This is xnu-10002.1.13. See this file in:
/*
* Copyright (c) 2000-2021 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/mcache.h>
#include <net/ntstat.h>
#include <kern/zalloc.h>
#include <mach/boolean.h>
#include <pexpert/pexpert.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/route.h>
#include <net/dlil.h>
#include <net/net_api_stats.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_tclass.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#include <netinet6/in6_pcb.h>
#include <netinet6/ip6_var.h>
#include <netinet6/udp6_var.h>
#include <netinet/ip_icmp.h>
#include <netinet/icmp_var.h>
#include <netinet/udp.h>
#include <netinet/udp_var.h>
#include <netinet/udp_log.h>
#include <sys/kdebug.h>
#if IPSEC
#include <netinet6/ipsec.h>
#include <netinet6/esp.h>
#include <netkey/key.h>
extern int ipsec_bypass;
extern int esp_udp_encap_port;
#endif /* IPSEC */
#if NECP
#include <net/necp.h>
#endif /* NECP */
#if FLOW_DIVERT
#include <netinet/flow_divert.h>
#endif /* FLOW_DIVERT */
#if CONTENT_FILTER
#include <net/content_filter.h>
#endif /* CONTENT_FILTER */
#if SKYWALK
#include <skywalk/core/skywalk_var.h>
#endif /* SKYWALK */
#define DBG_LAYER_IN_BEG NETDBG_CODE(DBG_NETUDP, 0)
#define DBG_LAYER_IN_END NETDBG_CODE(DBG_NETUDP, 2)
#define DBG_LAYER_OUT_BEG NETDBG_CODE(DBG_NETUDP, 1)
#define DBG_LAYER_OUT_END NETDBG_CODE(DBG_NETUDP, 3)
#define DBG_FNC_UDP_INPUT NETDBG_CODE(DBG_NETUDP, (5 << 8))
#define DBG_FNC_UDP_OUTPUT NETDBG_CODE(DBG_NETUDP, (6 << 8) | 1)
/*
* UDP protocol implementation.
* Per RFC 768, August, 1980.
*/
#ifndef COMPAT_42
static int udpcksum = 1;
#else
static int udpcksum = 0; /* XXX */
#endif
SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum,
CTLFLAG_RW | CTLFLAG_LOCKED, &udpcksum, 0, "");
int udp_log_in_vain = 0;
SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW | CTLFLAG_LOCKED,
&udp_log_in_vain, 0, "Log all incoming UDP packets");
static int blackhole = 0;
SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW | CTLFLAG_LOCKED,
&blackhole, 0, "Do not send port unreachables for refused connects");
static KALLOC_TYPE_DEFINE(inpcbzone, struct inpcb, NET_KT_DEFAULT);
struct inpcbhead udb; /* from udp_var.h */
#define udb6 udb /* for KAME src sync over BSD*'s */
struct inpcbinfo udbinfo;
#ifndef UDBHASHSIZE
#define UDBHASHSIZE 16
#endif
/* Garbage collection performed during most recent udp_gc() run */
static boolean_t udp_gc_done = FALSE;
#define log_in_vain_log(a) { log a; }
static int udp_getstat SYSCTL_HANDLER_ARGS;
struct udpstat udpstat; /* from udp_var.h */
SYSCTL_PROC(_net_inet_udp, UDPCTL_STATS, stats,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, udp_getstat, "S,udpstat",
"UDP statistics (struct udpstat, netinet/udp_var.h)");
SYSCTL_INT(_net_inet_udp, OID_AUTO, pcbcount,
CTLFLAG_RD | CTLFLAG_LOCKED, &udbinfo.ipi_count, 0,
"Number of active PCBs");
__private_extern__ int udp_use_randomport = 1;
SYSCTL_INT(_net_inet_udp, OID_AUTO, randomize_ports,
CTLFLAG_RW | CTLFLAG_LOCKED, &udp_use_randomport, 0,
"Randomize UDP port numbers");
struct udp_in6 {
struct sockaddr_in6 uin6_sin;
u_char uin6_init_done : 1;
};
struct udp_ip6 {
struct ip6_hdr uip6_ip6;
u_char uip6_init_done : 1;
};
int udp_abort(struct socket *);
int udp_attach(struct socket *, int, struct proc *);
int udp_bind(struct socket *, struct sockaddr *, struct proc *);
int udp_connect(struct socket *, struct sockaddr *, struct proc *);
int udp_connectx(struct socket *, struct sockaddr *,
struct sockaddr *, struct proc *, uint32_t, sae_associd_t,
sae_connid_t *, uint32_t, void *, uint32_t, struct uio *, user_ssize_t *);
int udp_detach(struct socket *);
int udp_disconnect(struct socket *);
int udp_disconnectx(struct socket *, sae_associd_t, sae_connid_t);
int udp_send(struct socket *, int, struct mbuf *, struct sockaddr *,
struct mbuf *, struct proc *);
static void udp_append(struct inpcb *, struct ip *, struct mbuf *, int,
struct sockaddr_in *, struct udp_in6 *, struct udp_ip6 *, struct ifnet *);
static int udp_input_checksum(struct mbuf *, struct udphdr *, int, int);
int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
struct mbuf *, struct proc *);
static void ip_2_ip6_hdr(struct ip6_hdr *ip6, struct ip *ip);
static void udp_gc(struct inpcbinfo *);
static int udp_defunct(struct socket *);
struct pr_usrreqs udp_usrreqs = {
.pru_abort = udp_abort,
.pru_attach = udp_attach,
.pru_bind = udp_bind,
.pru_connect = udp_connect,
.pru_connectx = udp_connectx,
.pru_control = in_control,
.pru_detach = udp_detach,
.pru_disconnect = udp_disconnect,
.pru_disconnectx = udp_disconnectx,
.pru_peeraddr = in_getpeeraddr,
.pru_send = udp_send,
.pru_shutdown = udp_shutdown,
.pru_sockaddr = in_getsockaddr,
.pru_sosend = sosend,
.pru_soreceive = soreceive,
.pru_defunct = udp_defunct,
};
void
udp_init(struct protosw *pp, struct domain *dp)
{
#pragma unused(dp)
static int udp_initialized = 0;
struct inpcbinfo *pcbinfo;
VERIFY((pp->pr_flags & (PR_INITIALIZED | PR_ATTACHED)) == PR_ATTACHED);
if (udp_initialized) {
return;
}
udp_initialized = 1;
uint32_t pool_size = (nmbclusters << MCLSHIFT) >> MBSHIFT;
if (pool_size >= 96) {
/* Improves 10GbE UDP performance. */
udp_recvspace = 786896;
}
if (PE_parse_boot_argn("udp_log", &udp_log_enable_flags, sizeof(udp_log_enable_flags))) {
os_log(OS_LOG_DEFAULT, "udp_init: set udp_log_enable_flags to 0x%x", udp_log_enable_flags);
}
LIST_INIT(&udb);
udbinfo.ipi_listhead = &udb;
udbinfo.ipi_hashbase = hashinit(UDBHASHSIZE, M_PCB,
&udbinfo.ipi_hashmask);
udbinfo.ipi_porthashbase = hashinit(UDBHASHSIZE, M_PCB,
&udbinfo.ipi_porthashmask);
udbinfo.ipi_zone = inpcbzone;
pcbinfo = &udbinfo;
/*
* allocate lock group and attribute for udp pcb mutexes
*/
pcbinfo->ipi_lock_grp = lck_grp_alloc_init("udppcb",
LCK_GRP_ATTR_NULL);
lck_attr_setdefault(&pcbinfo->ipi_lock_attr);
lck_rw_init(&pcbinfo->ipi_lock, pcbinfo->ipi_lock_grp,
&pcbinfo->ipi_lock_attr);
udbinfo.ipi_gc = udp_gc;
in_pcbinfo_attach(&udbinfo);
}
void
udp_input(struct mbuf *m, int iphlen)
{
struct ip *ip;
struct udphdr *uh;
struct inpcb *inp;
struct mbuf *opts = NULL;
int len, isbroadcast;
struct ip save_ip;
struct sockaddr *append_sa;
struct inpcbinfo *pcbinfo = &udbinfo;
struct sockaddr_in udp_in;
struct ip_moptions *imo = NULL;
int foundmembership = 0, ret = 0;
struct udp_in6 udp_in6;
struct udp_ip6 udp_ip6;
struct ifnet *ifp = m->m_pkthdr.rcvif;
boolean_t cell = IFNET_IS_CELLULAR(ifp);
boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp));
boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp));
u_int16_t pf_tag = 0;
boolean_t is_wake_pkt = false;
bzero(&udp_in, sizeof(udp_in));
udp_in.sin_len = sizeof(struct sockaddr_in);
udp_in.sin_family = AF_INET;
bzero(&udp_in6, sizeof(udp_in6));
udp_in6.uin6_sin.sin6_len = sizeof(struct sockaddr_in6);
udp_in6.uin6_sin.sin6_family = AF_INET6;
if (m->m_flags & M_PKTHDR) {
pf_tag = m_pftag(m)->pftag_tag;
if (m->m_pkthdr.pkt_flags & PKTF_WAKE_PKT) {
is_wake_pkt = true;
}
}
udpstat.udps_ipackets++;
KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_START, 0, 0, 0, 0, 0);
/* Expect 32-bit aligned data pointer on strict-align platforms */
MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
m_add_crumb(m, PKT_CRUMB_UDP_INPUT);
/*
* Strip IP options, if any; should skip this,
* make available to user, and use on returned packets,
* but we don't yet have a way to check the checksum
* with options still present.
*/
if (iphlen > sizeof(struct ip)) {
ip_stripoptions(m);
iphlen = sizeof(struct ip);
}
/*
* Get IP and UDP header together in first mbuf.
*/
ip = mtod(m, struct ip *);
if (m->m_len < iphlen + sizeof(struct udphdr)) {
m = m_pullup(m, iphlen + sizeof(struct udphdr));
if (m == NULL) {
udpstat.udps_hdrops++;
KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END,
0, 0, 0, 0, 0);
return;
}
ip = mtod(m, struct ip *);
}
uh = (struct udphdr *)(void *)((caddr_t)ip + iphlen);
/* destination port of 0 is illegal, based on RFC768. */
if (uh->uh_dport == 0) {
IF_UDP_STATINC(ifp, port0);
goto bad;
}
KERNEL_DEBUG(DBG_LAYER_IN_BEG, uh->uh_dport, uh->uh_sport,
ip->ip_src.s_addr, ip->ip_dst.s_addr, uh->uh_ulen);
/*
* Make mbuf data length reflect UDP length.
* If not enough data to reflect UDP length, drop.
