TCP routines that access the rmx structure and by tcp_mss
* to get the interface MTU. If a route is found, this routine will
* hold the rtentry lock; the caller is responsible for unlocking.
*/
struct rtentry *
tcp_rtlookup(struct inpcb *inp, unsigned int input_ifscope)
{
struct route *ro;
struct rtentry *rt;
struct tcpcb *tp;
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
ro = &inp->inp_route;
if ((rt = ro->ro_rt) != NULL) {
RT_LOCK(rt);
}
if (ROUTE_UNUSABLE(ro)) {
if (rt != NULL) {
RT_UNLOCK(rt);
rt = NULL;
}
ROUTE_RELEASE(ro);
/* No route yet, so try to acquire one */
if (inp->inp_faddr.s_addr != INADDR_ANY) {
unsigned int ifscope;
ro->ro_dst.sa_family = AF_INET;
ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
SIN(&ro->ro_dst)->sin_addr = inp->inp_faddr;
/*
* If the socket was bound to an interface, then
* the bound-to-interface takes precedence over
* the inbound interface passed in by the caller
* (if we get here as part of the output path then
* input_ifscope is IFSCOPE_NONE).
*/
ifscope = (inp->inp_flags & INP_BOUND_IF) ?
inp->inp_boundifp->if_index : input_ifscope;
rtalloc_scoped(ro, ifscope);
if ((rt = ro->ro_rt) != NULL) {
RT_LOCK(rt);
}
}
}
if (rt != NULL) {
RT_LOCK_ASSERT_HELD(rt);
}
/*
* Update MTU discovery determination. Don't do it if:
* 1) it is disabled via the sysctl
* 2) the route isn't up
* 3) the MTU is locked (if it is, then discovery has been
* disabled)
*/
tp = intotcpcb(inp);
if (!path_mtu_discovery || ((rt != NULL) &&
(!(rt->rt_flags & RTF_UP) || (rt->rt_rmx.rmx_locks & RTV_MTU)))) {
tp->t_flags &= ~TF_PMTUD;
} else {
tp->t_flags |= TF_PMTUD;
}
if (rt != NULL && rt->rt_ifp != NULL) {
somultipages(inp->inp_socket,
(rt->rt_ifp->if_hwassist & IFNET_MULTIPAGES));
tcp_set_tso(tp, rt->rt_ifp);
soif2kcl(inp->inp_socket,
(rt->rt_ifp->if_eflags & IFEF_2KCL));
tcp_set_ecn(tp, rt->rt_ifp);
if (inp->inp_last_outifp == NULL) {
inp->inp_last_outifp = rt->rt_ifp;
#if SKYWALK
if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
netns_set_ifnet(&inp->inp_netns_token,
inp->inp_last_outifp);
}
#endif /* SKYWALK */
}
}
/* Note if the peer is local */
if (rt != NULL && !(rt->rt_ifp->if_flags & IFF_POINTOPOINT) &&
(rt->rt_gateway->sa_family == AF_LINK ||
rt->rt_ifp->if_flags & IFF_LOOPBACK ||
in_localaddr(inp->inp_faddr))) {
tp->t_flags |= TF_LOCAL;
}
/*
* Caller needs to call RT_UNLOCK(rt).
*/
return rt;
}
struct rtentry *
tcp_rtlookup6(struct inpcb *inp, unsigned int input_ifscope)
{
struct route_in6 *ro6;
struct rtentry *rt;
struct tcpcb *tp;
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
ro6 = &inp->in6p_route;
if ((rt = ro6->ro_rt) != NULL) {
RT_LOCK(rt);
}
if (ROUTE_UNUSABLE(ro6)) {
if (rt != NULL) {
RT_UNLOCK(rt);
rt = NULL;
}
ROUTE_RELEASE(ro6);
/* No route yet, so try to acquire one */
if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
struct sockaddr_in6 *dst6;
unsigned int ifscope;
dst6 = SIN6(&ro6->ro_dst);
dst6->sin6_family = AF_INET6;
dst6->sin6_len = sizeof(*dst6);
dst6->sin6_addr = inp->in6p_faddr;
/*
* If the socket was bound to an interface, then
* the bound-to-interface takes precedence over
* the inbound interface passed in by the caller
* (if we get here as part of the output path then
* input_ifscope is IFSCOPE_NONE).
*/
ifscope = (inp->inp_flags & INP_BOUND_IF) ?
inp->inp_boundifp->if_index : input_ifscope;
rtalloc_scoped((struct route *)ro6, ifscope);
if ((rt = ro6->ro_rt) != NULL) {
RT_LOCK(rt);
}
}
}
if (rt != NULL) {
RT_LOCK_ASSERT_HELD(rt);
}
/*
* Update path MTU Discovery determination
* while looking up the route:
* 1) we have a valid route to the destination
* 2) the MTU is not locked (if it is, then discovery has been
* disabled)
*/
tp = intotcpcb(inp);
/*
* Update MTU discovery determination. Don't do it if:
* 1) it is disabled via the sysctl
* 2) the route isn't up
* 3) the MTU is locked (if it is, then discovery has been
* disabled)
*/
if (!path_mtu_discovery || ((rt != NULL) &&
(!(rt->rt_flags & RTF_UP) || (rt->rt_rmx.rmx_locks & RTV_MTU)))) {
tp->t_flags &= ~TF_PMTUD;
} else {
tp->t_flags |= TF_PMTUD;
}
if (rt != NULL && rt->rt_ifp != NULL) {
somultipages(inp->inp_socket,
(rt->rt_ifp->if_hwassist & IFNET_MULTIPAGES));
tcp_set_tso(tp, rt->rt_ifp);
soif2kcl(inp->inp_socket,
(rt->rt_ifp->if_eflags & IFEF_2KCL));
tcp_set_ecn(tp, rt->rt_ifp);
if (inp->inp_last_outifp == NULL) {
inp->inp_last_outifp = rt->rt_ifp;
#if SKYWALK
if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
netns_set_ifnet(&inp->inp_netns_token,
inp->inp_last_outifp);
}
#endif /* SKYWALK */
}
/* Note if the peer is local */
if (!(rt->rt_ifp->if_flags & IFF_POINTOPOINT) &&
(IN6_IS_ADDR_LOOPBACK(&inp->in6p_faddr) ||
IN6_IS_ADDR_LINKLOCAL(&inp->in6p_faddr) ||
rt->rt_gateway->sa_family == AF_LINK ||
in6_localaddr(&inp->in6p_faddr))) {
tp->t_flags |= TF_LOCAL;
}
}
/*
* Caller needs to call RT_UNLOCK(rt).
*/
return rt;
}
#if IPSEC
/* compute ESP/AH header size for TCP, including outer IP header. */
size_t
ipsec_hdrsiz_tcp(struct tcpcb *tp)
{
struct inpcb *inp;
struct mbuf *m;
size_t hdrsiz;
struct ip *ip;
struct ip6_hdr *ip6 = NULL;
struct tcphdr *th;
if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL)) {
return 0;
}
MGETHDR(m, M_DONTWAIT, MT_DATA); /* MAC-OK */
if (!m) {
return 0;
}
if ((inp->inp_vflag & INP_IPV6) != 0) {
ip6 = mtod(m, struct ip6_hdr *);
th = (struct tcphdr *)(void *)(ip6 + 1);
m->m_pkthdr.len = m->m_len =
sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
tcp_fillheaders(m, tp, ip6, th);
hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
} else {
ip = mtod(m, struct ip *);
th = (struct tcphdr *)(ip + 1);
m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
tcp_fillheaders(m, tp, ip, th);
hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
}
m_free(m);
return hdrsiz;
}
#endif /* IPSEC */
int
tcp_lock(struct socket *so, int refcount, void *lr)
{
void *lr_saved;
if (lr == NULL) {
lr_saved = __builtin_return_address(0);
} else {
lr_saved = lr;
}
retry:
if (so->so_pcb != NULL) {
if (so->so_flags & SOF_MP_SUBFLOW) {
struct mptcb *mp_tp = tptomptp(sototcpcb(so));
struct socket *mp_so = mptetoso(mp_tp->mpt_mpte);
socket_lock(mp_so, refcount);
/*
* Check if we became non-MPTCP while waiting for the lock.
* If yes, we have to retry to grab the right lock.
*/
if (!(so->so_flags & SOF_MP_SUBFLOW)) {
socket_unlock(mp_so, refcount);
goto retry;
}
} else {
lck_mtx_lock(&((struct inpcb *)so->so_pcb)->inpcb_mtx);
if (so->so_flags & SOF_MP_SUBFLOW) {
/*
* While waiting for the lock, we might have
* become MPTCP-enabled (see mptcp_subflow_socreate).
*/
lck_mtx_unlock(&((struct inpcb *)so->so_pcb)->inpcb_mtx);
goto retry;
}
}
} else {
panic("tcp_lock: so=%p NO PCB! lr=%p lrh= %s",
so, lr_saved, solockhistory_nr(so));
/* NOTREACHED */
}
if (so->so_usecount < 0) {
panic("tcp_lock: so=%p so_pcb=%p lr=%p ref=%x lrh= %s",
so, so->so_pcb, lr_saved, so->so_usecount,
solockhistory_nr(so));
/* NOTREACHED */
}
if (refcount) {
so->so_usecount++;
}
so->lock_lr[so->next_lock_lr] = lr_saved;
so->next_lock_lr = (so->next_lock_lr + 1) % SO_LCKDBG_MAX;
return 0;
}
int
tcp_unlock(struct socket *so, int refcount, void *lr)
{
void *lr_saved;
if (lr == NULL) {
lr_saved = __builtin_return_address(0);
} else {
lr_saved = lr;
}
#ifdef MORE_TCPLOCK_DEBUG
printf("tcp_unlock: so=0x%llx sopcb=0x%llx lock=0x%llx ref=%x "
"lr=0x%llx\n", (uint64_t)VM_KERNEL_ADDRPERM(so),
(uint64_t)VM_KERNEL_ADDRPERM(so->so_pcb),
(uint64_t)VM_KERNEL_ADDRPERM(&(sotoinpcb(so)->inpcb_mtx)),
so->so_usecount, (uint64_t)VM_KERNEL_ADDRPERM(lr_saved));
#endif
if (refcount) {
so->so_usecount--;
}
if (so->so_usecount < 0) {
panic("tcp_unlock: so=%p usecount=%x lrh= %s",
so, so->so_usecount, solockhistory_nr(so));
/* NOTREACHED */
}
if (so->so_pcb == NULL) {
panic("tcp_unlock: so=%p NO PCB usecount=%x lr=%p lrh= %s",
so, so->so_usecount, lr_saved, solockhistory_nr(so));
/* NOTREACHED */
} else {
so->unlock_lr[so->next_unlock_lr] = lr_saved;
so->next_unlock_lr = (so->next_unlock_lr + 1) % SO_LCKDBG_MAX;
if (so->so_flags & SOF_MP_SUBFLOW) {
struct mptcb *mp_tp = tptomptp(sototcpcb(so));
struct socket *mp_so = mptetoso(mp_tp->mpt_mpte);
socket_lock_assert_owned(mp_so);
socket_unlock(mp_so, refcount);
} else {
LCK_MTX_ASSERT(&((struct inpcb *)so->so_pcb)->inpcb_mtx,
LCK_MTX_ASSERT_OWNED);
lck_mtx_unlock(&((struct inpcb *)so->so_pcb)->inpcb_mtx);
}
}
return 0;
}
lck_mtx_t *
tcp_getlock(struct socket *so, int flags)
{
struct inpcb *inp = sotoinpcb(so);
if (so->so_pcb) {
if (so->so_usecount < 0) {
panic("tcp_getlock: so=%p usecount=%x lrh= %s",
so, so->so_usecount, solockhistory_nr(so));
}
if (so->so_flags & SOF_MP_SUBFLOW) {
struct mptcb *mp_tp = tptomptp(sototcpcb(so));
struct socket *mp_so = mptetoso(mp_tp->mpt_mpte);
return mp_so->so_proto->pr_getlock(mp_so, flags);
} else {
return &inp->inpcb_mtx;
}
} else {
panic("tcp_getlock: so=%p NULL so_pcb %s",
so, solockhistory_nr(so));
return so->so_proto->pr_domain->dom_mtx;
}
}
/*
* Determine if we can grow the recieve socket buffer to avoid sending
* a zero window update to the peer. We allow even socket buffers that
* have fixed size (set by the application) to grow if the resource
* constraints are met. They will also be trimmed after the application
* reads data.