*/
len = ntohs((u_short)uh->uh_ulen);
if (ip->ip_len != len) {
if (len > ip->ip_len || len < sizeof(struct udphdr)) {
udpstat.udps_badlen++;
IF_UDP_STATINC(ifp, badlength);
goto bad;
}
m_adj(m, len - ip->ip_len);
/* ip->ip_len = len; */
}
/*
* Save a copy of the IP header in case we want restore it
* for sending an ICMP error message in response.
*/
save_ip = *ip;
/*
* Checksum extended UDP header and data.
*/
if (udp_input_checksum(m, uh, iphlen, len)) {
goto bad;
}
isbroadcast = in_broadcast(ip->ip_dst, ifp);
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || isbroadcast) {
int reuse_sock = 0, mcast_delivered = 0;
lck_rw_lock_shared(&pcbinfo->ipi_lock);
/*
* Deliver a multicast or broadcast datagram to *all* sockets
* for which the local and remote addresses and ports match
* those of the incoming datagram. This allows more than
* one process to receive multi/broadcasts on the same port.
* (This really ought to be done for unicast datagrams as
* well, but that would cause problems with existing
* applications that open both address-specific sockets and
* a wildcard socket listening to the same port -- they would
* end up receiving duplicates of every unicast datagram.
* Those applications open the multiple sockets to overcome an
* inadequacy of the UDP socket interface, but for backwards
* compatibility we avoid the problem here rather than
* fixing the interface. Maybe 4.5BSD will remedy this?)
*/
/*
* Construct sockaddr format source address.
*/
udp_in.sin_port = uh->uh_sport;
udp_in.sin_addr = ip->ip_src;
/*
* Locate pcb(s) for datagram.
* (Algorithm copied from raw_intr().)
*/
udp_in6.uin6_init_done = udp_ip6.uip6_init_done = 0;
LIST_FOREACH(inp, &udb, inp_list) {
#if IPSEC
int skipit;
#endif /* IPSEC */
if (inp->inp_socket == NULL) {
continue;
}
if (inp != sotoinpcb(inp->inp_socket)) {
panic("%s: bad so back ptr inp=%p",
__func__, inp);
/* NOTREACHED */
}
if ((inp->inp_vflag & INP_IPV4) == 0) {
continue;
}
if (inp_restricted_recv(inp, ifp)) {
continue;
}
if ((inp->inp_moptions == NULL) &&
(ntohl(ip->ip_dst.s_addr) !=
INADDR_ALLHOSTS_GROUP) && (isbroadcast == 0)) {
continue;
}
/*
* Skip unbound sockets before taking the lock on the socket as
* the test with the destination port in the header will fail
*/
if (inp->inp_lport == 0) {
continue;
}
if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) ==
WNT_STOPUSING) {
continue;
}
udp_lock(inp->inp_socket, 1, 0);
if (in_pcb_checkstate(inp, WNT_RELEASE, 1) ==
WNT_STOPUSING) {
udp_unlock(inp->inp_socket, 1, 0);
continue;
}
if (inp->inp_lport != uh->uh_dport) {
udp_unlock(inp->inp_socket, 1, 0);
continue;
}
if (inp->inp_laddr.s_addr != INADDR_ANY) {
if (inp->inp_laddr.s_addr !=
ip->ip_dst.s_addr) {
udp_unlock(inp->inp_socket, 1, 0);
continue;
}
}
if (inp->inp_faddr.s_addr != INADDR_ANY) {
if (inp->inp_faddr.s_addr !=
ip->ip_src.s_addr ||
inp->inp_fport != uh->uh_sport) {
udp_unlock(inp->inp_socket, 1, 0);
continue;
}
}
if (isbroadcast == 0 && (ntohl(ip->ip_dst.s_addr) !=
INADDR_ALLHOSTS_GROUP)) {
struct sockaddr_in group;
int blocked;
if ((imo = inp->inp_moptions) == NULL) {
udp_unlock(inp->inp_socket, 1, 0);
continue;
}
IMO_LOCK(imo);
bzero(&group, sizeof(struct sockaddr_in));
group.sin_len = sizeof(struct sockaddr_in);
group.sin_family = AF_INET;
group.sin_addr = ip->ip_dst;
blocked = imo_multi_filter(imo, ifp,
&group, &udp_in);
if (blocked == MCAST_PASS) {
foundmembership = 1;
}
IMO_UNLOCK(imo);
if (!foundmembership) {
udp_unlock(inp->inp_socket, 1, 0);
if (blocked == MCAST_NOTSMEMBER ||
blocked == MCAST_MUTED) {
udpstat.udps_filtermcast++;
}
continue;
}
foundmembership = 0;
}
reuse_sock = (inp->inp_socket->so_options &
(SO_REUSEPORT | SO_REUSEADDR));
#if NECP
skipit = 0;
if (!necp_socket_is_allowed_to_send_recv_v4(inp,
uh->uh_dport, uh->uh_sport, &ip->ip_dst,
&ip->ip_src, ifp, pf_tag, NULL, NULL, NULL, NULL)) {
/* do not inject data to pcb */
skipit = 1;
}
if (skipit == 0)
#endif /* NECP */
{
struct mbuf *n = NULL;
if (reuse_sock) {
n = m_copy(m, 0, M_COPYALL);
}
udp_append(inp, ip, m,
iphlen + sizeof(struct udphdr),
&udp_in, &udp_in6, &udp_ip6, ifp);
mcast_delivered++;
m = n;
}
if (is_wake_pkt) {
soevent(inp->inp_socket, SO_FILT_HINT_LOCKED | SO_FILT_HINT_WAKE_PKT);
}
udp_unlock(inp->inp_socket, 1, 0);
/*
* Don't look for additional matches if this one does
* not have either the SO_REUSEPORT or SO_REUSEADDR
* socket options set. This heuristic avoids searching
* through all pcbs in the common case of a non-shared
* port. It assumes that an application will never
* clear these options after setting them.
*/
if (reuse_sock == 0 || m == NULL) {
break;
}
/*
* Expect 32-bit aligned data pointer on strict-align
* platforms.
*/
MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
/*
* Recompute IP and UDP header pointers for new mbuf
*/
ip = mtod(m, struct ip *);
uh = (struct udphdr *)(void *)((caddr_t)ip + iphlen);
}
lck_rw_done(&pcbinfo->ipi_lock);
if (mcast_delivered == 0) {
/*
* No matching pcb found; discard datagram.
* (No need to send an ICMP Port Unreachable
* for a broadcast or multicast datgram.)
*/
udpstat.udps_noportbcast++;
IF_UDP_STATINC(ifp, port_unreach);
goto bad;
}
/* free the extra copy of mbuf or skipped by IPsec */
if (m != NULL) {
m_freem(m);
}
KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0);
return;
}
#if IPSEC
/*
* UDP to port 4500 with a payload where the first four bytes are
* not zero is a UDP encapsulated IPsec packet. Packets where
* the payload is one byte and that byte is 0xFF are NAT keepalive
* packets. Decapsulate the ESP packet and carry on with IPsec input
* or discard the NAT keep-alive.
*/
if (ipsec_bypass == 0 && (esp_udp_encap_port & 0xFFFF) != 0 &&
(uh->uh_dport == ntohs((u_short)esp_udp_encap_port) ||
uh->uh_sport == ntohs((u_short)esp_udp_encap_port))) {
/*
* Check if ESP or keepalive:
* 1. If the destination port of the incoming packet is 4500.
* 2. If the source port of the incoming packet is 4500,
* then check the SADB to match IP address and port.
*/
bool check_esp = true;
if (uh->uh_dport != ntohs((u_short)esp_udp_encap_port)) {
check_esp = key_checksa_present(AF_INET, (caddr_t)&ip->ip_dst,
(caddr_t)&ip->ip_src, uh->uh_dport,
uh->uh_sport, IFSCOPE_NONE, IFSCOPE_NONE);
}
if (check_esp) {
int payload_len = len - sizeof(struct udphdr) > 4 ? 4 :
len - sizeof(struct udphdr);
if (m->m_len < iphlen + sizeof(struct udphdr) + payload_len) {
if ((m = m_pullup(m, iphlen + sizeof(struct udphdr) +
payload_len)) == NULL) {
udpstat.udps_hdrops++;
KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END,
0, 0, 0, 0, 0);
return;
}
/*
* Expect 32-bit aligned data pointer on strict-align
* platforms.
*/
MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
ip = mtod(m, struct ip *);
uh = (struct udphdr *)(void *)((caddr_t)ip + iphlen);
}
/* Check for NAT keepalive packet */
if (payload_len == 1 && *(u_int8_t *)
((caddr_t)uh + sizeof(struct udphdr)) == 0xFF) {
m_freem(m);
KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END,
0, 0, 0, 0, 0);
return;
} else if (payload_len == 4 && *(u_int32_t *)(void *)
((caddr_t)uh + sizeof(struct udphdr)) != 0) {
/* UDP encapsulated IPsec packet to pass through NAT */
KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END,
0, 0, 0, 0, 0);
/* preserve the udp header */
esp4_input(m, iphlen + sizeof(struct udphdr));
return;
}
}
}
#endif /* IPSEC */
/*
* Locate pcb for datagram.
*/
inp = in_pcblookup_hash(&udbinfo, ip->ip_src, uh->uh_sport,
ip->ip_dst, uh->uh_dport, 1, ifp);
if (inp == NULL) {
IF_UDP_STATINC(ifp, port_unreach);
if (udp_log_in_vain) {
char buf[MAX_IPv4_STR_LEN];
char buf2[MAX_IPv4_STR_LEN];
/* check src and dst address */
if (udp_log_in_vain < 3) {
log(LOG_INFO, "Connection attempt to "
"UDP %s:%d from %s:%d\n", inet_ntop(AF_INET,
&ip->ip_dst, buf, sizeof(buf)),
ntohs(uh->uh_dport), inet_ntop(AF_INET,
&ip->ip_src, buf2, sizeof(buf2)),
ntohs(uh->uh_sport));
} else if (!(m->m_flags & (M_BCAST | M_MCAST)) &&
ip->ip_dst.s_addr != ip->ip_src.s_addr) {
log_in_vain_log((LOG_INFO,
"Stealth Mode connection attempt to "
"UDP %s:%d from %s:%d\n", inet_ntop(AF_INET,
&ip->ip_dst, buf, sizeof(buf)),
ntohs(uh->uh_dport), inet_ntop(AF_INET,
&ip->ip_src, buf2, sizeof(buf2)),
ntohs(uh->uh_sport)))
}
}
udpstat.udps_noport++;
if (m->m_flags & (M_BCAST | M_MCAST)) {
udpstat.udps_noportbcast++;
goto bad;
}
if (blackhole) {
if (ifp && ifp->if_type != IFT_LOOP) {
goto bad;
}
}
*ip = save_ip;
ip->ip_len += iphlen;
icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0);
return;
}
udp_lock(inp->inp_socket, 1, 0);
if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
udp_unlock(inp->inp_socket, 1, 0);
IF_UDP_STATINC(ifp, cleanup);
goto bad;
}
#if NECP
if (!necp_socket_is_allowed_to_send_recv_v4(inp, uh->uh_dport,
uh->uh_sport, &ip->ip_dst, &ip->ip_src, ifp, pf_tag, NULL, NULL, NULL, NULL)) {
udp_unlock(inp->inp_socket, 1, 0);
IF_UDP_STATINC(ifp, badipsec);
goto bad;
}
#endif /* NECP */
/*
* Construct sockaddr format source address.
* Stuff source address and datagram in user buffer.
*/
udp_in.sin_port = uh->uh_sport;
udp_in.sin_addr = ip->ip_src;
if ((inp->inp_flags & INP_CONTROLOPTS) != 0 ||
SOFLOW_ENABLED(inp->inp_socket) ||
SO_RECV_CONTROL_OPTS(inp->inp_socket)) {
if (inp->inp_vflag & INP_IPV6 || inp->inp_vflag & INP_V4MAPPEDV6) {
int savedflags;
ip_2_ip6_hdr(&udp_ip6.uip6_ip6, ip);
savedflags = inp->inp_flags;
inp->inp_flags &= ~INP_UNMAPPABLEOPTS;
ret = ip6_savecontrol(inp, m, &opts);
inp->inp_flags = savedflags;
} else {
ret = ip_savecontrol(inp, &opts, ip, m);
}
if (ret != 0) {
udp_unlock(inp->inp_socket, 1, 0);
goto bad;
}
}
m_adj(m, iphlen + sizeof(struct udphdr));
KERNEL_DEBUG(DBG_LAYER_IN_END, uh->uh_dport, uh->uh_sport,
save_ip.ip_src.s_addr, save_ip.ip_dst.s_addr, uh->uh_ulen);
if (inp->inp_vflag & INP_IPV6) {
in6_sin_2_v4mapsin6(&udp_in, &udp_in6.uin6_sin);
append_sa = (struct sockaddr *)&udp_in6.uin6_sin;
} else {
append_sa = (struct sockaddr *)&udp_in;
}
if (nstat_collect) {
INP_ADD_STAT(inp, cell, wifi, wired, rxpackets, 1);
INP_ADD_STAT(inp, cell, wifi, wired, rxbytes, m->m_pkthdr.len);
inp_set_activity_bitmap(inp);
}
so_recv_data_stat(inp->inp_socket, m, 0);
if (sbappendaddr(&inp->inp_socket->so_rcv, append_sa,
m, opts, NULL) == 0) {
udpstat.udps_fullsock++;
} else {
sorwakeup(inp->inp_socket);
}
if (is_wake_pkt) {
soevent(inp->inp_socket, SO_FILT_HINT_LOCKED | SO_FILT_HINT_WAKE_PKT);
}
udp_unlock(inp->inp_socket, 1, 0);
KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0);
return;
bad:
m_freem(m);
if (opts) {
m_freem(opts);
}
KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0);
}
static void
ip_2_ip6_hdr(struct ip6_hdr *ip6, struct ip *ip)
{
bzero(ip6, sizeof(*ip6));
ip6->ip6_vfc = IPV6_VERSION;
ip6->ip6_plen = ip->ip_len;
ip6->ip6_nxt = ip->ip_p;
ip6->ip6_hlim = ip->ip_ttl;
if (ip->ip_src.s_addr) {
ip6->ip6_src.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
ip6->ip6_src.s6_addr32[3] = ip->ip_src.s_addr;
}
if (ip->ip_dst.s_addr) {
ip6->ip6_dst.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
ip6->ip6_dst.s6_addr32[3] = ip->ip_dst.s_addr;
}
}
/*
* subroutine of udp_input(), mainly for source code readability.
*/
static void
udp_append(struct inpcb *last, struct ip *ip, struct mbuf *n, int off,
struct sockaddr_in *pudp_in, struct udp_in6 *pudp_in6,
struct udp_ip6 *pudp_ip6, struct ifnet *ifp)
{
struct sockaddr *append_sa;
struct mbuf *opts = 0;
boolean_t cell = IFNET_IS_CELLULAR(ifp);
boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp));
boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp));
int ret = 0;
if ((last->inp_flags & INP_CONTROLOPTS) != 0 ||
SOFLOW_ENABLED(last->inp_socket) ||
SO_RECV_CONTROL_OPTS(last->inp_socket)) {
if (last->inp_vflag & INP_IPV6 || last->inp_vflag & INP_V4MAPPEDV6) {
int savedflags;
if (pudp_ip6->uip6_init_done == 0) {
ip_2_ip6_hdr(&pudp_ip6->uip6_ip6, ip);
pudp_ip6->uip6_init_done = 1;
}
savedflags = last->inp_flags;
last->inp_flags &= ~INP_UNMAPPABLEOPTS;
ret = ip6_savecontrol(last, n, &opts);
if (ret != 0) {
last->inp_flags = savedflags;
goto error;
}
last->inp_flags = savedflags;
} else {
ret = ip_savecontrol(last, &opts, ip, n);
if (ret != 0) {
goto error;
}
}
}
if (last->inp_vflag & INP_IPV6) {
if (pudp_in6->uin6_init_done == 0) {
in6_sin_2_v4mapsin6(pudp_in, &pudp_in6->uin6_sin);
pudp_in6->uin6_init_done = 1;
}
append_sa = (struct sockaddr *)&pudp_in6->uin6_sin;
} else {
append_sa = (struct sockaddr *)pudp_in;
}
if (nstat_collect) {
INP_ADD_STAT(last, cell, wifi, wired, rxpackets, 1);
INP_ADD_STAT(last, cell, wifi, wired, rxbytes,
n->m_pkthdr.len);
inp_set_activity_bitmap(last);
}
so_recv_data_stat(last->inp_socket, n, 0);
m_adj(n, off);
if (sbappendaddr(&last->inp_socket->so_rcv, append_sa,
n, opts, NULL) == 0) {
udpstat.udps_fullsock++;
} else {
sorwakeup(last->inp_socket);
}
return;
error:
m_freem(n);
m_freem(opts);
}
/*
* Notify a udp user of an asynchronous error;
* just wake up so that he can collect error status.
*/
void
udp_notify(struct inpcb *inp, int errno)
{
inp->inp_socket->so_error = (u_short)errno;
sorwakeup(inp->inp_socket);
sowwakeup(inp->inp_socket);
}
void
udp_ctlinput(int cmd, struct sockaddr *sa, void *vip, __unused struct ifnet * ifp)
{
struct ipctlparam *ctl_param = vip;
struct ip *ip = NULL;
struct mbuf *m = NULL;
void (*notify)(struct inpcb *, int) = udp_notify;
struct in_addr faddr;
struct inpcb *inp = NULL;
struct icmp *icp = NULL;
size_t off;
if (ctl_param != NULL) {
ip = ctl_param->ipc_icmp_ip;
icp = ctl_param->ipc_icmp;
m = ctl_param->ipc_m;
off = ctl_param->ipc_off;
} else {
ip = NULL;
icp = NULL;
m = NULL;
off = 0;
}
faddr = ((struct sockaddr_in *)(void *)sa)->sin_addr;
if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) {
return;
}
if (PRC_IS_REDIRECT(cmd)) {
ip = 0;
notify = in_rtchange;
} else if (cmd == PRC_HOSTDEAD) {
ip = 0;
} else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
return;
}
if (ip) {
struct udphdr uh;
/* Check if we can safely get the ports from the UDP header */
if (m == NULL ||
(m->m_len < off + sizeof(uh))) {
/* Insufficient length */
return;
}
bcopy(m->m_data + off, &uh, sizeof(uh));
inp = in_pcblookup_hash(&udbinfo, faddr, uh.uh_dport,
ip->ip_src, uh.uh_sport, 0, NULL);
if (inp != NULL && inp->inp_socket != NULL) {
udp_lock(inp->inp_socket, 1, 0);
if (in_pcb_checkstate(inp, WNT_RELEASE, 1) ==
WNT_STOPUSING) {
udp_unlock(inp->inp_socket, 1, 0);
return;
}
if (cmd == PRC_MSGSIZE && !uuid_is_null(inp->necp_client_uuid)) {
uuid_t null_uuid;
uuid_clear(null_uuid);
necp_update_flow_protoctl_event(null_uuid, inp->necp_client_uuid,
PRC_MSGSIZE, ntohs(icp->icmp_nextmtu), 0);
/*
* Avoid calling udp_notify() to set so_error
* when using Network.framework since the notification
* of PRC_MSGSIZE has been delivered through NECP.
*/
} else {
(*notify)(inp, inetctlerrmap[cmd]);
}
udp_unlock(inp->inp_socket, 1, 0);
}
#if SKYWALK
else {
union sockaddr_in_4_6 sock_laddr;
struct protoctl_ev_val prctl_ev_val;
bzero(&prctl_ev_val, sizeof(prctl_ev_val));
bzero(&sock_laddr, sizeof(sock_laddr));
if (cmd == PRC_MSGSIZE) {
prctl_ev_val.val = ntohs(icp->icmp_nextmtu);
}
sock_laddr.sin.sin_family = AF_INET;
sock_laddr.sin.sin_len = sizeof(sock_laddr.sin);
sock_laddr.sin.sin_addr = ip->ip_src;
protoctl_event_enqueue_nwk_wq_entry(ifp,
(struct sockaddr *)&sock_laddr, sa,
uh.uh_sport, uh.uh_dport, IPPROTO_UDP,
cmd, &prctl_ev_val);
}
#endif /* SKYWALK */
} else {
in_pcbnotifyall(&udbinfo, faddr, inetctlerrmap[cmd], notify);
}
}
int
udp_ctloutput(struct socket *so, struct sockopt *sopt)
{
int error = 0, optval = 0;
struct inpcb *inp;
/* Allow <SOL_SOCKET,SO_FLUSH> at this level */
if (sopt->sopt_level != IPPROTO_UDP &&
!(sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_FLUSH)) {
if (SOCK_CHECK_DOM(so, PF_INET6)) {
error = ip6_ctloutput(so, sopt);
} else {
error = ip_ctloutput(so, sopt);
}
return error;
}
inp = sotoinpcb(so);
switch (sopt->sopt_dir) {
case SOPT_SET:
switch (sopt->sopt_name) {
case UDP_NOCKSUM:
/* This option is settable only for UDP over IPv4 */
if (!(inp->inp_vflag & INP_IPV4)) {
error = EINVAL;
break;
}
if ((error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval))) != 0) {
break;
}
if (optval != 0) {
inp->inp_flags |= INP_UDP_NOCKSUM;
} else {
inp->inp_flags &= ~INP_UDP_NOCKSUM;
}
break;
case UDP_KEEPALIVE_OFFLOAD:
{
struct udp_keepalive_offload ka;
/*
* If the socket is not connected, the stack will
* not know the destination address to put in the
* keepalive datagram. Return an error now instead
* of failing later.