*/
static void
tcp_sbrcv_grow_rwin(struct tcpcb *tp, struct sockbuf *sb)
{
u_int32_t rcvbufinc = tp->t_maxseg << 4;
u_int32_t rcvbuf = sb->sb_hiwat;
struct socket *so = tp->t_inpcb->inp_socket;
if (tcp_recv_bg == 1 || IS_TCP_RECV_BG(so)) {
return;
}
if (tcp_do_autorcvbuf == 1 &&
(tp->t_flags & TF_SLOWLINK) == 0 &&
(so->so_flags1 & SOF1_EXTEND_BK_IDLE_WANTED) == 0 &&
(rcvbuf - sb->sb_cc) < rcvbufinc &&
rcvbuf < tcp_autorcvbuf_max &&
(sb->sb_idealsize > 0 &&
sb->sb_hiwat <= (sb->sb_idealsize + rcvbufinc))) {
sbreserve(sb,
min((sb->sb_hiwat + rcvbufinc), tcp_autorcvbuf_max));
}
}
int32_t
tcp_sbspace(struct tcpcb *tp)
{
struct socket *so = tp->t_inpcb->inp_socket;
struct sockbuf *sb = &so->so_rcv;
u_int32_t rcvbuf;
int32_t space;
int32_t pending = 0;
if (so->so_flags & SOF_MP_SUBFLOW) {
/* We still need to grow TCP's buffer to have a BDP-estimate */
tcp_sbrcv_grow_rwin(tp, sb);
return mptcp_sbspace(tptomptp(tp));
}
tcp_sbrcv_grow_rwin(tp, sb);
/* hiwat might have changed */
rcvbuf = sb->sb_hiwat;
space = ((int32_t) imin((rcvbuf - sb->sb_cc),
(sb->sb_mbmax - sb->sb_mbcnt)));
if (space < 0) {
space = 0;
}
#if CONTENT_FILTER
/* Compensate for data being processed by content filters */
pending = cfil_sock_data_space(sb);
#endif /* CONTENT_FILTER */
if (pending > space) {
space = 0;
} else {
space -= pending;
}
/*
* Avoid increasing window size if the current window
* is already very low, we could be in "persist" mode and
* we could break some apps (see rdar://5409343)
*/
if (space < tp->t_maxseg) {
return space;
}
/* Clip window size for slower link */
if (((tp->t_flags & TF_SLOWLINK) != 0) && slowlink_wsize > 0) {
return imin(space, slowlink_wsize);
}
return space;
}
/*
* Checks TCP Segment Offloading capability for a given connection
* and interface pair.
*/
void
tcp_set_tso(struct tcpcb *tp, struct ifnet *ifp)
{
struct inpcb *inp;
int isipv6;
struct ifnet *tunnel_ifp = NULL;
#define IFNET_TSO_MASK (IFNET_TSO_IPV6 | IFNET_TSO_IPV4)
tp->t_flags &= ~TF_TSO;
/*
* Bail if there's a non-TSO-capable filter on the interface.
*/
if (ifp == NULL || ifp->if_flt_no_tso_count > 0) {
return;
}
inp = tp->t_inpcb;
isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
#if MPTCP
/*
* We can't use TSO if this tcpcb belongs to an MPTCP session.
*/
if (inp->inp_socket->so_flags & SOF_MP_SUBFLOW) {
return;
}
#endif
/*
* We can't use TSO if the TSO capability of the tunnel interface does
* not match the capability of another interface known by TCP
*/
if (inp->inp_policyresult.results.result == NECP_KERNEL_POLICY_RESULT_IP_TUNNEL) {
u_int tunnel_if_index = inp->inp_policyresult.results.result_parameter.tunnel_interface_index;
if (tunnel_if_index != 0) {
ifnet_head_lock_shared();
tunnel_ifp = ifindex2ifnet[tunnel_if_index];
ifnet_head_done();
}
if (tunnel_ifp == NULL) {
return;
}
if ((ifp->if_hwassist & IFNET_TSO_MASK) != (tunnel_ifp->if_hwassist & IFNET_TSO_MASK)) {
if (tso_debug > 0) {
os_log(OS_LOG_DEFAULT,
"%s: %u > %u TSO 0 tunnel_ifp %s hwassist mismatch with ifp %s",
__func__,
ntohs(tp->t_inpcb->inp_lport), ntohs(tp->t_inpcb->inp_fport),
tunnel_ifp->if_xname, ifp->if_xname);
}
return;
}
if (inp->inp_last_outifp != NULL &&
(inp->inp_last_outifp->if_hwassist & IFNET_TSO_MASK) != (tunnel_ifp->if_hwassist & IFNET_TSO_MASK)) {
if (tso_debug > 0) {
os_log(OS_LOG_DEFAULT,
"%s: %u > %u TSO 0 tunnel_ifp %s hwassist mismatch with inp_last_outifp %s",
__func__,
ntohs(tp->t_inpcb->inp_lport), ntohs(tp->t_inpcb->inp_fport),
tunnel_ifp->if_xname, inp->inp_last_outifp->if_xname);
}
return;
}
if ((inp->inp_flags & INP_BOUND_IF) && inp->inp_boundifp != NULL &&
(inp->inp_boundifp->if_hwassist & IFNET_TSO_MASK) != (tunnel_ifp->if_hwassist & IFNET_TSO_MASK)) {
if (tso_debug > 0) {
os_log(OS_LOG_DEFAULT,
"%s: %u > %u TSO 0 tunnel_ifp %s hwassist mismatch with inp_boundifp %s",
__func__,
ntohs(tp->t_inpcb->inp_lport), ntohs(tp->t_inpcb->inp_fport),
tunnel_ifp->if_xname, inp->inp_boundifp->if_xname);
}
return;
}
}
if (isipv6) {
if (ifp->if_hwassist & IFNET_TSO_IPV6) {
tp->t_flags |= TF_TSO;
if (ifp->if_tso_v6_mtu != 0) {
tp->tso_max_segment_size = ifp->if_tso_v6_mtu;
} else {
tp->tso_max_segment_size = TCP_MAXWIN;
}
}
} else {
if (ifp->if_hwassist & IFNET_TSO_IPV4) {
tp->t_flags |= TF_TSO;
if (ifp->if_tso_v4_mtu != 0) {
tp->tso_max_segment_size = ifp->if_tso_v4_mtu;
} else {
tp->tso_max_segment_size = TCP_MAXWIN;
}
if (INTF_ADJUST_MTU_FOR_CLAT46(ifp)) {
tp->tso_max_segment_size -=
CLAT46_HDR_EXPANSION_OVERHD;
}
}
}
if (tso_debug > 1) {
os_log(OS_LOG_DEFAULT, "%s: %u > %u TSO %d ifp %s",
__func__,
ntohs(tp->t_inpcb->inp_lport),
ntohs(tp->t_inpcb->inp_fport),
(tp->t_flags & TF_TSO) != 0,
ifp != NULL ? ifp->if_xname : "<NULL>");
}
}
#define TIMEVAL_TO_TCPHZ(_tv_) ((uint32_t)((_tv_).tv_sec * TCP_RETRANSHZ + \
(_tv_).tv_usec / TCP_RETRANSHZ_TO_USEC))
/*
* Function to calculate the tcp clock. The tcp clock will get updated
* at the boundaries of the tcp layer. This is done at 3 places:
* 1. Right before processing an input tcp packet
* 2. Whenever a connection wants to access the network using tcp_usrreqs
* 3. When a tcp timer fires or before tcp slow timeout
*
*/
void
calculate_tcp_clock(void)
{
struct timeval tv = tcp_uptime;
struct timeval interval = {.tv_sec = 0, .tv_usec = TCP_RETRANSHZ_TO_USEC};
struct timeval now, hold_now;
uint32_t incr = 0;
microuptime(&now);
/*
* Update coarse-grained networking timestamp (in sec.); the idea
* is to update the counter returnable via net_uptime() when
* we read time.
*/
net_update_uptime_with_time(&now);
timevaladd(&tv, &interval);
if (timevalcmp(&now, &tv, >)) {
/* time to update the clock */
lck_spin_lock(&tcp_uptime_lock);
if (timevalcmp(&tcp_uptime, &now, >=)) {
/* clock got updated while waiting for the lock */
lck_spin_unlock(&tcp_uptime_lock);
return;
}
microuptime(&now);
hold_now = now;
tv = tcp_uptime;
timevalsub(&now, &tv);
incr = TIMEVAL_TO_TCPHZ(now);
/* Account for the previous remainder */
uint32_t remaining_us = (now.tv_usec % TCP_RETRANSHZ_TO_USEC) +
tcp_now_remainder_us;
if (remaining_us >= TCP_RETRANSHZ_TO_USEC) {
incr += (remaining_us / TCP_RETRANSHZ_TO_USEC);
}
if (incr > 0) {
tcp_uptime = hold_now;
tcp_now_remainder_us = remaining_us % TCP_RETRANSHZ_TO_USEC;
tcp_now += incr;
}
lck_spin_unlock(&tcp_uptime_lock);
}
}
uint64_t
microuptime_ns(void)
{
uint64_t abstime = mach_absolute_time();
uint64_t ns = 0;
absolutetime_to_nanoseconds(abstime, &ns);
return ns;
}
#define MAX_BURST_INTERVAL_KERNEL_PACING_NSEC \
(10 * NSEC_PER_MSEC) // Don't delay more than 10ms between two bursts
static uint64_t
tcp_pacer_get_packet_interval(struct tcpcb *tp, uint16_t pkt_len)
{
if (tp->t_pacer.rate == 0) {
os_log_error(OS_LOG_DEFAULT,
"pacer rate shouldn't be 0, CCA is %s (cwnd=%u, smoothed rtt=%u ms)",
CC_ALGO(tp)->name, tp->snd_cwnd, tp->t_srtt >> TCP_RTT_SHIFT);
return MAX_BURST_INTERVAL_KERNEL_PACING_NSEC;
}
uint64_t interval = (uint64_t)pkt_len * NSEC_PER_SEC / tp->t_pacer.rate;
if (interval > MAX_BURST_INTERVAL_KERNEL_PACING_NSEC) {
interval = MAX_BURST_INTERVAL_KERNEL_PACING_NSEC;
}
return interval;
}
/* Return packet tx_time in nanoseconds (absolute as well as continuous) */
uint64_t
tcp_pacer_get_packet_tx_time(struct tcpcb *tp, uint16_t pkt_len)
{
/*
* size is a static variable as this function is called
* multiple times for mss-sized packets and for high-speeds,
* we'd want to send multiple packets that add up to burst_size
* at the same time.