*/
if (!(so->so_state & SS_ISCONNECTED)) {
error = EINVAL;
break;
}
if (sopt->sopt_valsize != sizeof(ka)) {
error = EINVAL;
break;
}
if ((error = sooptcopyin(sopt, &ka, sizeof(ka),
sizeof(ka))) != 0) {
break;
}
/* application should specify the type */
if (ka.ka_type == 0) {
return EINVAL;
}
if (ka.ka_interval == 0) {
/*
* if interval is 0, disable the offload
* mechanism
*/
if (inp->inp_keepalive_data != NULL) {
kfree_data(inp->inp_keepalive_data,
inp->inp_keepalive_datalen);
}
inp->inp_keepalive_data = NULL;
inp->inp_keepalive_datalen = 0;
inp->inp_keepalive_interval = 0;
inp->inp_keepalive_type = 0;
inp->inp_flags2 &= ~INP2_KEEPALIVE_OFFLOAD;
} else {
if (inp->inp_keepalive_data != NULL) {
kfree_data(inp->inp_keepalive_data,
inp->inp_keepalive_datalen);
inp->inp_keepalive_data = NULL;
}
inp->inp_keepalive_datalen = (uint8_t)min(
ka.ka_data_len,
UDP_KEEPALIVE_OFFLOAD_DATA_SIZE);
if (inp->inp_keepalive_datalen > 0) {
inp->inp_keepalive_data = (u_int8_t *)kalloc_data(
inp->inp_keepalive_datalen, Z_WAITOK);
if (inp->inp_keepalive_data == NULL) {
inp->inp_keepalive_datalen = 0;
error = ENOMEM;
break;
}
bcopy(ka.ka_data,
inp->inp_keepalive_data,
inp->inp_keepalive_datalen);
} else {
inp->inp_keepalive_datalen = 0;
}
inp->inp_keepalive_interval = (uint8_t)
min(UDP_KEEPALIVE_INTERVAL_MAX_SECONDS,
ka.ka_interval);
inp->inp_keepalive_type = ka.ka_type;
inp->inp_flags2 |= INP2_KEEPALIVE_OFFLOAD;
}
break;
}
case SO_FLUSH:
if ((error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval))) != 0) {
break;
}
error = inp_flush(inp, optval);
break;
default:
error = ENOPROTOOPT;
break;
}
break;
case SOPT_GET:
switch (sopt->sopt_name) {
case UDP_NOCKSUM:
optval = inp->inp_flags & INP_UDP_NOCKSUM;
break;
default:
error = ENOPROTOOPT;
break;
}
if (error == 0) {
error = sooptcopyout(sopt, &optval, sizeof(optval));
}
break;
}
return error;
}
static int
udp_pcblist SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int error, i, n, sz;
struct inpcb *inp, **inp_list;
inp_gen_t gencnt;
struct xinpgen xig;
/*
* The process of preparing the TCB list is too time-consuming and
* resource-intensive to repeat twice on every request.
*/
lck_rw_lock_exclusive(&udbinfo.ipi_lock);
if (req->oldptr == USER_ADDR_NULL) {
n = udbinfo.ipi_count;
req->oldidx = 2 * (sizeof(xig))
+ (n + n / 8) * sizeof(struct xinpcb);
lck_rw_done(&udbinfo.ipi_lock);
return 0;
}
if (req->newptr != USER_ADDR_NULL) {
lck_rw_done(&udbinfo.ipi_lock);
return EPERM;
}
/*
* OK, now we're committed to doing something.
*/
gencnt = udbinfo.ipi_gencnt;
sz = n = udbinfo.ipi_count;
bzero(&xig, sizeof(xig));
xig.xig_len = sizeof(xig);
xig.xig_count = n;
xig.xig_gen = gencnt;
xig.xig_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xig, sizeof(xig));
if (error) {
lck_rw_done(&udbinfo.ipi_lock);
return error;
}
/*
* We are done if there is no pcb
*/
if (n == 0) {
lck_rw_done(&udbinfo.ipi_lock);
return 0;
}
inp_list = kalloc_type(struct inpcb *, n, Z_WAITOK);
if (inp_list == NULL) {
lck_rw_done(&udbinfo.ipi_lock);
return ENOMEM;
}
for (inp = LIST_FIRST(udbinfo.ipi_listhead), i = 0; inp && i < n;
inp = LIST_NEXT(inp, inp_list)) {
if (inp->inp_gencnt <= gencnt &&
inp->inp_state != INPCB_STATE_DEAD) {
inp_list[i++] = inp;
}
}
n = i;
error = 0;
for (i = 0; i < n; i++) {
struct xinpcb xi;
inp = inp_list[i];
if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) {
continue;
}
udp_lock(inp->inp_socket, 1, 0);
if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
udp_unlock(inp->inp_socket, 1, 0);
continue;
}
if (inp->inp_gencnt > gencnt) {
udp_unlock(inp->inp_socket, 1, 0);
continue;
}
bzero(&xi, sizeof(xi));
xi.xi_len = sizeof(xi);
/* XXX should avoid extra copy */
inpcb_to_compat(inp, &xi.xi_inp);
if (inp->inp_socket) {
sotoxsocket(inp->inp_socket, &xi.xi_socket);
}
udp_unlock(inp->inp_socket, 1, 0);
error = SYSCTL_OUT(req, &xi, sizeof(xi));
}
if (!error) {
/*
* Give the user an updated idea of our state.
* If the generation differs from what we told
* her before, she knows that something happened
* while we were processing this request, and it
* might be necessary to retry.
*/
bzero(&xig, sizeof(xig));
xig.xig_len = sizeof(xig);
xig.xig_gen = udbinfo.ipi_gencnt;
xig.xig_sogen = so_gencnt;
xig.xig_count = udbinfo.ipi_count;
error = SYSCTL_OUT(req, &xig, sizeof(xig));
}
lck_rw_done(&udbinfo.ipi_lock);
kfree_type(struct inpcb *, sz, inp_list);
return error;
}
SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, udp_pcblist,
"S,xinpcb", "List of active UDP sockets");
#if XNU_TARGET_OS_OSX
static int
udp_pcblist64 SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int error, i, n, sz;
struct inpcb *inp, **inp_list;
inp_gen_t gencnt;
struct xinpgen xig;
/*
* The process of preparing the TCB list is too time-consuming and
* resource-intensive to repeat twice on every request.
*/
lck_rw_lock_shared(&udbinfo.ipi_lock);
if (req->oldptr == USER_ADDR_NULL) {
n = udbinfo.ipi_count;
req->oldidx =
2 * (sizeof(xig)) + (n + n / 8) * sizeof(struct xinpcb64);
lck_rw_done(&udbinfo.ipi_lock);
return 0;
}
if (req->newptr != USER_ADDR_NULL) {
lck_rw_done(&udbinfo.ipi_lock);
return EPERM;
}
/*
* OK, now we're committed to doing something.
*/
gencnt = udbinfo.ipi_gencnt;
sz = n = udbinfo.ipi_count;
bzero(&xig, sizeof(xig));
xig.xig_len = sizeof(xig);
xig.xig_count = n;
xig.xig_gen = gencnt;
xig.xig_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xig, sizeof(xig));
if (error) {
lck_rw_done(&udbinfo.ipi_lock);
return error;
}
/*
* We are done if there is no pcb
*/
if (n == 0) {
lck_rw_done(&udbinfo.ipi_lock);
return 0;
}
inp_list = kalloc_type(struct inpcb *, n, Z_WAITOK);
if (inp_list == NULL) {
lck_rw_done(&udbinfo.ipi_lock);
return ENOMEM;
}
for (inp = LIST_FIRST(udbinfo.ipi_listhead), i = 0; inp && i < n;
inp = LIST_NEXT(inp, inp_list)) {
if (inp->inp_gencnt <= gencnt &&
inp->inp_state != INPCB_STATE_DEAD) {
inp_list[i++] = inp;
}
}
n = i;
error = 0;
for (i = 0; i < n; i++) {
struct xinpcb64 xi;
inp = inp_list[i];
if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) {
continue;
}
udp_lock(inp->inp_socket, 1, 0);
if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
udp_unlock(inp->inp_socket, 1, 0);
continue;
}
if (inp->inp_gencnt > gencnt) {
udp_unlock(inp->inp_socket, 1, 0);
continue;
}
bzero(&xi, sizeof(xi));
xi.xi_len = sizeof(xi);
inpcb_to_xinpcb64(inp, &xi);
if (inp->inp_socket) {
sotoxsocket64(inp->inp_socket, &xi.xi_socket);
}
udp_unlock(inp->inp_socket, 1, 0);
error = SYSCTL_OUT(req, &xi, sizeof(xi));
}
if (!error) {
/*
* Give the user an updated idea of our state.
* If the generation differs from what we told
* her before, she knows that something happened
* while we were processing this request, and it
* might be necessary to retry.
*/
bzero(&xig, sizeof(xig));
xig.xig_len = sizeof(xig);
xig.xig_gen = udbinfo.ipi_gencnt;
xig.xig_sogen = so_gencnt;
xig.xig_count = udbinfo.ipi_count;
error = SYSCTL_OUT(req, &xig, sizeof(xig));
}
lck_rw_done(&udbinfo.ipi_lock);
kfree_type(struct inpcb *, sz, inp_list);
return error;
}
SYSCTL_PROC(_net_inet_udp, OID_AUTO, pcblist64,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, udp_pcblist64,
"S,xinpcb64", "List of active UDP sockets");
#endif /* XNU_TARGET_OS_OSX */
static int
udp_pcblist_n SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
return get_pcblist_n(IPPROTO_UDP, req, &udbinfo);
}
SYSCTL_PROC(_net_inet_udp, OID_AUTO, pcblist_n,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, udp_pcblist_n,
"S,xinpcb_n", "List of active UDP sockets");
__private_extern__ void
udp_get_ports_used(ifnet_t ifp, int protocol, uint32_t flags,
bitstr_t *bitfield)
{
inpcb_get_ports_used(ifp, protocol, flags, bitfield,
&udbinfo);
}
__private_extern__ uint32_t
udp_count_opportunistic(unsigned int ifindex, u_int32_t flags)
{
return inpcb_count_opportunistic(ifindex, &udbinfo, flags);
}
__private_extern__ uint32_t
udp_find_anypcb_byaddr(struct ifaddr *ifa)
{
#if SKYWALK
if (netns_is_enabled()) {
return netns_find_anyres_byaddr(ifa, IPPROTO_UDP);
} else
#endif /* SKYWALK */
return inpcb_find_anypcb_byaddr(ifa, &udbinfo);
}
static int
udp_check_pktinfo(struct mbuf *control, struct ifnet **outif,
struct in_addr *laddr)
{
struct cmsghdr *cm = 0;
struct in_pktinfo *pktinfo;
struct ifnet *ifp;
if (outif != NULL) {
*outif = NULL;
}
/*
* XXX: Currently, we assume all the optional information is stored
* in a single mbuf.
*/
if (control->m_next) {
return EINVAL;
}
if (control->m_len < CMSG_LEN(0)) {
return EINVAL;
}
for (cm = M_FIRST_CMSGHDR(control);
is_cmsg_valid(control, cm);
cm = M_NXT_CMSGHDR(control, cm)) {
if (cm->cmsg_level != IPPROTO_IP ||
cm->cmsg_type != IP_PKTINFO) {
continue;
}
if (cm->cmsg_len != CMSG_LEN(sizeof(struct in_pktinfo))) {
return EINVAL;
}
pktinfo = (struct in_pktinfo *)(void *)CMSG_DATA(cm);
/* Check for a valid ifindex in pktinfo */
ifnet_head_lock_shared();
if (pktinfo->ipi_ifindex > if_index) {
ifnet_head_done();
return ENXIO;
}
/*
* If ipi_ifindex is specified it takes precedence
* over ipi_spec_dst.
*/
if (pktinfo->ipi_ifindex) {
ifp = ifindex2ifnet[pktinfo->ipi_ifindex];
if (ifp == NULL) {
ifnet_head_done();
return ENXIO;
}
if (outif != NULL) {
ifnet_reference(ifp);
*outif = ifp;
}
ifnet_head_done();
laddr->s_addr = INADDR_ANY;
break;
}
ifnet_head_done();
/*
* Use the provided ipi_spec_dst address for temp
* source address.
*/
*laddr = pktinfo->ipi_spec_dst;
break;
}
return 0;
}
int
udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
struct mbuf *control, struct proc *p)
{
struct udpiphdr *ui;
int len = m->m_pkthdr.len;
struct sockaddr_in *sin;
struct in_addr origladdr, laddr, faddr, pi_laddr;
u_short lport, fport;
int error = 0, udp_dodisconnect = 0, pktinfo = 0;
struct socket *so = inp->inp_socket;
int soopts = 0;
struct mbuf *inpopts;
struct ip_moptions *mopts;
struct route ro;
struct ip_out_args ipoa;
bool sndinprog_cnt_used = false;
#if CONTENT_FILTER
struct m_tag *cfil_tag = NULL;
bool cfil_faddr_use = false;
uint32_t cfil_so_state_change_cnt = 0;
uint32_t cfil_so_options = 0;
struct sockaddr *cfil_faddr = NULL;
#endif
bool check_qos_marking_again = (so->so_flags1 & SOF1_QOSMARKING_POLICY_OVERRIDE) ? FALSE : TRUE;
bzero(&ipoa, sizeof(ipoa));
ipoa.ipoa_boundif = IFSCOPE_NONE;
ipoa.ipoa_flags = IPOAF_SELECT_SRCIF;
struct ifnet *outif = NULL;
struct flowadv *adv = &ipoa.ipoa_flowadv;
int sotc = SO_TC_UNSPEC;
int netsvctype = _NET_SERVICE_TYPE_UNSPEC;
struct ifnet *origoutifp = NULL;
int flowadv = 0;
int tos = IPTOS_UNSPEC;
/* Enable flow advisory only when connected */
flowadv = (so->so_state & SS_ISCONNECTED) ? 1 : 0;
pi_laddr.s_addr = INADDR_ANY;
KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT | DBG_FUNC_START, 0, 0, 0, 0, 0);
socket_lock_assert_owned(so);
#if CONTENT_FILTER
/*
* If socket is subject to UDP Content Filter and no addr is passed in,
* retrieve CFIL saved state from mbuf and use it if necessary.
*/
if (CFIL_DGRAM_FILTERED(so) && !addr) {
cfil_tag = cfil_dgram_get_socket_state(m, &cfil_so_state_change_cnt, &cfil_so_options, &cfil_faddr, NULL);
if (cfil_tag) {
sin = (struct sockaddr_in *)(void *)cfil_faddr;
if (inp && inp->inp_faddr.s_addr == INADDR_ANY) {
/*
* Socket is unconnected, simply use the saved faddr as 'addr' to go through
* the connect/disconnect logic.
*/
addr = (struct sockaddr *)cfil_faddr;
} else if ((so->so_state_change_cnt != cfil_so_state_change_cnt) &&
(inp->inp_fport != sin->sin_port ||
inp->inp_faddr.s_addr != sin->sin_addr.s_addr)) {
/*
* Socket is connected but socket state and dest addr/port changed.
* We need to use the saved faddr info.
*/
cfil_faddr_use = true;
}
}
}
#endif
if (control != NULL) {
tos = so_tos_from_control(control);
sotc = so_tc_from_control(control, &netsvctype);
VERIFY(outif == NULL);
error = udp_check_pktinfo(control, &outif, &pi_laddr);
m_freem(control);
control = NULL;
if (error) {
goto release;
}
if (outif != NULL) {
pktinfo++;
ipoa.ipoa_boundif = outif->if_index;
}
}
if (sotc == SO_TC_UNSPEC) {
sotc = so->so_traffic_class;
netsvctype = so->so_netsvctype;
}
KERNEL_DEBUG(DBG_LAYER_OUT_BEG, inp->inp_fport, inp->inp_lport,
inp->inp_laddr.s_addr, inp->inp_faddr.s_addr,
(htons((u_short)len + sizeof(struct udphdr))));
if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
error = EMSGSIZE;
goto release;
}
if (flowadv && INP_WAIT_FOR_IF_FEEDBACK(inp)) {
/*
* The socket is flow-controlled, drop the packets
* until the inp is not flow controlled
*/
error = ENOBUFS;
goto release;
}
/*
* If socket was bound to an ifindex, tell ip_output about it.
* If the ancillary IP_PKTINFO option contains an interface index,
* it takes precedence over the one specified by IP_BOUND_IF.
*/
if (ipoa.ipoa_boundif == IFSCOPE_NONE &&
(inp->inp_flags & INP_BOUND_IF)) {
VERIFY(inp->inp_boundifp != NULL);
ifnet_reference(inp->inp_boundifp); /* for this routine */
if (outif != NULL) {
ifnet_release(outif);
}
outif = inp->inp_boundifp;
ipoa.ipoa_boundif = outif->if_index;
}
if (INP_NO_CELLULAR(inp)) {
ipoa.ipoa_flags |= IPOAF_NO_CELLULAR;
}
if (INP_NO_EXPENSIVE(inp)) {
ipoa.ipoa_flags |= IPOAF_NO_EXPENSIVE;
}
if (INP_NO_CONSTRAINED(inp)) {
ipoa.ipoa_flags |= IPOAF_NO_CONSTRAINED;
}
if (INP_AWDL_UNRESTRICTED(inp)) {
ipoa.ipoa_flags |= IPOAF_AWDL_UNRESTRICTED;
}
if (INP_MANAGEMENT_ALLOWED(inp)) {
ipoa.ipoa_flags |= IPOAF_MANAGEMENT_ALLOWED;
}
ipoa.ipoa_sotc = sotc;
ipoa.ipoa_netsvctype = netsvctype;
soopts |= IP_OUTARGS;
/*
* If there was a routing change, discard cached route and check
* that we have a valid source address. Reacquire a new source
* address if INADDR_ANY was specified.
*
* If we are using cfil saved state, go through this cache cleanup
* so that we can get a new route.
*/
if (ROUTE_UNUSABLE(&inp->inp_route)
#if CONTENT_FILTER
|| cfil_faddr_use
#endif
) {
struct in_ifaddr *ia = NULL;
ROUTE_RELEASE(&inp->inp_route);
/* src address is gone? */
if (inp->inp_laddr.s_addr != INADDR_ANY &&
(ia = ifa_foraddr(inp->inp_laddr.s_addr)) == NULL) {
if (!(inp->inp_flags & INP_INADDR_ANY) ||
(so->so_state & SS_ISCONNECTED)) {
/*
* Rdar://5448998
* If the source address is gone, return an
* error if:
* - the source was specified
* - the socket was already connected
*/
soevent(so, (SO_FILT_HINT_LOCKED |
SO_FILT_HINT_NOSRCADDR));
error = EADDRNOTAVAIL;
goto release;
} else {
/* new src will be set later */
inp->inp_laddr.s_addr = INADDR_ANY;
inp->inp_last_outifp = NULL;
#if SKYWALK
if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
netns_set_ifnet(&inp->inp_netns_token, NULL);
}
#endif /* SKYWALK */
}
}
if (ia != NULL) {
IFA_REMREF(&ia->ia_ifa);
}
}
/*
* IP_PKTINFO option check. If a temporary scope or src address
* is provided, use it for this packet only and make sure we forget
* it after sending this datagram.
*/
if (pi_laddr.s_addr != INADDR_ANY ||
(ipoa.ipoa_boundif != IFSCOPE_NONE && pktinfo)) {
/* temp src address for this datagram only */
laddr = pi_laddr;
origladdr.s_addr = INADDR_ANY;
/* we don't want to keep the laddr or route */
udp_dodisconnect = 1;
/* remember we don't care about src addr */
inp->inp_flags |= INP_INADDR_ANY;
} else {
origladdr = laddr = inp->inp_laddr;
}
origoutifp = inp->inp_last_outifp;
faddr = inp->inp_faddr;
lport = inp->inp_lport;
fport = inp->inp_fport;
#if CONTENT_FILTER
if (cfil_faddr_use) {
faddr = ((struct sockaddr_in *)(void *)cfil_faddr)->sin_addr;
fport = ((struct sockaddr_in *)(void *)cfil_faddr)->sin_port;
}
#endif
inp->inp_sndinprog_cnt++;
sndinprog_cnt_used = true;
if (addr) {
sin = (struct sockaddr_in *)(void *)addr;
if (faddr.s_addr != INADDR_ANY) {
error = EISCONN;
goto release;
}
if (lport == 0) {
/*
* In case we don't have a local port set, go through
* the full connect. We don't have a local port yet
* (i.e., we can't be looked up), so it's not an issue
* if the input runs at the same time we do this.
*/
/* if we have a source address specified, use that */
if (pi_laddr.s_addr != INADDR_ANY) {
inp->inp_laddr = pi_laddr;
}
/*
* If a scope is specified, use it. Scope from
* IP_PKTINFO takes precendence over the the scope
* set via INP_BOUND_IF.