*/
static uint32_t size = 0;
uint64_t now = microuptime_ns();
if (pkt_len == 0 || now == 0) {
return now;
}
if (tp->t_pacer.packet_tx_time == 0) {
tp->t_pacer.packet_tx_time = now;
size = pkt_len;
} else {
size += pkt_len;
if (size > tp->t_pacer.tso_burst_size) {
/*
* Increment tx_time by packet_interval and
* reset size to this packet's len
*/
tp->t_pacer.packet_tx_time +=
tcp_pacer_get_packet_interval(tp, pkt_len);
size = pkt_len;
if (now > tp->t_pacer.packet_tx_time) {
/*
* If current time is bigger, then application
* has already paced the packet. Also, we can't
* set tx_time in the past.
*/
tp->t_pacer.packet_tx_time = now;
}
}
}
return tp->t_pacer.packet_tx_time;
}
void
tcp_set_mbuf_tx_time(struct mbuf *m, uint64_t tx_time)
{
struct m_tag *tag = NULL;
tag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_AQM,
sizeof(uint64_t), M_WAITOK, m);
if (tag != NULL) {
m_tag_prepend(m, tag);
*(uint64_t *)tag->m_tag_data = tx_time;
}
}
/*
* Compute receive window scaling that we are going to request
* for this connection based on sb_hiwat. Try to leave some
* room to potentially increase the window size upto a maximum
* defined by the constant tcp_autorcvbuf_max.
*/
void
tcp_set_max_rwinscale(struct tcpcb *tp, struct socket *so)
{
uint32_t maxsockbufsize;
tp->request_r_scale = MAX((uint8_t)tcp_win_scale, tp->request_r_scale);
maxsockbufsize = ((so->so_rcv.sb_flags & SB_USRSIZE) != 0) ?
so->so_rcv.sb_hiwat : tcp_autorcvbuf_max;
/*
* Window scale should not exceed what is needed
* to send the max receive window size; adding 1 to TCP_MAXWIN
* ensures that.
*/
while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
((TCP_MAXWIN + 1) << tp->request_r_scale) < maxsockbufsize) {
tp->request_r_scale++;
}
tp->request_r_scale = MIN(tp->request_r_scale, TCP_MAX_WINSHIFT);
}
int
tcp_notsent_lowat_check(struct socket *so)
{
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp = NULL;
int notsent = 0;
if (inp != NULL) {
tp = intotcpcb(inp);
}
if (tp == NULL) {
return 0;
}
notsent = so->so_snd.sb_cc -
(tp->snd_nxt - tp->snd_una);
/*
* When we send a FIN or SYN, not_sent can be negative.
* In that case also we need to send a write event to the
* process if it is waiting. In the FIN case, it will
* get an error from send because cantsendmore will be set.
*/
if (notsent <= tp->t_notsent_lowat) {
return 1;
}
/*
* When Nagle's algorithm is not disabled, it is better
* to wakeup the client until there is atleast one
* maxseg of data to write.
*/
if ((tp->t_flags & TF_NODELAY) == 0 &&
notsent > 0 && notsent < tp->t_maxseg) {
return 1;
}
return 0;
}
void
tcp_rxtseg_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end)
{
struct tcp_rxt_seg *rxseg = NULL, *prev = NULL, *next = NULL;
uint16_t rxcount = 0;
if (SLIST_EMPTY(&tp->t_rxt_segments)) {
tp->t_dsack_lastuna = tp->snd_una;
}
/*
* First check if there is a segment already existing for this
* sequence space.
*/
SLIST_FOREACH(rxseg, &tp->t_rxt_segments, rx_link) {
if (SEQ_GT(rxseg->rx_start, start)) {
break;
}
prev = rxseg;
}
next = rxseg;
/* check if prev seg is for this sequence */
if (prev != NULL && SEQ_LEQ(prev->rx_start, start) &&
SEQ_GEQ(prev->rx_end, end)) {
prev->rx_count++;
return;
}
/*
* There are a couple of possibilities at this point.
* 1. prev overlaps with the beginning of this sequence
* 2. next overlaps with the end of this sequence
* 3. there is no overlap.
*/
if (prev != NULL && SEQ_GT(prev->rx_end, start)) {
if (prev->rx_start == start && SEQ_GT(end, prev->rx_end)) {
start = prev->rx_end + 1;
prev->rx_count++;
} else {
prev->rx_end = (start - 1);
rxcount = prev->rx_count;
}
}
if (next != NULL && SEQ_LT(next->rx_start, end)) {
if (SEQ_LEQ(next->rx_end, end)) {
end = next->rx_start - 1;
next->rx_count++;
} else {
next->rx_start = end + 1;
rxcount = next->rx_count;
}
}
if (!SEQ_LT(start, end)) {
return;
}
if (tcp_rxt_seg_max > 0 && tp->t_rxt_seg_count >= tcp_rxt_seg_max) {
rxseg = SLIST_FIRST(&tp->t_rxt_segments);
if (prev == rxseg) {
prev = NULL;
}
SLIST_REMOVE(&tp->t_rxt_segments, rxseg,
tcp_rxt_seg, rx_link);
tcp_rxt_seg_drop++;
tp->t_rxt_seg_drop++;
TCP_LOG(tp, "removed rxseg list overflow %u:%u ",
rxseg->rx_start, rxseg->rx_end);
zfree(tcp_rxt_seg_zone, rxseg);
tp->t_rxt_seg_count -= 1;
}
rxseg = zalloc_flags(tcp_rxt_seg_zone, Z_WAITOK | Z_ZERO | Z_NOFAIL);
rxseg->rx_start = start;
rxseg->rx_end = end;
rxseg->rx_count = rxcount + 1;
if (prev != NULL) {
SLIST_INSERT_AFTER(prev, rxseg, rx_link);
} else {
SLIST_INSERT_HEAD(&tp->t_rxt_segments, rxseg, rx_link);
}
tp->t_rxt_seg_count += 1;
}
struct tcp_rxt_seg *
tcp_rxtseg_find(struct tcpcb *tp, tcp_seq start, tcp_seq end)
{
struct tcp_rxt_seg *rxseg;
if (SLIST_EMPTY(&tp->t_rxt_segments)) {
return NULL;
}
SLIST_FOREACH(rxseg, &tp->t_rxt_segments, rx_link) {
if (SEQ_LEQ(rxseg->rx_start, start) &&
SEQ_GEQ(rxseg->rx_end, end)) {
return rxseg;
}
if (SEQ_GT(rxseg->rx_start, start)) {
break;
}
}
return NULL;
}
void
tcp_rxtseg_set_spurious(struct tcpcb *tp, tcp_seq start, tcp_seq end)
{
struct tcp_rxt_seg *rxseg;
if (SLIST_EMPTY(&tp->t_rxt_segments)) {
return;
}
SLIST_FOREACH(rxseg, &tp->t_rxt_segments, rx_link) {
if (SEQ_GEQ(rxseg->rx_start, start) &&
SEQ_LEQ(rxseg->rx_end, end)) {
/*
* If the segment was retransmitted only once, mark it as
* spurious.
*/
if (rxseg->rx_count == 1) {
rxseg->rx_flags |= TCP_RXT_SPURIOUS;
}
}
if (SEQ_GEQ(rxseg->rx_start, end)) {
break;
}
}
return;
}
void
tcp_rxtseg_clean(struct tcpcb *tp)
{
struct tcp_rxt_seg *rxseg, *next;
SLIST_FOREACH_SAFE(rxseg, &tp->t_rxt_segments, rx_link, next) {
SLIST_REMOVE(&tp->t_rxt_segments, rxseg,
tcp_rxt_seg, rx_link);
zfree(tcp_rxt_seg_zone, rxseg);
}
tp->t_rxt_seg_count = 0;
tp->t_dsack_lastuna = tp->snd_max;
}
boolean_t
tcp_rxtseg_detect_bad_rexmt(struct tcpcb *tp, tcp_seq th_ack)
{
boolean_t bad_rexmt;
struct tcp_rxt_seg *rxseg;
if (SLIST_EMPTY(&tp->t_rxt_segments)) {
return FALSE;
}
/*
* If all of the segments in this window are not cumulatively
* acknowledged, then there can still be undetected packet loss.
* Do not restore congestion window in that case.
*/
if (SEQ_LT(th_ack, tp->snd_recover)) {
return FALSE;
}
bad_rexmt = TRUE;
SLIST_FOREACH(rxseg, &tp->t_rxt_segments, rx_link) {
if (!(rxseg->rx_flags & TCP_RXT_SPURIOUS)) {
bad_rexmt = FALSE;
break;
}
}
return bad_rexmt;
}
u_int32_t
tcp_rxtseg_total_size(struct tcpcb *tp)
{
struct tcp_rxt_seg *rxseg;
u_int32_t total_size = 0;
SLIST_FOREACH(rxseg, &tp->t_rxt_segments, rx_link) {
total_size += (rxseg->rx_end - rxseg->rx_start) + 1;
}
return total_size;
}
int
tcp_seg_cmp(const struct tcp_seg_sent *seg1, const struct tcp_seg_sent *seg2)
{
return (int)(seg1->end_seq - seg2->end_seq);
}
RB_GENERATE(tcp_seg_sent_tree_head, tcp_seg_sent, seg_link, tcp_seg_cmp)
uint32_t
tcp_seg_len(struct tcp_seg_sent *seg)
{
if (SEQ_LT(seg->end_seq, seg->start_seq)) {
os_log_error(OS_LOG_DEFAULT, "segment end(%u) can't be smaller "
"than segment start(%u)", seg->end_seq, seg->start_seq);
}
return seg->end_seq - seg->start_seq;
}
static struct tcp_seg_sent *
tcp_seg_alloc_init(struct tcpcb *tp)
{
struct tcp_seg_sent *seg = TAILQ_FIRST(&tp->seg_pool.free_segs);
if (seg != NULL) {
TAILQ_REMOVE(&tp->seg_pool.free_segs, seg, free_link);
tp->seg_pool.free_segs_count--;
} else {
// TODO: remove Z_WAITOK and Z_NOFAIL?
seg = zalloc_flags(tcp_seg_sent_zone, Z_WAITOK | Z_ZERO | Z_NOFAIL);
if (seg == NULL) {
return NULL;
}
}
bzero(seg, sizeof(*seg));
return seg;
}
static void
tcp_update_seg_after_rto(struct tcpcb *tp, struct tcp_seg_sent *found_seg,
uint32_t xmit_ts, uint8_t flags)
{
tcp_rack_transmit_seg(tp, found_seg, found_seg->start_seq, found_seg->end_seq,
xmit_ts, flags);
struct tcp_seg_sent *seg = TAILQ_FIRST(&tp->t_segs_sent);
if (found_seg == seg) {
// Move this segment to the end of time-ordered list.