*/
error = in_pcbconnect(inp, addr, p, ipoa.ipoa_boundif,
&outif);
if (error) {
goto release;
}
laddr = inp->inp_laddr;
lport = inp->inp_lport;
faddr = inp->inp_faddr;
fport = inp->inp_fport;
udp_dodisconnect = 1;
/* synch up in case in_pcbladdr() overrides */
if (outif != NULL && ipoa.ipoa_boundif != IFSCOPE_NONE) {
ipoa.ipoa_boundif = outif->if_index;
}
} else {
/*
* Fast path case
*
* We have a full address and a local port; use those
* info to build the packet without changing the pcb
* and interfering with the input path. See 3851370.
*
* Scope from IP_PKTINFO takes precendence over the
* the scope set via INP_BOUND_IF.
*/
if (laddr.s_addr == INADDR_ANY) {
if ((error = in_pcbladdr(inp, addr, &laddr,
ipoa.ipoa_boundif, &outif, 0)) != 0) {
goto release;
}
/*
* from pcbconnect: remember we don't
* care about src addr.
*/
inp->inp_flags |= INP_INADDR_ANY;
/* synch up in case in_pcbladdr() overrides */
if (outif != NULL &&
ipoa.ipoa_boundif != IFSCOPE_NONE) {
ipoa.ipoa_boundif = outif->if_index;
}
}
faddr = sin->sin_addr;
fport = sin->sin_port;
}
} else {
if (faddr.s_addr == INADDR_ANY) {
error = ENOTCONN;
goto release;
}
}
if (inp->inp_flowhash == 0) {
inp_calc_flowhash(inp);
ASSERT(inp->inp_flowhash != 0);
}
if (fport == htons(53) && !(so->so_flags1 & SOF1_DNS_COUNTED)) {
so->so_flags1 |= SOF1_DNS_COUNTED;
INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet_dgram_dns);
}
/*
* Calculate data length and get a mbuf
* for UDP and IP headers.
*/
M_PREPEND(m, sizeof(struct udpiphdr), M_DONTWAIT, 1);
if (m == 0) {
error = ENOBUFS;
goto abort;
}
/*
* Fill in mbuf with extended UDP header
* and addresses and length put into network format.
*/
ui = mtod(m, struct udpiphdr *);
bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */
ui->ui_pr = IPPROTO_UDP;
ui->ui_src = laddr;
ui->ui_dst = faddr;
ui->ui_sport = lport;
ui->ui_dport = fport;
ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
/*
* Set the Don't Fragment bit in the IP header.
*/
if (inp->inp_flags2 & INP2_DONTFRAG) {
struct ip *ip;
ip = (struct ip *)&ui->ui_i;
ip->ip_off |= IP_DF;
}
/*
* Set up checksum to pseudo header checksum and output datagram.
*
* Treat flows to be CLAT46'd as IPv6 flow and compute checksum
* no matter what, as IPv6 mandates checksum for UDP.
*
* Here we only compute the one's complement sum of the pseudo header.
* The payload computation and final complement is delayed to much later
* in IP processing to decide if remaining computation needs to be done
* through offload.
*
* That is communicated by setting CSUM_UDP in csum_flags.
* The offset of checksum from the start of ULP header is communicated
* through csum_data.
*
* Note since this already contains the pseudo checksum header, any
* later operation at IP layer that modify the values used here must
* update the checksum as well (for example NAT etc).
*/
if ((inp->inp_flags2 & INP2_CLAT46_FLOW) ||
(udpcksum && !(inp->inp_flags & INP_UDP_NOCKSUM))) {
ui->ui_sum = in_pseudo(ui->ui_src.s_addr, ui->ui_dst.s_addr,
htons((u_short)len + sizeof(struct udphdr) + IPPROTO_UDP));
m->m_pkthdr.csum_flags = (CSUM_UDP | CSUM_ZERO_INVERT);
m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
} else {
ui->ui_sum = 0;
}
((struct ip *)ui)->ip_len = (uint16_t)(sizeof(struct udpiphdr) + len);
((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */
if (tos != IPTOS_UNSPEC) {
((struct ip *)ui)->ip_tos = (uint8_t)(tos & IPTOS_MASK);
} else {
((struct ip *)ui)->ip_tos = inp->inp_ip_tos; /* XXX */
}
udpstat.udps_opackets++;
KERNEL_DEBUG(DBG_LAYER_OUT_END, ui->ui_dport, ui->ui_sport,
ui->ui_src.s_addr, ui->ui_dst.s_addr, ui->ui_ulen);
#if NECP
{
necp_kernel_policy_id policy_id;
necp_kernel_policy_id skip_policy_id;
u_int32_t route_rule_id;
u_int32_t pass_flags;
/*
* We need a route to perform NECP route rule checks
*/
if (net_qos_policy_restricted != 0 &&
ROUTE_UNUSABLE(&inp->inp_route)) {
struct sockaddr_in to;
struct sockaddr_in from;
ROUTE_RELEASE(&inp->inp_route);
bzero(&from, sizeof(struct sockaddr_in));
from.sin_family = AF_INET;
from.sin_len = sizeof(struct sockaddr_in);
from.sin_addr = laddr;
bzero(&to, sizeof(struct sockaddr_in));
to.sin_family = AF_INET;
to.sin_len = sizeof(struct sockaddr_in);
to.sin_addr = faddr;
inp->inp_route.ro_dst.sa_family = AF_INET;
inp->inp_route.ro_dst.sa_len = sizeof(struct sockaddr_in);
((struct sockaddr_in *)(void *)&inp->inp_route.ro_dst)->sin_addr =
faddr;
rtalloc_scoped(&inp->inp_route, ipoa.ipoa_boundif);
inp_update_necp_policy(inp, (struct sockaddr *)&from,
(struct sockaddr *)&to, ipoa.ipoa_boundif);
inp->inp_policyresult.results.qos_marking_gencount = 0;
}
if (!necp_socket_is_allowed_to_send_recv_v4(inp, lport, fport,
&laddr, &faddr, NULL, 0, &policy_id, &route_rule_id, &skip_policy_id, &pass_flags)) {
error = EHOSTUNREACH;
goto abort;
}
necp_mark_packet_from_socket(m, inp, policy_id, route_rule_id, skip_policy_id, pass_flags);
if (net_qos_policy_restricted != 0) {
necp_socket_update_qos_marking(inp, inp->inp_route.ro_rt, route_rule_id);
}
}
#endif /* NECP */
if ((so->so_flags1 & SOF1_QOSMARKING_ALLOWED)) {
ipoa.ipoa_flags |= IPOAF_QOSMARKING_ALLOWED;
}
if (check_qos_marking_again) {
ipoa.ipoa_flags |= IPOAF_REDO_QOSMARKING_POLICY;
}
ipoa.qos_marking_gencount = inp->inp_policyresult.results.qos_marking_gencount;
#if IPSEC
if (inp->inp_sp != NULL && ipsec_setsocket(m, inp->inp_socket) != 0) {
error = ENOBUFS;
goto abort;
}
#endif /* IPSEC */
inpopts = inp->inp_options;
#if CONTENT_FILTER
if (cfil_tag && (inp->inp_socket->so_options != cfil_so_options)) {
soopts |= (cfil_so_options & (SO_DONTROUTE | SO_BROADCAST));
} else
#endif
soopts |= (inp->inp_socket->so_options & (SO_DONTROUTE | SO_BROADCAST));
mopts = inp->inp_moptions;
if (mopts != NULL) {
IMO_LOCK(mopts);
IMO_ADDREF_LOCKED(mopts);
if (IN_MULTICAST(ntohl(ui->ui_dst.s_addr)) &&
mopts->imo_multicast_ifp != NULL) {
/* no reference needed */
inp->inp_last_outifp = mopts->imo_multicast_ifp;
#if SKYWALK
if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
netns_set_ifnet(&inp->inp_netns_token,
inp->inp_last_outifp);
}
#endif /* SKYWALK */
}
IMO_UNLOCK(mopts);
}
/* Copy the cached route and take an extra reference */
inp_route_copyout(inp, &ro);
set_packet_service_class(m, so, sotc, 0);
m->m_pkthdr.pkt_flowsrc = FLOWSRC_INPCB;
m->m_pkthdr.pkt_flowid = inp->inp_flowhash;
m->m_pkthdr.pkt_proto = IPPROTO_UDP;
m->m_pkthdr.pkt_flags |= (PKTF_FLOW_ID | PKTF_FLOW_LOCALSRC);
if (flowadv) {
m->m_pkthdr.pkt_flags |= PKTF_FLOW_ADV;
}
m->m_pkthdr.tx_udp_pid = so->last_pid;
if (so->so_flags & SOF_DELEGATED) {
m->m_pkthdr.tx_udp_e_pid = so->e_pid;
} else {
m->m_pkthdr.tx_udp_e_pid = 0;
}
#if (DEBUG || DEVELOPMENT)
if (so->so_flags & SOF_MARK_WAKE_PKT) {
so->so_flags &= ~SOF_MARK_WAKE_PKT;
m->m_pkthdr.pkt_flags |= PKTF_WAKE_PKT;
}
#endif /* (DEBUG || DEVELOPMENT) */
m_add_crumb(m, PKT_CRUMB_UDP_OUTPUT);
if (ipoa.ipoa_boundif != IFSCOPE_NONE) {
ipoa.ipoa_flags |= IPOAF_BOUND_IF;
}
if (laddr.s_addr != INADDR_ANY) {
ipoa.ipoa_flags |= IPOAF_BOUND_SRCADDR;
}
socket_unlock(so, 0);
error = ip_output(m, inpopts, &ro, soopts, mopts, &ipoa);
m = NULL;
socket_lock(so, 0);
if (mopts != NULL) {
IMO_REMREF(mopts);
}
if (check_qos_marking_again) {
inp->inp_policyresult.results.qos_marking_gencount = ipoa.qos_marking_gencount;
if (ipoa.ipoa_flags & IPOAF_QOSMARKING_ALLOWED) {
inp->inp_socket->so_flags1 |= SOF1_QOSMARKING_ALLOWED;
} else {
inp->inp_socket->so_flags1 &= ~SOF1_QOSMARKING_ALLOWED;
}
}
if (error == 0 && nstat_collect) {
boolean_t cell, wifi, wired;
if (ro.ro_rt != NULL) {
cell = IFNET_IS_CELLULAR(ro.ro_rt->rt_ifp);
wifi = (!cell && IFNET_IS_WIFI(ro.ro_rt->rt_ifp));
wired = (!wifi && IFNET_IS_WIRED(ro.ro_rt->rt_ifp));
} else {
cell = wifi = wired = FALSE;
}
INP_ADD_STAT(inp, cell, wifi, wired, txpackets, 1);
INP_ADD_STAT(inp, cell, wifi, wired, txbytes, len);
inp_set_activity_bitmap(inp);
}
if (flowadv && (adv->code == FADV_FLOW_CONTROLLED ||
adv->code == FADV_SUSPENDED)) {
/*
* return a hint to the application that
* the packet has been dropped
*/
error = ENOBUFS;
inp_set_fc_state(inp, adv->code);
}
/* Synchronize PCB cached route */
inp_route_copyin(inp, &ro);
abort:
if (udp_dodisconnect) {
/* Always discard the cached route for unconnected socket */
ROUTE_RELEASE(&inp->inp_route);
in_pcbdisconnect(inp);
inp->inp_laddr = origladdr; /* XXX rehash? */
/* no reference needed */
inp->inp_last_outifp = origoutifp;
#if SKYWALK
if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
netns_set_ifnet(&inp->inp_netns_token,
inp->inp_last_outifp);
}
#endif /* SKYWALK */
} else if (inp->inp_route.ro_rt != NULL) {
struct rtentry *rt = inp->inp_route.ro_rt;
struct ifnet *outifp;
if (rt->rt_flags & (RTF_MULTICAST | RTF_BROADCAST)) {
rt = NULL; /* unusable */
}
#if CONTENT_FILTER
/*
* Discard temporary route for cfil case
*/
if (cfil_faddr_use) {
rt = NULL; /* unusable */
}
#endif
/*
* Always discard if it is a multicast or broadcast route.