TAILQ_REMOVE(&tp->t_segs_sent, seg, tx_link);
TAILQ_INSERT_TAIL(&tp->t_segs_sent, seg, tx_link);
}
}
static void
tcp_process_rxmt_segs_after_rto(struct tcpcb *tp, struct tcp_seg_sent *seg, tcp_seq start,
uint32_t xmit_ts, uint8_t flags)
{
struct tcp_seg_sent segment = {};
while (seg != NULL) {
if (SEQ_LEQ(seg->start_seq, start)) {
tcp_update_seg_after_rto(tp, seg, xmit_ts, flags);
break;
} else {
/* The segment is a part of the total RTO retransmission */
tcp_update_seg_after_rto(tp, seg, xmit_ts, flags);
/* Find the next segment ending at the start of current segment */
segment.end_seq = seg->start_seq;
seg = RB_FIND(tcp_seg_sent_tree_head, &tp->t_segs_sent_tree, &segment);
}
}
}
static struct tcp_seg_sent *
tcp_seg_sent_insert_before(struct tcpcb *tp, struct tcp_seg_sent *before, tcp_seq start, tcp_seq end,
uint32_t xmit_ts, uint8_t flags)
{
struct tcp_seg_sent *seg = tcp_seg_alloc_init(tp);
/* segment MUST be allocated, there is no other fail-safe here */
tcp_rack_transmit_seg(tp, seg, start, end, xmit_ts, flags);
struct tcp_seg_sent *not_inserted = RB_INSERT(tcp_seg_sent_tree_head, &tp->t_segs_sent_tree, seg);
if (not_inserted) {
os_log(OS_LOG_DEFAULT, "segment %p[%u %u) was not inserted in the RB tree", not_inserted,
not_inserted->start_seq, not_inserted->end_seq);
}
TAILQ_INSERT_BEFORE(before, seg, tx_link);
return seg;
}
static struct tcp_seg_sent *
tcp_seg_rto_insert_end(struct tcpcb *tp, tcp_seq start, tcp_seq end,
uint32_t xmit_ts, uint8_t flags)
{
struct tcp_seg_sent *seg = tcp_seg_alloc_init(tp);
/* segment MUST be allocated, there is no other fail-safe here */
tcp_rack_transmit_seg(tp, seg, start, end, xmit_ts, flags);
struct tcp_seg_sent *not_inserted = RB_INSERT(tcp_seg_sent_tree_head, &tp->t_segs_sent_tree, seg);
if (not_inserted) {
os_log(OS_LOG_DEFAULT, "segment %p[%u %u) was not inserted in the RB tree", not_inserted,
not_inserted->start_seq, not_inserted->end_seq);
}
TAILQ_INSERT_TAIL(&tp->t_segs_sent, seg, tx_link);
return seg;
}
void
tcp_seg_sent_insert(struct tcpcb *tp, struct tcp_seg_sent *seg, tcp_seq start, tcp_seq end,
uint32_t xmit_ts, uint8_t flags)
{
if (seg != NULL) {
uint8_t seg_flags = seg->flags | flags;
if (seg->end_seq == end) {
/* Entire seg retransmitted in RACK recovery, start and end sequence doesn't change */
if (seg->start_seq != start) {
os_log_error(OS_LOG_DEFAULT, "Segment start (%u) is not same as retransmitted "
"start sequence number (%u)", seg->start_seq, start);
}
tcp_rack_transmit_seg(tp, seg, seg->start_seq, seg->end_seq, xmit_ts, seg_flags);
TAILQ_REMOVE(&tp->t_segs_sent, seg, tx_link);
TAILQ_INSERT_TAIL(&tp->t_segs_sent, seg, tx_link);
} else {
/*
* Original segment is retransmitted partially, update start_seq by len
* and create new segment for retransmitted part
*/
struct tcp_seg_sent *partial_seg = tcp_seg_alloc_init(tp);
if (partial_seg == NULL) {
return;
}
seg->start_seq += (end - start);
tcp_rack_transmit_seg(tp, partial_seg, start, end, xmit_ts, seg_flags);
struct tcp_seg_sent *not_inserted = RB_INSERT(tcp_seg_sent_tree_head,
&tp->t_segs_sent_tree, partial_seg);
if (not_inserted) {
os_log(OS_LOG_DEFAULT, "segment %p[%u %u) was not inserted in the RB tree", not_inserted,
not_inserted->start_seq, not_inserted->end_seq);
}
TAILQ_INSERT_TAIL(&tp->t_segs_sent, partial_seg, tx_link);
}
return;
}
if ((flags & TCP_SEGMENT_RETRANSMITTED_ATLEAST_ONCE) == 0) {
/* This is a new segment */
seg = tcp_seg_alloc_init(tp);
if (seg == NULL) {
return;
}
tcp_rack_transmit_seg(tp, seg, start, end, xmit_ts, flags);
struct tcp_seg_sent *not_inserted = RB_INSERT(tcp_seg_sent_tree_head, &tp->t_segs_sent_tree, seg);
if (not_inserted) {
os_log(OS_LOG_DEFAULT, "segment %p[%u %u) was not inserted in the RB tree", not_inserted,
not_inserted->start_seq, not_inserted->end_seq);
}
TAILQ_INSERT_TAIL(&tp->t_segs_sent, seg, tx_link);
return;
}
/*
* Either retransmitted after an RTO or PTO.
* During RTO, time-ordered list may lose its order.
* If retransmitted after RTO, check if the segment
* already exists in RB tree and update its xmit_ts. Also,
* if this seg is at the top of ordered list, then move it
* to the end.
*/
struct tcp_seg_sent segment = {};
struct tcp_seg_sent *found_seg = NULL, *rxmt_seg = NULL;
/* Set the end sequence to search for existing segment */
segment.end_seq = end;
found_seg = RB_FIND(tcp_seg_sent_tree_head, &tp->t_segs_sent_tree, &segment);
if (found_seg != NULL) {
/* Found an exact match for retransmitted end sequence */
tcp_process_rxmt_segs_after_rto(tp, found_seg, start, xmit_ts, flags);
return;
}
/*
* We come here when we don't find an exact match and end of segment
* retransmitted after RTO lies within a segment.
*/
RB_FOREACH(found_seg, tcp_seg_sent_tree_head, &tp->t_segs_sent_tree) {
if (SEQ_LT(end, found_seg->end_seq) && SEQ_GT(end, found_seg->start_seq)) {
/*
* This segment is partially retransmitted. We split this segment at the boundary of end
* sequence. First insert the part being retransmitted at the end of time-ordered list.
*/
tcp_seg_rto_insert_end(tp, found_seg->start_seq, end, xmit_ts,
found_seg->flags | flags);
if (SEQ_LEQ(found_seg->start_seq, start)) {
/*
* We are done with the retransmitted part.
* Move the start of existing segment
*/
found_seg->start_seq = end;
} else {
/*
* This retransmitted sequence covers more than one segment
* Look for segments covered by this retransmission below this segment
*/
segment.end_seq = found_seg->start_seq;
rxmt_seg = RB_FIND(tcp_seg_sent_tree_head, &tp->t_segs_sent_tree, &segment);
if (rxmt_seg != NULL) {
/* rxmt_seg is just before the current segment */
tcp_process_rxmt_segs_after_rto(tp, rxmt_seg, start, xmit_ts, flags);
}
/* Move the start of existing segment */
found_seg->start_seq = end;
}
return;
}
}
}
static void
tcp_seg_collect_acked_subtree(struct tcpcb *tp, struct tcp_seg_sent *seg,
uint32_t acked_xmit_ts, uint32_t tsecr)
{
if (seg != NULL) {
tcp_seg_collect_acked_subtree(tp, RB_LEFT(seg, seg_link), acked_xmit_ts, tsecr);
tcp_seg_collect_acked_subtree(tp, RB_RIGHT(seg, seg_link), acked_xmit_ts, tsecr);
TAILQ_INSERT_TAIL(&tp->t_segs_acked, seg, ack_link);
}
}
/* Call this function with root of the rb tree */
static void
tcp_seg_collect_acked(struct tcpcb *tp, struct tcp_seg_sent *seg, tcp_seq th_ack,
uint32_t acked_xmit_ts, uint32_t tsecr)
{
if (seg == NULL) {
return;
}
if (SEQ_GEQ(th_ack, seg->end_seq)) {
/* Delete the entire left sub-tree */
tcp_seg_collect_acked_subtree(tp, RB_LEFT(seg, seg_link), acked_xmit_ts, tsecr);
/* Evaluate the right sub-tree */
tcp_seg_collect_acked(tp, RB_RIGHT(seg, seg_link), th_ack, acked_xmit_ts, tsecr);
TAILQ_INSERT_TAIL(&tp->t_segs_acked, seg, ack_link);
} else {
/*
* This ACK doesn't acknowledge the current root and its right sub-tree.
* Evaluate the left sub-tree
*/
tcp_seg_collect_acked(tp, RB_LEFT(seg, seg_link), th_ack, acked_xmit_ts, tsecr);
}
}
static void
tcp_seg_delete_acked(struct tcpcb *tp, uint32_t acked_xmit_ts, uint32_t tsecr)
{
struct tcp_seg_sent *acked_seg = NULL, *next = NULL;
TAILQ_FOREACH_SAFE(acked_seg, &tp->t_segs_acked, ack_link, next) {
/* Advance RACK state if applicable */
if (acked_seg->xmit_ts > acked_xmit_ts) {
tcp_rack_update_segment_acked(tp, tsecr, acked_seg->xmit_ts, acked_seg->end_seq,
!!(acked_seg->flags & TCP_SEGMENT_RETRANSMITTED_ATLEAST_ONCE));
}
/* Check for reordering */
tcp_rack_detect_reordering_acked(tp, acked_seg);
const uint32_t seg_len = tcp_seg_len(acked_seg);
if (acked_seg->flags & TCP_SEGMENT_LOST) {
if (tp->bytes_lost < seg_len) {
os_log_error(OS_LOG_DEFAULT, "bytes_lost (%u) can't be smaller than already "
"lost segment length (%u)", tp->bytes_lost, seg_len);
}
tp->bytes_lost -= seg_len;
}
if (acked_seg->flags & TCP_RACK_RETRANSMITTED) {
if (tp->bytes_retransmitted < seg_len) {
os_log_error(OS_LOG_DEFAULT, "bytes_retransmitted (%u) can't be smaller "
"than already retransmited segment length (%u)",
tp->bytes_retransmitted, seg_len);
}
tp->bytes_retransmitted -= seg_len;
}
if (acked_seg->flags & TCP_SEGMENT_SACKED) {
if (tp->bytes_sacked < seg_len) {
os_log_error(OS_LOG_DEFAULT, "bytes_sacked (%u) can't be smaller than already "
"SACKed segment length (%u)", tp->bytes_sacked, seg_len);
}
tp->bytes_sacked -= seg_len;
}
TAILQ_REMOVE(&tp->t_segs_acked, acked_seg, ack_link);
TAILQ_REMOVE(&tp->t_segs_sent, acked_seg, tx_link);
RB_REMOVE(tcp_seg_sent_tree_head, &tp->t_segs_sent_tree, acked_seg);
tcp_seg_delete(tp, acked_seg);
}
}
void
tcp_segs_doack(struct tcpcb *tp, tcp_seq th_ack, struct tcpopt *to)
{
uint32_t tsecr = 0, acked_xmit_ts = 0;
tcp_seq acked_seq = th_ack;
bool was_retransmitted = false;
if (TAILQ_EMPTY(&tp->t_segs_sent)) {
return;
}
if (((to->to_flags & TOF_TS) != 0) && (to->to_tsecr != 0)) {
tsecr = to->to_tsecr;
}
struct tcp_seg_sent seg = {};
struct tcp_seg_sent *found_seg = NULL, *next = NULL;
found_seg = TAILQ_LAST(&tp->t_segs_sent, tcp_seg_sent_head);
if (tp->rack.segs_retransmitted == false) {
if (SEQ_GEQ(th_ack, found_seg->end_seq)) {
/*
* ACK acknowledges the last sent segment completely (snd_max),
* we can remove all segments from time ordered list.