*/
if (rt == NULL) {
ROUTE_RELEASE(&inp->inp_route);
}
/*
* If the destination route is unicast, update outifp with
* that of the route interface used by IP.
*/
if (rt != NULL &&
(outifp = rt->rt_ifp) != inp->inp_last_outifp) {
inp->inp_last_outifp = outifp; /* no reference needed */
#if SKYWALK
if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
netns_set_ifnet(&inp->inp_netns_token,
inp->inp_last_outifp);
}
#endif /* SKYWALK */
so->so_pktheadroom = (uint16_t)P2ROUNDUP(
sizeof(struct udphdr) +
sizeof(struct ip) +
ifnet_hdrlen(outifp) +
ifnet_mbuf_packetpreamblelen(outifp),
sizeof(u_int32_t));
}
} else {
ROUTE_RELEASE(&inp->inp_route);
}
/*
* If output interface was cellular/expensive, and this socket is
* denied access to it, generate an event.
*/
if (error != 0 && (ipoa.ipoa_flags & IPOAF_R_IFDENIED) &&
(INP_NO_CELLULAR(inp) || INP_NO_EXPENSIVE(inp) || INP_NO_CONSTRAINED(inp))) {
soevent(so, (SO_FILT_HINT_LOCKED | SO_FILT_HINT_IFDENIED));
}
release:
KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT | DBG_FUNC_END, error, 0, 0, 0, 0);
if (m != NULL) {
m_freem(m);
}
if (outif != NULL) {
ifnet_release(outif);
}
#if CONTENT_FILTER
if (cfil_tag) {
m_tag_free(cfil_tag);
}
#endif
if (sndinprog_cnt_used) {
VERIFY(inp->inp_sndinprog_cnt > 0);
if (--inp->inp_sndinprog_cnt == 0) {
inp->inp_flags &= ~(INP_FC_FEEDBACK);
if (inp->inp_sndingprog_waiters > 0) {
wakeup(&inp->inp_sndinprog_cnt);
}
}
sndinprog_cnt_used = false;
}
return error;
}
u_int32_t udp_sendspace = 9216; /* really max datagram size */
/* 187 1K datagrams (approx 192 KB) */
u_int32_t udp_recvspace = 187 * (1024 + sizeof(struct sockaddr_in6));
/* Check that the values of udp send and recv space do not exceed sb_max */
static int
sysctl_udp_sospace(struct sysctl_oid *oidp, void *arg1, int arg2,
struct sysctl_req *req)
{
#pragma unused(arg1, arg2)
u_int32_t new_value = 0, *space_p = NULL;
int changed = 0, error = 0;
u_quad_t sb_effective_max = (sb_max / (SB_MSIZE_ADJ + MCLBYTES)) * MCLBYTES;
switch (oidp->oid_number) {
case UDPCTL_RECVSPACE:
space_p = &udp_recvspace;
break;
case UDPCTL_MAXDGRAM:
space_p = &udp_sendspace;
break;
default:
return EINVAL;
}
error = sysctl_io_number(req, *space_p, sizeof(u_int32_t),
&new_value, &changed);
if (changed) {
if (new_value > 0 && new_value <= sb_effective_max) {
*space_p = new_value;
} else {
error = ERANGE;
}
}
return error;
}
SYSCTL_PROC(_net_inet_udp, UDPCTL_RECVSPACE, recvspace,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &udp_recvspace, 0,
&sysctl_udp_sospace, "IU", "Maximum incoming UDP datagram size");
SYSCTL_PROC(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &udp_sendspace, 0,
&sysctl_udp_sospace, "IU", "Maximum outgoing UDP datagram size");
int
udp_abort(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
if (inp == NULL) {
panic("%s: so=%p null inp", __func__, so);
/* NOTREACHED */
}
soisdisconnected(so);
in_pcbdetach(inp);
return 0;
}
int
udp_attach(struct socket *so, int proto, struct proc *p)
{
#pragma unused(proto)
struct inpcb *inp;
int error;
error = soreserve(so, udp_sendspace, udp_recvspace);
if (error != 0) {
return error;
}
inp = sotoinpcb(so);
if (inp != NULL) {
panic("%s so=%p inp=%p", __func__, so, inp);
/* NOTREACHED */
}
error = in_pcballoc(so, &udbinfo, p);
if (error != 0) {
return error;
}
inp = (struct inpcb *)so->so_pcb;
inp->inp_vflag |= INP_IPV4;
inp->inp_ip_ttl = (uint8_t)ip_defttl;
if (nstat_collect) {
nstat_udp_new_pcb(inp);
}
return 0;
}
int
udp_bind(struct socket *so, struct sockaddr *nam, struct proc *p)
{
struct inpcb *inp;
int error;
if (nam->sa_family != 0 && nam->sa_family != AF_INET &&
nam->sa_family != AF_INET6) {
return EAFNOSUPPORT;
}
inp = sotoinpcb(so);
if (inp == NULL) {
return EINVAL;
}
error = in_pcbbind(inp, nam, p);
#if NECP
/* Update NECP client with bind result if not in middle of connect */
if (error == 0 &&
(inp->inp_flags2 & INP2_CONNECT_IN_PROGRESS) &&
!uuid_is_null(inp->necp_client_uuid)) {
socket_unlock(so, 0);
necp_client_assign_from_socket(so->last_pid, inp->necp_client_uuid, inp);
socket_lock(so, 0);
}
#endif /* NECP */
UDP_LOG_BIND(inp, error);
return error;
}
int
udp_connect(struct socket *so, struct sockaddr *nam, struct proc *p)
{
struct inpcb *inp;
int error;
inp = sotoinpcb(so);
if (inp == NULL) {
return EINVAL;
}
if (inp->inp_faddr.s_addr != INADDR_ANY) {
return EISCONN;
}
if (!(so->so_flags1 & SOF1_CONNECT_COUNTED)) {
so->so_flags1 |= SOF1_CONNECT_COUNTED;
INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet_dgram_connected);
}
#if NECP
#if FLOW_DIVERT
if (necp_socket_should_use_flow_divert(inp)) {
error = flow_divert_pcb_init(so);
if (error == 0) {
error = flow_divert_connect_out(so, nam, p);
}
UDP_LOG_CONNECT(inp, error);
return error;
}
#endif /* FLOW_DIVERT */
#endif /* NECP */
error = in_pcbconnect(inp, nam, p, IFSCOPE_NONE, NULL);
if (error == 0) {
#if NECP
/* Update NECP client with connected five-tuple */
if (!uuid_is_null(inp->necp_client_uuid)) {
socket_unlock(so, 0);
necp_client_assign_from_socket(so->last_pid, inp->necp_client_uuid, inp);
socket_lock(so, 0);
}
#endif /* NECP */
soisconnected(so);
if (inp->inp_flowhash == 0) {
inp_calc_flowhash(inp);
ASSERT(inp->inp_flowhash != 0);
}
inp->inp_connect_timestamp = mach_continuous_time();
}
UDP_LOG_CONNECT(inp, error);
return error;
}
int
udp_connectx_common(struct socket *so, int af, struct sockaddr *src, struct sockaddr *dst,
struct proc *p, uint32_t ifscope, sae_associd_t aid, sae_connid_t *pcid,
uint32_t flags, void *arg, uint32_t arglen,
struct uio *uio, user_ssize_t *bytes_written)
{
#pragma unused(aid, flags, arg, arglen)
struct inpcb *inp = sotoinpcb(so);
int error = 0;
user_ssize_t datalen = 0;
if (inp == NULL) {
return EINVAL;
}
VERIFY(dst != NULL);
ASSERT(!(inp->inp_flags2 & INP2_CONNECT_IN_PROGRESS));
inp->inp_flags2 |= INP2_CONNECT_IN_PROGRESS;
#if NECP
inp_update_necp_policy(inp, src, dst, ifscope);
#endif /* NECP */
/* bind socket to the specified interface, if requested */
if (ifscope != IFSCOPE_NONE &&
(error = inp_bindif(inp, ifscope, NULL)) != 0) {
goto done;
}
/* if source address and/or port is specified, bind to it */
if (src != NULL) {
error = sobindlock(so, src, 0); /* already locked */
if (error != 0) {
goto done;
}
}
switch (af) {
case AF_INET:
error = udp_connect(so, dst, p);
break;
case AF_INET6:
error = udp6_connect(so, dst, p);
break;
default:
VERIFY(0);
/* NOTREACHED */
}
if (error != 0) {
goto done;
}
/*
* If there is data, copy it. DATA_IDEMPOTENT is ignored.
* CONNECT_RESUME_ON_READ_WRITE is ignored.
*/
if (uio != NULL) {
socket_unlock(so, 0);
VERIFY(bytes_written != NULL);
datalen = uio_resid(uio);
error = so->so_proto->pr_usrreqs->pru_sosend(so, NULL,
(uio_t)uio, NULL, NULL, 0);
socket_lock(so, 0);
/* If error returned is EMSGSIZE, for example, disconnect */
if (error == 0 || error == EWOULDBLOCK) {
*bytes_written = datalen - uio_resid(uio);
} else {
(void) so->so_proto->pr_usrreqs->pru_disconnectx(so,
SAE_ASSOCID_ANY, SAE_CONNID_ANY);
}
/*
* mask the EWOULDBLOCK error so that the caller
* knows that atleast the connect was successful.