*/
acked_seq = found_seg->end_seq;
acked_xmit_ts = found_seg->xmit_ts;
was_retransmitted = !!(found_seg->flags & TCP_SEGMENT_RETRANSMITTED_ATLEAST_ONCE);
tcp_segs_sent_clean(tp, false);
/* Advance RACK state */
tcp_rack_update_segment_acked(tp, tsecr, acked_xmit_ts, acked_seq, was_retransmitted);
return;
}
}
/*
* If either not all segments are ACKed OR the time-ordered list contains retransmitted
* segments, do a RB tree search for largest (completely) ACKed segment and remove the ACKed
* segment and all segments left of it from both RB tree and time-ordered list.
*
* Set the end sequence to search for ACKed segment.
*/
seg.end_seq = th_ack;
if ((found_seg = RB_FIND(tcp_seg_sent_tree_head, &tp->t_segs_sent_tree, &seg)) != NULL) {
acked_seq = found_seg->end_seq;
acked_xmit_ts = found_seg->xmit_ts;
was_retransmitted = !!(found_seg->flags & TCP_SEGMENT_RETRANSMITTED_ATLEAST_ONCE);
/*
* Remove all segments that are ACKed by this ACK.
* We defer self-balancing of RB tree to the end
* by calling RB_REMOVE after collecting all ACKed segments.
*/
tcp_seg_collect_acked(tp, RB_ROOT(&tp->t_segs_sent_tree), th_ack, acked_xmit_ts, tsecr);
tcp_seg_delete_acked(tp, acked_xmit_ts, tsecr);
/* Advance RACK state */
tcp_rack_update_segment_acked(tp, tsecr, acked_xmit_ts, acked_seq, was_retransmitted);
return;
}
/*
* When TSO is enabled, it is possible that th_ack is less
* than segment->end, hence we search the tree
* until we find the largest (partially) ACKed segment.
*/
RB_FOREACH_SAFE(found_seg, tcp_seg_sent_tree_head, &tp->t_segs_sent_tree, next) {
if (SEQ_LT(th_ack, found_seg->end_seq) && SEQ_GT(th_ack, found_seg->start_seq)) {
acked_seq = th_ack;
acked_xmit_ts = found_seg->xmit_ts;
was_retransmitted = !!(found_seg->flags & TCP_SEGMENT_RETRANSMITTED_ATLEAST_ONCE);
/* Remove all segments completely ACKed by this ack */
tcp_seg_collect_acked(tp, RB_ROOT(&tp->t_segs_sent_tree), th_ack, acked_xmit_ts, tsecr);
tcp_seg_delete_acked(tp, acked_xmit_ts, tsecr);
found_seg->start_seq = th_ack;
/* Advance RACK state */
tcp_rack_update_segment_acked(tp, tsecr, acked_xmit_ts, acked_seq, was_retransmitted);
break;
}
}
}
static bool
tcp_seg_mark_sacked(struct tcpcb *tp, struct tcp_seg_sent *seg, uint32_t *newbytes_sacked)
{
if (seg->flags & TCP_SEGMENT_SACKED) {
return false;
}
const uint32_t seg_len = tcp_seg_len(seg);
/* Check for reordering */
tcp_rack_detect_reordering_acked(tp, seg);
if (seg->flags & TCP_RACK_RETRANSMITTED) {
if (seg->flags & TCP_SEGMENT_LOST) {
/*
* If the segment is not considered lost, we don't clear
* retransmitted as it might still be in flight. The ONLY time
* this can happen is when RTO happens and segment is retransmitted
* and SACKed before RACK detects segment was lost.
*/
seg->flags &= ~(TCP_SEGMENT_LOST | TCP_RACK_RETRANSMITTED);
if (tp->bytes_lost < seg_len || tp->bytes_retransmitted < seg_len) {
os_log_error(OS_LOG_DEFAULT, "bytes_lost (%u) and/or bytes_retransmitted (%u) "
"can't be smaller than already lost/retransmitted segment length (%u)", tp->bytes_lost,
tp->bytes_retransmitted, seg_len);
}
tp->bytes_lost -= seg_len;
tp->bytes_retransmitted -= seg_len;
}
} else {
if (seg->flags & TCP_SEGMENT_LOST) {
seg->flags &= ~(TCP_SEGMENT_LOST);
if (tp->bytes_lost < seg_len) {
os_log_error(OS_LOG_DEFAULT, "bytes_lost (%u) can't be smaller "
"than already lost segment length (%u)", tp->bytes_lost, seg_len);
}
tp->bytes_lost -= seg_len;
}
}
*newbytes_sacked += seg_len;
seg->flags |= TCP_SEGMENT_SACKED;
tp->bytes_sacked += seg_len;
return true;
}
static void
tcp_segs_dosack_matched(struct tcpcb *tp, struct tcp_seg_sent *found_seg,
tcp_seq sblk_start, uint32_t tsecr,
uint32_t *newbytes_sacked)
{
struct tcp_seg_sent seg = {};
while (found_seg != NULL) {
if (sblk_start == found_seg->start_seq) {
/*
* Covered the entire SACK block.
* Record segment flags before they get erased.
*/
uint8_t seg_flags = found_seg->flags;
bool newly_marked = tcp_seg_mark_sacked(tp, found_seg, newbytes_sacked);
if (newly_marked) {
/* Advance RACK state */
tcp_rack_update_segment_acked(tp, tsecr, found_seg->xmit_ts,
found_seg->end_seq,
!!(seg_flags & TCP_SEGMENT_RETRANSMITTED_ATLEAST_ONCE));
}
break;
} else if (SEQ_GT(sblk_start, found_seg->start_seq)) {
if ((found_seg->flags & TCP_SEGMENT_SACKED) != 0) {
/* No need to process an already SACKED segment */
break;
}
/*
* This segment is partially ACKed by SACK block
* as sblk_start > segment start. Since it is
* partially SACKed, we should split the unSACKed and
* SACKed parts.
*/
/* First create a new segment for unSACKed part */
tcp_seg_sent_insert_before(tp, found_seg, found_seg->start_seq, sblk_start,
found_seg->xmit_ts, found_seg->flags);
/* Now, update the SACKed part */
found_seg->start_seq = sblk_start;
/* Record seg flags before they get erased. */
uint8_t seg_flags = found_seg->flags;
bool newly_marked = tcp_seg_mark_sacked(tp, found_seg, newbytes_sacked);
if (newly_marked) {
/* Advance RACK state */
tcp_rack_update_segment_acked(tp, tsecr, found_seg->xmit_ts,
found_seg->end_seq,
!!(seg_flags & TCP_SEGMENT_RETRANSMITTED_ATLEAST_ONCE));
}
break;
} else {
/*
* This segment lies within the SACK block
* Record segment flags before they get erased.
*/
uint8_t seg_flags = found_seg->flags;
bool newly_marked = tcp_seg_mark_sacked(tp, found_seg, newbytes_sacked);
if (newly_marked) {
/* Advance RACK state */
tcp_rack_update_segment_acked(tp, tsecr, found_seg->xmit_ts,
found_seg->end_seq,
!!(seg_flags & TCP_SEGMENT_RETRANSMITTED_ATLEAST_ONCE));
}
/* Find the next segment ending at the start of current segment */
seg.end_seq = found_seg->start_seq;
found_seg = RB_FIND(tcp_seg_sent_tree_head, &tp->t_segs_sent_tree, &seg);
}
}
}
void
tcp_segs_dosack(struct tcpcb *tp, tcp_seq sblk_start, tcp_seq sblk_end,
uint32_t tsecr, uint32_t *newbytes_sacked)
{
/*
* When we receive SACK, min RTT is computed after SACK processing which
* means we are using min RTT from the previous ACK to advance RACK state
* This is ok as we track a windowed min-filtered estimate over a period.
*/
struct tcp_seg_sent seg = {};
struct tcp_seg_sent *found_seg = NULL, *sacked_seg = NULL;
/* Set the end sequence to search for SACKed segment */
seg.end_seq = sblk_end;
found_seg = RB_FIND(tcp_seg_sent_tree_head, &tp->t_segs_sent_tree, &seg);
if (found_seg != NULL) {
/* We found an exact match for sblk_end */
tcp_segs_dosack_matched(tp, found_seg, sblk_start, tsecr, newbytes_sacked);
return;
}
/*
* We come here when we don't find an exact match and sblk_end
* lies within a segment. This would happen only when TSO is used.
*/
RB_FOREACH(found_seg, tcp_seg_sent_tree_head, &tp->t_segs_sent_tree) {
if (SEQ_LT(sblk_end, found_seg->end_seq) && SEQ_GT(sblk_end, found_seg->start_seq)) {
/*
* This segment is partially SACKed. We split this segment at the boundary
* of SACK block. First insert the newly SACKed part
*/
tcp_seq start = SEQ_LEQ(sblk_start, found_seg->start_seq) ? found_seg->start_seq : sblk_start;
struct tcp_seg_sent *inserted = tcp_seg_sent_insert_before(tp, found_seg, start,
sblk_end, found_seg->xmit_ts, found_seg->flags);
/* Record seg flags before they get erased. */
uint8_t seg_flags = inserted->flags;
/* Mark the SACKed segment */
tcp_seg_mark_sacked(tp, inserted, newbytes_sacked);
/* Advance RACK state */
tcp_rack_update_segment_acked(tp, tsecr, inserted->xmit_ts,
inserted->end_seq, !!(seg_flags & TCP_SEGMENT_RETRANSMITTED_ATLEAST_ONCE));
if (sblk_start == found_seg->start_seq) {
/*
* We are done with this SACK block.
* Move the start of existing segment
*/
found_seg->start_seq = sblk_end;
break;
}
if (SEQ_GT(sblk_start, found_seg->start_seq)) {
/* Insert the remaining unSACKed part before the SACKED segment inserted above */
tcp_seg_sent_insert_before(tp, inserted, found_seg->start_seq,
sblk_start, found_seg->xmit_ts, found_seg->flags);
/* Move the start of existing segment */
found_seg->start_seq = sblk_end;
break;
} else {
/*
* This SACK block covers more than one segment
* Look for segments SACKed below this segment
*/
seg.end_seq = found_seg->start_seq;
sacked_seg = RB_FIND(tcp_seg_sent_tree_head, &tp->t_segs_sent_tree, &seg);
if (sacked_seg != NULL) {
/* We found an exact match for sblk_end */
tcp_segs_dosack_matched(tp, sacked_seg, sblk_start, tsecr, newbytes_sacked);
}
/* Move the start of existing segment */
found_seg->start_seq = sblk_end;
}
break;
}
}
}
void
tcp_segs_clear_sacked(struct tcpcb *tp)
{
struct tcp_seg_sent *seg = NULL;
TAILQ_FOREACH(seg, &tp->t_segs_sent, tx_link)
{
const uint32_t seg_len = tcp_seg_len(seg);
if (seg->flags & TCP_SEGMENT_SACKED) {
seg->flags &= ~(TCP_SEGMENT_SACKED);
if (tp->bytes_sacked < seg_len) {
os_log_error(OS_LOG_DEFAULT, "bytes_sacked (%u) can't be smaller "
"than already SACKed segment length (%u)", tp->bytes_sacked, seg_len);
}
tp->bytes_sacked -= seg_len;
}
}
}
void
tcp_mark_seg_lost(struct tcpcb *tp, struct tcp_seg_sent *seg)
{
const uint32_t seg_len = tcp_seg_len(seg);
if (seg->flags & TCP_SEGMENT_LOST) {
if (seg->flags & TCP_RACK_RETRANSMITTED) {
/* Retransmission was lost */
seg->flags &= ~TCP_RACK_RETRANSMITTED;
if (tp->bytes_retransmitted < seg_len) {
os_log_error(OS_LOG_DEFAULT, "bytes_retransmitted (%u) can't be "
"smaller than retransmited segment length (%u)",
tp->bytes_retransmitted, seg_len);
return;
}
tp->bytes_retransmitted -= seg_len;
}
} else {
seg->flags |= TCP_SEGMENT_LOST;
tp->bytes_lost += seg_len;
}
}
void
tcp_seg_delete(struct tcpcb *tp, struct tcp_seg_sent *seg)
{
if (tp->seg_pool.free_segs_count >= TCP_SEG_POOL_MAX_ITEM_COUNT) {
zfree(tcp_seg_sent_zone, seg);
} else {
bzero(seg, sizeof(*seg));
TAILQ_INSERT_TAIL(&tp->seg_pool.free_segs, seg, free_link);
tp->seg_pool.free_segs_count++;
}
}
void
tcp_segs_sent_clean(struct tcpcb *tp, bool free_segs)
{
struct tcp_seg_sent *seg = NULL, *next = NULL;
TAILQ_FOREACH_SAFE(seg, &tp->t_segs_sent, tx_link, next) {
/* Check for reordering */
tcp_rack_detect_reordering_acked(tp, seg);
TAILQ_REMOVE(&tp->t_segs_sent, seg, tx_link);
RB_REMOVE(tcp_seg_sent_tree_head, &tp->t_segs_sent_tree, seg);
tcp_seg_delete(tp, seg);
}
if (__improbable(!RB_EMPTY(&tp->t_segs_sent_tree))) {
os_log_error(OS_LOG_DEFAULT, "RB tree still contains segments while "
"time ordered list is already empty");
}
if (__improbable(!TAILQ_EMPTY(&tp->t_segs_acked))) {
os_log_error(OS_LOG_DEFAULT, "Segment ACKed list shouldn't contain "
"any segments as they are removed immediately after being ACKed");
}
/* Reset seg_retransmitted as we emptied the list */
tcp_rack_reset_segs_retransmitted(tp);
tp->bytes_lost = tp->bytes_sacked = tp->bytes_retransmitted = 0;
/* Empty the free segments pool */
if (free_segs) {
TAILQ_FOREACH_SAFE(seg, &tp->seg_pool.free_segs, free_link, next) {
TAILQ_REMOVE(&tp->seg_pool.free_segs, seg, free_link);
zfree(tcp_seg_sent_zone, seg);
}
tp->seg_pool.free_segs_count = 0;
}
}
void
tcp_get_connectivity_status(struct tcpcb *tp,
struct tcp_conn_status *connstatus)
{
if (tp == NULL || connstatus == NULL) {
return;
}
bzero(connstatus, sizeof(*connstatus));
if (tp->t_rxtshift >= TCP_CONNECTIVITY_PROBES_MAX) {
if (TCPS_HAVEESTABLISHED(tp->t_state)) {
connstatus->write_probe_failed = 1;
} else {
connstatus->conn_probe_failed = 1;
}
}
if (tp->t_rtimo_probes >= TCP_CONNECTIVITY_PROBES_MAX) {
connstatus->read_probe_failed = 1;
}
if (tp->t_inpcb != NULL && tp->t_inpcb->inp_last_outifp != NULL &&
(tp->t_inpcb->inp_last_outifp->if_eflags & IFEF_PROBE_CONNECTIVITY)) {
connstatus->probe_activated = 1;
}
}
void
tcp_disable_tfo(struct tcpcb *tp)
{
tp->t_flagsext &= ~TF_FASTOPEN;
}
static struct mbuf *
tcp_make_keepalive_frame(struct tcpcb *tp, struct ifnet *ifp,
boolean_t is_probe)
{
struct inpcb *inp = tp->t_inpcb;
struct tcphdr *th;
u_int8_t *data;
int win = 0;
struct mbuf *m;
/*
* The code assumes the IP + TCP headers fit in an mbuf packet header
*/
_CASSERT(sizeof(struct ip) + sizeof(struct tcphdr) <= _MHLEN);
_CASSERT(sizeof(struct ip6_hdr) + sizeof(struct tcphdr) <= _MHLEN);
MGETHDR(m, M_WAIT, MT_HEADER);
if (m == NULL) {
return NULL;
}
m->m_pkthdr.pkt_proto = IPPROTO_TCP;
data = mbuf_datastart(m);
if (inp->inp_vflag & INP_IPV4) {
bzero(data, sizeof(struct ip) + sizeof(struct tcphdr));
th = (struct tcphdr *)(void *) (data + sizeof(struct ip));
m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
m->m_pkthdr.len = m->m_len;
} else {
VERIFY(inp->inp_vflag & INP_IPV6);
bzero(data, sizeof(struct ip6_hdr)
+ sizeof(struct tcphdr));
th = (struct tcphdr *)(void *)(data + sizeof(struct ip6_hdr));
m->m_len = sizeof(struct ip6_hdr) +
sizeof(struct tcphdr);
m->m_pkthdr.len = m->m_len;
}
tcp_fillheaders(m, tp, data, th);
if (inp->inp_vflag & INP_IPV4) {
struct ip *ip;
ip = (__typeof__(ip))(void *)data;
ip->ip_id = rfc6864 ? 0 : ip_randomid((uint64_t)m);
ip->ip_off = htons(IP_DF);
ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr));
ip->ip_ttl = inp->inp_ip_ttl;
ip->ip_tos |= (inp->inp_ip_tos & ~IPTOS_ECN_MASK);
ip->ip_sum = in_cksum_hdr(ip);
} else {
struct ip6_hdr *ip6;
ip6 = (__typeof__(ip6))(void *)data;
ip6->ip6_plen = htons(sizeof(struct tcphdr));
ip6->ip6_hlim = in6_selecthlim(inp, ifp);
ip6->ip6_flow = ip6->ip6_flow & ~IPV6_FLOW_ECN_MASK;
if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
ip6->ip6_src.s6_addr16[1] = 0;
}
if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
ip6->ip6_dst.s6_addr16[1] = 0;
}
}
th->th_flags = TH_ACK;
win = tcp_sbspace(tp);
if (win > ((int32_t)TCP_MAXWIN << tp->rcv_scale)) {
win = (int32_t)TCP_MAXWIN << tp->rcv_scale;
}
th->th_win = htons((u_short) (win >> tp->rcv_scale));
if (is_probe) {
th->th_seq = htonl(tp->snd_una - 1);
} else {
th->th_seq = htonl(tp->snd_una);
}
th->th_ack = htonl(tp->rcv_nxt);
/* Force recompute TCP checksum to be the final value */
th->th_sum = 0;
if (inp->inp_vflag & INP_IPV4) {
th->th_sum = inet_cksum(m, IPPROTO_TCP,
sizeof(struct ip), sizeof(struct tcphdr));
} else {
th->th_sum = inet6_cksum(m, IPPROTO_TCP,
sizeof(struct ip6_hdr), sizeof(struct tcphdr));
}
return m;
}
void
tcp_fill_keepalive_offload_frames(ifnet_t ifp,
struct ifnet_keepalive_offload_frame *frames_array,
u_int32_t frames_array_count, size_t frame_data_offset,
u_int32_t *used_frames_count)
{
struct inpcb *inp;
inp_gen_t gencnt;
u_int32_t frame_index = *used_frames_count;
/* Validation of the parameters */
if (ifp == NULL || frames_array == NULL ||
frames_array_count == 0 ||
frame_index >= frames_array_count ||
frame_data_offset >= IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE) {
return;
}
/* Fast exit when no process is using the socket option TCP_KEEPALIVE_OFFLOAD */
if (ifp->if_tcp_kao_cnt == 0) {
return;
}
/*
* This function is called outside the regular TCP processing
* so we need to update the TCP clock.
*/
calculate_tcp_clock();
lck_rw_lock_shared(&tcbinfo.ipi_lock);
gencnt = tcbinfo.ipi_gencnt;
LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) {
struct socket *so;
struct ifnet_keepalive_offload_frame *frame;
struct mbuf *m = NULL;
struct tcpcb *tp = intotcpcb(inp);
if (frame_index >= frames_array_count) {
break;
}
if (inp->inp_gencnt > gencnt ||
inp->inp_state == INPCB_STATE_DEAD) {
continue;
}
if ((so = inp->inp_socket) == NULL ||
(so->so_state & SS_DEFUNCT)) {
continue;
}
/*
* check for keepalive offload flag without socket
* lock to avoid a deadlock
*/
if (!(inp->inp_flags2 & INP2_KEEPALIVE_OFFLOAD)) {
continue;
}
if (!(inp->inp_vflag & (INP_IPV4 | INP_IPV6))) {
continue;
}
if (inp->inp_ppcb == NULL ||
in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) {
continue;
}
socket_lock(so, 1);
/* Release the want count */
if (inp->inp_ppcb == NULL ||
(in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING)) {
socket_unlock(so, 1);
continue;
}
if ((inp->inp_vflag & INP_IPV4) &&
(inp->inp_laddr.s_addr == INADDR_ANY ||
inp->inp_faddr.s_addr == INADDR_ANY)) {
socket_unlock(so, 1);
continue;
}
if ((inp->inp_vflag & INP_IPV6) &&
(IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) ||
IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr))) {
socket_unlock(so, 1);
continue;
}
if (inp->inp_lport == 0 || inp->inp_fport == 0) {
socket_unlock(so, 1);
continue;
}
if (inp->inp_last_outifp == NULL ||
inp->inp_last_outifp->if_index != ifp->if_index) {
socket_unlock(so, 1);
continue;
}
if ((inp->inp_vflag & INP_IPV4) && frame_data_offset +
sizeof(struct ip) + sizeof(struct tcphdr) >
IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE) {
socket_unlock(so, 1);
continue;
} else if (!(inp->inp_vflag & INP_IPV4) && frame_data_offset +
sizeof(struct ip6_hdr) + sizeof(struct tcphdr) >
IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE) {
socket_unlock(so, 1);
continue;
}
/*
* There is no point in waking up the device for connections
* that are not established. Long lived connection are meant
* for processes that will sent and receive data
*/
if (tp->t_state != TCPS_ESTABLISHED) {
socket_unlock(so, 1);
continue;
}
/*
* This inp has all the information that is needed to
* generate an offload frame.
*/
frame = &frames_array[frame_index];
frame->type = IFNET_KEEPALIVE_OFFLOAD_FRAME_TCP;
frame->ether_type = (inp->inp_vflag & INP_IPV4) ?
IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV4 :
IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV6;
frame->interval = (uint16_t)(tp->t_keepidle > 0 ? tp->t_keepidle :
tcp_keepidle);
frame->keep_cnt = (uint8_t)TCP_CONN_KEEPCNT(tp);
frame->keep_retry = (uint16_t)TCP_CONN_KEEPINTVL(tp);
if (so->so_options & SO_NOWAKEFROMSLEEP) {
frame->flags |=
IFNET_KEEPALIVE_OFFLOAD_FLAG_NOWAKEFROMSLEEP;
}
frame->local_port = ntohs(inp->inp_lport);
frame->remote_port = ntohs(inp->inp_fport);
frame->local_seq = tp->snd_nxt;
frame->remote_seq = tp->rcv_nxt;
if (inp->inp_vflag & INP_IPV4) {
ASSERT(frame_data_offset + sizeof(struct ip) + sizeof(struct tcphdr) <= UINT8_MAX);
frame->length = (uint8_t)(frame_data_offset +
sizeof(struct ip) + sizeof(struct tcphdr));
frame->reply_length = frame->length;
frame->addr_length = sizeof(struct in_addr);
bcopy(&inp->inp_laddr, frame->local_addr,
sizeof(struct in_addr));
bcopy(&inp->inp_faddr, frame->remote_addr,
sizeof(struct in_addr));
} else {
struct in6_addr *ip6;
ASSERT(frame_data_offset + sizeof(struct ip6_hdr) + sizeof(struct tcphdr) <= UINT8_MAX);
frame->length = (uint8_t)(frame_data_offset +
sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
frame->reply_length = frame->length;
frame->addr_length = sizeof(struct in6_addr);
ip6 = (struct in6_addr *)(void *)frame->local_addr;
bcopy(&inp->in6p_laddr, ip6, sizeof(struct in6_addr));
if (IN6_IS_SCOPE_EMBED(ip6)) {
ip6->s6_addr16[1] = 0;
}
ip6 = (struct in6_addr *)(void *)frame->remote_addr;
bcopy(&inp->in6p_faddr, ip6, sizeof(struct in6_addr));
if (IN6_IS_SCOPE_EMBED(ip6)) {
ip6->s6_addr16[1] = 0;
}
}
/*
* First the probe
*/
m = tcp_make_keepalive_frame(tp, ifp, TRUE);
if (m == NULL) {
socket_unlock(so, 1);
continue;
}
bcopy(m_mtod_current(m), frame->data + frame_data_offset, m->m_len);
m_freem(m);
/*
* Now the response packet to incoming probes
*/
m = tcp_make_keepalive_frame(tp, ifp, FALSE);
if (m == NULL) {
socket_unlock(so, 1);
continue;
}
bcopy(m_mtod_current(m), frame->reply_data + frame_data_offset,
m->m_len);
m_freem(m);
frame_index++;
socket_unlock(so, 1);
}
lck_rw_done(&tcbinfo.ipi_lock);
*used_frames_count = frame_index;
}
static bool
inp_matches_kao_frame(ifnet_t ifp, struct ifnet_keepalive_offload_frame *frame,
struct inpcb *inp)
{
if (inp->inp_ppcb == NULL) {
return false;
}
/* Release the want count */
if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
return false;
}
if (inp->inp_last_outifp == NULL ||
inp->inp_last_outifp->if_index != ifp->if_index) {
return false;
}
if (frame->local_port != ntohs(inp->inp_lport) ||
frame->remote_port != ntohs(inp->inp_fport)) {
return false;
}
if (inp->inp_vflag & INP_IPV4) {
if (memcmp(&inp->inp_laddr, frame->local_addr,
sizeof(struct in_addr)) != 0 ||
memcmp(&inp->inp_faddr, frame->remote_addr,
sizeof(struct in_addr)) != 0) {
return false;
}
} else if (inp->inp_vflag & INP_IPV6) {
if (memcmp(&inp->inp_laddr, frame->local_addr,
sizeof(struct in6_addr)) != 0 ||
memcmp(&inp->inp_faddr, frame->remote_addr,
sizeof(struct in6_addr)) != 0) {
return false;
}
} else {
return false;
}
return true;
}
int
tcp_notify_kao_timeout(ifnet_t ifp,
struct ifnet_keepalive_offload_frame *frame)
{
struct inpcb *inp = NULL;
struct socket *so = NULL;
bool found = false;
/*
* Unlock the list before posting event on the matching socket
*/
lck_rw_lock_shared(&tcbinfo.ipi_lock);
LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) {
if ((so = inp->inp_socket) == NULL ||
(so->so_state & SS_DEFUNCT)) {
continue;
}
if (!(inp->inp_flags2 & INP2_KEEPALIVE_OFFLOAD)) {
continue;
}
if (!(inp->inp_vflag & (INP_IPV4 | INP_IPV6))) {
continue;
}
if (inp->inp_ppcb == NULL ||
in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) {
continue;
}
socket_lock(so, 1);
if (inp_matches_kao_frame(ifp, frame, inp)) {
/*
* Keep the matching socket locked
*/
found = true;
break;
}
socket_unlock(so, 1);
}
lck_rw_done(&tcbinfo.ipi_lock);
if (found) {
ASSERT(inp != NULL);
ASSERT(so != NULL);
ASSERT(so == inp->inp_socket);
/*
* Drop the TCP connection like tcptimers() does
*/
struct tcpcb *tp = inp->inp_ppcb;
tcpstat.tcps_keepdrops++;
soevent(so,
(SO_FILT_HINT_LOCKED | SO_FILT_HINT_TIMEOUT));
tp = tcp_drop(tp, ETIMEDOUT);
tcpstat.tcps_ka_offload_drops++;
os_log_info(OS_LOG_DEFAULT, "%s: dropped lport %u fport %u\n",
__func__, frame->local_port, frame->remote_port);
socket_unlock(so, 1);
}
return 0;
}
errno_t
tcp_notify_ack_id_valid(struct tcpcb *tp, struct socket *so,
u_int32_t notify_id)
{
struct tcp_notify_ack_marker *elm;
if (so->so_snd.sb_cc == 0) {
return ENOBUFS;
}
SLIST_FOREACH(elm, &tp->t_notify_ack, notify_next) {
/* Duplicate id is not allowed */
if (elm->notify_id == notify_id) {
return EINVAL;
}
/* Duplicate position is not allowed */
if (elm->notify_snd_una == tp->snd_una + so->so_snd.sb_cc) {
return EINVAL;
}
}
return 0;
}
errno_t
tcp_add_notify_ack_marker(struct tcpcb *tp, u_int32_t notify_id)
{
struct tcp_notify_ack_marker *nm, *elm = NULL;
struct socket *so = tp->t_inpcb->inp_socket;
nm = kalloc_type(struct tcp_notify_ack_marker, M_WAIT | Z_ZERO);
if (nm == NULL) {
return ENOMEM;
}
nm->notify_id = notify_id;
nm->notify_snd_una = tp->snd_una + so->so_snd.sb_cc;
SLIST_FOREACH(elm, &tp->t_notify_ack, notify_next) {
if (SEQ_GT(nm->notify_snd_una, elm->notify_snd_una)) {
break;
}
}
if (elm == NULL) {
VERIFY(SLIST_EMPTY(&tp->t_notify_ack));
SLIST_INSERT_HEAD(&tp->t_notify_ack, nm, notify_next);
} else {
SLIST_INSERT_AFTER(elm, nm, notify_next);
}
tp->t_notify_ack_count++;
return 0;
}
void
tcp_notify_ack_free(struct tcpcb *tp)
{
struct tcp_notify_ack_marker *elm, *next;
if (SLIST_EMPTY(&tp->t_notify_ack)) {
return;
}
SLIST_FOREACH_SAFE(elm, &tp->t_notify_ack, notify_next, next) {
SLIST_REMOVE(&tp->t_notify_ack, elm, tcp_notify_ack_marker,
notify_next);
kfree_type(struct tcp_notify_ack_marker, elm);
}
SLIST_INIT(&tp->t_notify_ack);
tp->t_notify_ack_count = 0;
}
inline void
tcp_notify_acknowledgement(struct tcpcb *tp, struct socket *so)
{
struct tcp_notify_ack_marker *elm;
elm = SLIST_FIRST(&tp->t_notify_ack);
if (SEQ_GEQ(tp->snd_una, elm->notify_snd_una)) {
soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_NOTIFY_ACK);
}
}
void
tcp_get_notify_ack_count(struct tcpcb *tp,
struct tcp_notify_ack_complete *retid)
{
struct tcp_notify_ack_marker *elm;
uint32_t complete = 0;
SLIST_FOREACH(elm, &tp->t_notify_ack, notify_next) {
if (SEQ_GEQ(tp->snd_una, elm->notify_snd_una)) {
ASSERT(complete < UINT32_MAX);
complete++;
} else {
break;
}
}
retid->notify_pending = tp->t_notify_ack_count - complete;
retid->notify_complete_count = min(TCP_MAX_NOTIFY_ACK, complete);
}
void
tcp_get_notify_ack_ids(struct tcpcb *tp,
struct tcp_notify_ack_complete *retid)
{
size_t i = 0;
struct tcp_notify_ack_marker *elm, *next;
SLIST_FOREACH_SAFE(elm, &tp->t_notify_ack, notify_next, next) {
if (i >= retid->notify_complete_count) {
break;
}
if (SEQ_GEQ(tp->snd_una, elm->notify_snd_una)) {
retid->notify_complete_id[i++] = elm->notify_id;
SLIST_REMOVE(&tp->t_notify_ack, elm,
tcp_notify_ack_marker, notify_next);
kfree_type(struct tcp_notify_ack_marker, elm);
tp->t_notify_ack_count--;
} else {
break;
}
}
}
bool
tcp_notify_ack_active(struct socket *so)
{
if ((SOCK_DOM(so) == PF_INET || SOCK_DOM(so) == PF_INET6) &&
SOCK_TYPE(so) == SOCK_STREAM) {
struct tcpcb *tp = intotcpcb(sotoinpcb(so));
if (!SLIST_EMPTY(&tp->t_notify_ack)) {
struct tcp_notify_ack_marker *elm;
elm = SLIST_FIRST(&tp->t_notify_ack);
if (SEQ_GEQ(tp->snd_una, elm->notify_snd_una)) {
return true;
}
}
}
return false;
}
inline int32_t
inp_get_sndbytes_allunsent(struct socket *so, u_int32_t th_ack)
{
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp = intotcpcb(inp);
if ((so->so_snd.sb_flags & SB_SNDBYTE_CNT) &&
so->so_snd.sb_cc > 0) {
int32_t unsent, sent;
sent = tp->snd_max - th_ack;
if (tp->t_flags & TF_SENTFIN) {
sent--;
}
unsent = so->so_snd.sb_cc - sent;
return unsent;
}
return 0;
}
uint8_t
tcp_get_ace(struct tcphdr *th)
{
uint8_t ace = 0;
if (th->th_flags & TH_ECE) {
ace += 1;
}
if (th->th_flags & TH_CWR) {
ace += 2;
}
if (th->th_x2 & (TH_AE >> 8)) {
ace += 4;
}
return ace;
}
#define IFP_PER_FLOW_STAT(_ipv4_, _stat_) { \
if (_ipv4_) { \
ifp->if_ipv4_stat->_stat_++; \
} else { \
ifp->if_ipv6_stat->_stat_++; \
} \
}
#define FLOW_ECN_ENABLED(_flags_) \
((_flags_ & (TE_ECN_ON)) == (TE_ECN_ON))
void
tcp_update_stats_per_flow(struct ifnet_stats_per_flow *ifs,
struct ifnet *ifp)
{
if (ifp == NULL || !IF_FULLY_ATTACHED(ifp)) {
return;
}
ifnet_lock_shared(ifp);
if (ifs->ecn_flags & TE_SETUPSENT) {
if (ifs->ecn_flags & TE_CLIENT_SETUP) {
IFP_PER_FLOW_STAT(ifs->ipv4, ecn_client_setup);
if (FLOW_ECN_ENABLED(ifs->ecn_flags)) {
IFP_PER_FLOW_STAT(ifs->ipv4,
ecn_client_success);
} else if (ifs->ecn_flags & TE_LOST_SYN) {
IFP_PER_FLOW_STAT(ifs->ipv4,
ecn_syn_lost);
} else {
IFP_PER_FLOW_STAT(ifs->ipv4,
ecn_peer_nosupport);
}
} else {
IFP_PER_FLOW_STAT(ifs->ipv4, ecn_server_setup);
if (FLOW_ECN_ENABLED(ifs->ecn_flags)) {
IFP_PER_FLOW_STAT(ifs->ipv4,
ecn_server_success);
} else if (ifs->ecn_flags & TE_LOST_SYN) {
IFP_PER_FLOW_STAT(ifs->ipv4,
ecn_synack_lost);
} else {
IFP_PER_FLOW_STAT(ifs->ipv4,
ecn_peer_nosupport);
}
}
} else {
IFP_PER_FLOW_STAT(ifs->ipv4, ecn_off_conn);
}
if (FLOW_ECN_ENABLED(ifs->ecn_flags)) {
if (ifs->ecn_flags & TE_RECV_ECN_CE) {
tcpstat.tcps_ecn_conn_recv_ce++;
IFP_PER_FLOW_STAT(ifs->ipv4, ecn_conn_recv_ce);
}
if (ifs->ecn_flags & TE_RECV_ECN_ECE) {
tcpstat.tcps_ecn_conn_recv_ece++;
IFP_PER_FLOW_STAT(ifs->ipv4, ecn_conn_recv_ece);
}
if (ifs->ecn_flags & (TE_RECV_ECN_CE | TE_RECV_ECN_ECE)) {
if (ifs->txretransmitbytes > 0 ||
ifs->rxoutoforderbytes > 0) {
tcpstat.tcps_ecn_conn_pl_ce++;
IFP_PER_FLOW_STAT(ifs->ipv4, ecn_conn_plce);
} else {
tcpstat.tcps_ecn_conn_nopl_ce++;
IFP_PER_FLOW_STAT(ifs->ipv4, ecn_conn_noplce);
}
} else {
if (ifs->txretransmitbytes > 0 ||
ifs->rxoutoforderbytes > 0) {
tcpstat.tcps_ecn_conn_plnoce++;
IFP_PER_FLOW_STAT(ifs->ipv4, ecn_conn_plnoce);
}
}
}
/* Other stats are interesting for non-local connections only */
if (ifs->local) {
ifnet_lock_done(ifp);
return;
}
if (ifs->ipv4) {
ifp->if_ipv4_stat->timestamp = net_uptime();
if (FLOW_ECN_ENABLED(ifs->ecn_flags)) {
tcp_flow_ecn_perf_stats(ifs, &ifp->if_ipv4_stat->ecn_on);
} else {
tcp_flow_ecn_perf_stats(ifs, &ifp->if_ipv4_stat->ecn_off);
}
} else {
ifp->if_ipv6_stat->timestamp = net_uptime();
if (FLOW_ECN_ENABLED(ifs->ecn_flags)) {
tcp_flow_ecn_perf_stats(ifs, &ifp->if_ipv6_stat->ecn_on);
} else {
tcp_flow_ecn_perf_stats(ifs, &ifp->if_ipv6_stat->ecn_off);
}
}
if (ifs->rxmit_drop) {
if (FLOW_ECN_ENABLED(ifs->ecn_flags)) {
IFP_PER_FLOW_STAT(ifs->ipv4, ecn_on.rxmit_drop);
} else {
IFP_PER_FLOW_STAT(ifs->ipv4, ecn_off.rxmit_drop);
}
}
if (ifs->ecn_fallback_synloss) {
IFP_PER_FLOW_STAT(ifs->ipv4, ecn_fallback_synloss);
}
if (ifs->ecn_fallback_droprst) {
IFP_PER_FLOW_STAT(ifs->ipv4, ecn_fallback_droprst);
}
if (ifs->ecn_fallback_droprxmt) {
IFP_PER_FLOW_STAT(ifs->ipv4, ecn_fallback_droprxmt);
}
if (ifs->ecn_fallback_ce) {
IFP_PER_FLOW_STAT(ifs->ipv4, ecn_fallback_ce);
}
if (ifs->ecn_fallback_reorder) {
IFP_PER_FLOW_STAT(ifs->ipv4, ecn_fallback_reorder);
}
if (ifs->ecn_recv_ce > 0) {
IFP_PER_FLOW_STAT(ifs->ipv4, ecn_recv_ce);
}
if (ifs->ecn_recv_ece > 0) {
IFP_PER_FLOW_STAT(ifs->ipv4, ecn_recv_ece);
}
tcp_flow_lim_stats(ifs, &ifp->if_lim_stat);
ifnet_lock_done(ifp);
}
#if SKYWALK
#include <skywalk/core/skywalk_var.h>
#include <skywalk/nexus/flowswitch/nx_flowswitch.h>
void
tcp_add_fsw_flow(struct tcpcb *tp, struct ifnet *ifp)
{
struct inpcb *inp = tp->t_inpcb;
struct socket *so = inp->inp_socket;
uuid_t fsw_uuid;
struct nx_flow_req nfr;
int err;
if (!NX_FSW_TCP_RX_AGG_ENABLED()) {
return;
}
if (ifp == NULL || kern_nexus_get_flowswitch_instance(ifp, fsw_uuid)) {
TCP_LOG_FSW_FLOW(tp, "skip ifp no fsw");
return;
}
memset(&nfr, 0, sizeof(nfr));
if (inp->inp_vflag & INP_IPV4) {
ASSERT(!(inp->inp_laddr.s_addr == INADDR_ANY ||
inp->inp_faddr.s_addr == INADDR_ANY ||
IN_MULTICAST(ntohl(inp->inp_laddr.s_addr)) ||
IN_MULTICAST(ntohl(inp->inp_faddr.s_addr))));
nfr.nfr_saddr.sin.sin_len = sizeof(struct sockaddr_in);
nfr.nfr_saddr.sin.sin_family = AF_INET;
nfr.nfr_saddr.sin.sin_port = inp->inp_lport;
memcpy(&nfr.nfr_saddr.sin.sin_addr, &inp->inp_laddr,
sizeof(struct in_addr));
nfr.nfr_daddr.sin.sin_len = sizeof(struct sockaddr_in);
nfr.nfr_daddr.sin.sin_family = AF_INET;
nfr.nfr_daddr.sin.sin_port = inp->inp_fport;
memcpy(&nfr.nfr_daddr.sin.sin_addr, &inp->inp_faddr,
sizeof(struct in_addr));
} else {
ASSERT(!(IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) ||
IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr) ||
IN6_IS_ADDR_MULTICAST(&inp->in6p_laddr) ||
IN6_IS_ADDR_MULTICAST(&inp->in6p_faddr)));
nfr.nfr_saddr.sin6.sin6_len = sizeof(struct sockaddr_in6);
nfr.nfr_saddr.sin6.sin6_family = AF_INET6;
nfr.nfr_saddr.sin6.sin6_port = inp->inp_lport;
memcpy(&nfr.nfr_saddr.sin6.sin6_addr, &inp->in6p_laddr,
sizeof(struct in6_addr));
nfr.nfr_daddr.sin6.sin6_len = sizeof(struct sockaddr_in6);
nfr.nfr_daddr.sin.sin_family = AF_INET6;
nfr.nfr_daddr.sin6.sin6_port = inp->inp_fport;
memcpy(&nfr.nfr_daddr.sin6.sin6_addr, &inp->in6p_faddr,
sizeof(struct in6_addr));
/* clear embedded scope ID */
if (IN6_IS_SCOPE_EMBED(&nfr.nfr_saddr.sin6.sin6_addr)) {
nfr.nfr_saddr.sin6.sin6_addr.s6_addr16[1] = 0;
}
if (IN6_IS_SCOPE_EMBED(&nfr.nfr_daddr.sin6.sin6_addr)) {
nfr.nfr_daddr.sin6.sin6_addr.s6_addr16[1] = 0;
}
}
nfr.nfr_nx_port = 1;
nfr.nfr_ip_protocol = IPPROTO_TCP;
nfr.nfr_transport_protocol = IPPROTO_TCP;
nfr.nfr_flags = NXFLOWREQF_ASIS;
nfr.nfr_epid = (so != NULL ? so->last_pid : 0);
if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
nfr.nfr_port_reservation = inp->inp_netns_token;
nfr.nfr_flags |= NXFLOWREQF_EXT_PORT_RSV;
}
ASSERT(inp->inp_flowhash != 0);
nfr.nfr_inp_flowhash = inp->inp_flowhash;
uuid_generate_random(nfr.nfr_flow_uuid);
err = kern_nexus_flow_add(kern_nexus_shared_controller(), fsw_uuid,
&nfr, sizeof(nfr));
if (err == 0) {
uuid_copy(tp->t_fsw_uuid, fsw_uuid);
uuid_copy(tp->t_flow_uuid, nfr.nfr_flow_uuid);
}
TCP_LOG_FSW_FLOW(tp, "add err %d\n", err);
}
void
tcp_del_fsw_flow(struct tcpcb *tp)
{
if (uuid_is_null(tp->t_fsw_uuid) || uuid_is_null(tp->t_flow_uuid)) {
return;
}
struct nx_flow_req nfr;
uuid_copy(nfr.nfr_flow_uuid, tp->t_flow_uuid);
/* It's possible for this call to fail if the nexus has detached */
int err = kern_nexus_flow_del(kern_nexus_shared_controller(),
tp->t_fsw_uuid, &nfr, sizeof(nfr));
VERIFY(err == 0 || err == ENOENT || err == ENXIO);
uuid_clear(tp->t_fsw_uuid);
uuid_clear(tp->t_flow_uuid);
TCP_LOG_FSW_FLOW(tp, "del err %d\n", err);
}
#endif /* SKYWALK */