*/
if (error == EWOULDBLOCK) {
error = 0;
}
}
if (error == 0 && pcid != NULL) {
*pcid = 1; /* there is only 1 connection for UDP */
}
done:
inp->inp_flags2 &= ~INP2_CONNECT_IN_PROGRESS;
return error;
}
int
udp_connectx(struct socket *so, struct sockaddr *src,
struct sockaddr *dst, struct proc *p, uint32_t ifscope,
sae_associd_t aid, sae_connid_t *pcid, uint32_t flags, void *arg,
uint32_t arglen, struct uio *uio, user_ssize_t *bytes_written)
{
return udp_connectx_common(so, AF_INET, src, dst,
p, ifscope, aid, pcid, flags, arg, arglen, uio, bytes_written);
}
int
udp_detach(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
if (inp == NULL) {
panic("%s: so=%p null inp", __func__, so);
/* NOTREACHED */
}
/*
* If this is a socket that does not want to wakeup the device
* for it's traffic, the application might be waiting for
* close to complete before going to sleep. Send a notification
* for this kind of sockets
*/
if (so->so_options & SO_NOWAKEFROMSLEEP) {
socket_post_kev_msg_closed(so);
}
UDP_LOG_CONNECTION_SUMMARY(inp);
in_pcbdetach(inp);
inp->inp_state = INPCB_STATE_DEAD;
return 0;
}
int
udp_disconnect(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
if (inp == NULL) {
return EINVAL;
}
if (inp->inp_faddr.s_addr == INADDR_ANY) {
return ENOTCONN;
}
UDP_LOG_CONNECTION_SUMMARY(inp);
in_pcbdisconnect(inp);
/* reset flow controlled state, just in case */
inp_reset_fc_state(inp);
inp->inp_laddr.s_addr = INADDR_ANY;
so->so_state &= ~SS_ISCONNECTED; /* XXX */
inp->inp_last_outifp = NULL;
#if SKYWALK
if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
netns_set_ifnet(&inp->inp_netns_token, NULL);
}
#endif /* SKYWALK */
return 0;
}
int
udp_disconnectx(struct socket *so, sae_associd_t aid, sae_connid_t cid)
{
#pragma unused(cid)
if (aid != SAE_ASSOCID_ANY && aid != SAE_ASSOCID_ALL) {
return EINVAL;
}
return udp_disconnect(so);
}
int
udp_send(struct socket *so, int flags, struct mbuf *m,
struct sockaddr *addr, struct mbuf *control, struct proc *p)
{
#ifndef FLOW_DIVERT
#pragma unused(flags)
#endif /* !(FLOW_DIVERT) */
struct inpcb *inp;
int error;
inp = sotoinpcb(so);
if (inp == NULL) {
if (m != NULL) {
m_freem(m);
}
if (control != NULL) {
m_freem(control);
}
return EINVAL;
}
#if NECP
#if FLOW_DIVERT
if (necp_socket_should_use_flow_divert(inp)) {
/* Implicit connect */
return flow_divert_implicit_data_out(so, flags, m, addr,
control, p);
}
#endif /* FLOW_DIVERT */
#endif /* NECP */
#if SKYWALK
sk_protect_t protect = sk_async_transmit_protect();
#endif /* SKYWALK */
error = udp_output(inp, m, addr, control, p);
#if SKYWALK
sk_async_transmit_unprotect(protect);
#endif /* SKYWALK */
return error;
}
int
udp_shutdown(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
if (inp == NULL) {
return EINVAL;
}
socantsendmore(so);
return 0;
}
int
udp_lock(struct socket *so, int refcount, void *debug)
{
void *lr_saved;
if (debug == NULL) {
lr_saved = __builtin_return_address(0);
} else {
lr_saved = debug;
}
if (so->so_pcb != NULL) {
LCK_MTX_ASSERT(&((struct inpcb *)so->so_pcb)->inpcb_mtx,
LCK_MTX_ASSERT_NOTOWNED);
lck_mtx_lock(&((struct inpcb *)so->so_pcb)->inpcb_mtx);
} else {
panic("%s: so=%p NO PCB! lr=%p lrh= %s", __func__,
so, lr_saved, solockhistory_nr(so));
/* NOTREACHED */
}
if (refcount) {
so->so_usecount++;
}
so->lock_lr[so->next_lock_lr] = lr_saved;
so->next_lock_lr = (so->next_lock_lr + 1) % SO_LCKDBG_MAX;
return 0;
}
int
udp_unlock(struct socket *so, int refcount, void *debug)
{
void *lr_saved;
if (debug == NULL) {
lr_saved = __builtin_return_address(0);
} else {
lr_saved = debug;
}
if (refcount) {
VERIFY(so->so_usecount > 0);
so->so_usecount--;
}
if (so->so_pcb == NULL) {
panic("%s: so=%p NO PCB! lr=%p lrh= %s", __func__,
so, lr_saved, solockhistory_nr(so));
/* NOTREACHED */
} else {
LCK_MTX_ASSERT(&((struct inpcb *)so->so_pcb)->inpcb_mtx,
LCK_MTX_ASSERT_OWNED);
so->unlock_lr[so->next_unlock_lr] = lr_saved;
so->next_unlock_lr = (so->next_unlock_lr + 1) % SO_LCKDBG_MAX;
lck_mtx_unlock(&((struct inpcb *)so->so_pcb)->inpcb_mtx);
}
return 0;
}
lck_mtx_t *
udp_getlock(struct socket *so, int flags)
{
#pragma unused(flags)
struct inpcb *inp = sotoinpcb(so);
if (so->so_pcb == NULL) {
panic("%s: so=%p NULL so_pcb lrh= %s", __func__,
so, solockhistory_nr(so));
/* NOTREACHED */
}
return &inp->inpcb_mtx;
}
/*
* UDP garbage collector callback (inpcb_timer_func_t).
*
* Returns > 0 to keep timer active.
*/
static void
udp_gc(struct inpcbinfo *ipi)
{
struct inpcb *inp, *inpnxt;
struct socket *so;
if (lck_rw_try_lock_exclusive(&ipi->ipi_lock) == FALSE) {
if (udp_gc_done == TRUE) {
udp_gc_done = FALSE;
/* couldn't get the lock, must lock next time */
os_atomic_inc(&ipi->ipi_gc_req.intimer_fast, relaxed);
return;
}
lck_rw_lock_exclusive(&ipi->ipi_lock);
}
udp_gc_done = TRUE;
for (inp = udb.lh_first; inp != NULL; inp = inpnxt) {
inpnxt = inp->inp_list.le_next;
/*
* Skip unless it's STOPUSING; garbage collector will
* be triggered by in_pcb_checkstate() upon setting
* wantcnt to that value. If the PCB is already dead,
* keep gc active to anticipate wantcnt changing.
*/
if (inp->inp_wantcnt != WNT_STOPUSING) {
continue;
}
/*
* Skip if busy, no hurry for cleanup. Keep gc active
* and try the lock again during next round.
*/
if (!socket_try_lock(inp->inp_socket)) {
os_atomic_inc(&ipi->ipi_gc_req.intimer_fast, relaxed);
continue;
}
/*
* Keep gc active unless usecount is 0.
*/
so = inp->inp_socket;
if (so->so_usecount == 0) {
if (inp->inp_state != INPCB_STATE_DEAD) {
if (SOCK_CHECK_DOM(so, PF_INET6)) {
in6_pcbdetach(inp);
} else {
in_pcbdetach(inp);
}
}
in_pcbdispose(inp);
} else {
socket_unlock(so, 0);
os_atomic_inc(&ipi->ipi_gc_req.intimer_fast, relaxed);
}
}
lck_rw_done(&ipi->ipi_lock);
}
static int
udp_getstat SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
if (req->oldptr == USER_ADDR_NULL) {
req->oldlen = (size_t)sizeof(struct udpstat);
}
return SYSCTL_OUT(req, &udpstat, MIN(sizeof(udpstat), req->oldlen));
}
void
udp_in_cksum_stats(u_int32_t len)
{
udpstat.udps_rcv_swcsum++;
udpstat.udps_rcv_swcsum_bytes += len;
}
void
udp_out_cksum_stats(u_int32_t len)
{
udpstat.udps_snd_swcsum++;
udpstat.udps_snd_swcsum_bytes += len;
}
void
udp_in6_cksum_stats(u_int32_t len)
{
udpstat.udps_rcv6_swcsum++;
udpstat.udps_rcv6_swcsum_bytes += len;
}
void
udp_out6_cksum_stats(u_int32_t len)
{
udpstat.udps_snd6_swcsum++;
udpstat.udps_snd6_swcsum_bytes += len;
}
/*
* Checksum extended UDP header and data.
*/
static int
udp_input_checksum(struct mbuf *m, struct udphdr *uh, int off, int ulen)
{
struct ifnet *ifp = m->m_pkthdr.rcvif;
struct ip *ip = mtod(m, struct ip *);
struct ipovly *ipov = (struct ipovly *)ip;
if (uh->uh_sum == 0) {
udpstat.udps_nosum++;
return 0;
}
/* ip_stripoptions() must have been called before we get here */
ASSERT((ip->ip_hl << 2) == sizeof(*ip));
if ((hwcksum_rx || (ifp->if_flags & IFF_LOOPBACK) ||
(m->m_pkthdr.pkt_flags & PKTF_LOOP)) &&
(m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) {
if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
uh->uh_sum = m->m_pkthdr.csum_rx_val;
} else {
uint32_t sum = m->m_pkthdr.csum_rx_val;
uint32_t start = m->m_pkthdr.csum_rx_start;
int32_t trailer = (m_pktlen(m) - (off + ulen));
/*
* Perform 1's complement adjustment of octets
* that got included/excluded in the hardware-
* calculated checksum value. Ignore cases
* where the value already includes the entire
* IP header span, as the sum for those octets
* would already be 0 by the time we get here;
* IP has already performed its header checksum
* checks. If we do need to adjust, restore
* the original fields in the IP header when
* computing the adjustment value. Also take
* care of any trailing bytes and subtract out
* their partial sum.
*/
ASSERT(trailer >= 0);
if ((m->m_pkthdr.csum_flags & CSUM_PARTIAL) &&
((start != 0 && start != off) || trailer != 0)) {
uint32_t swbytes = (uint32_t)trailer;
if (start < off) {
ip->ip_len += sizeof(*ip);
#if BYTE_ORDER != BIG_ENDIAN
HTONS(ip->ip_len);
HTONS(ip->ip_off);
#endif /* BYTE_ORDER != BIG_ENDIAN */
}
/* callee folds in sum */
sum = m_adj_sum16(m, start, off, ulen, sum);
if (off > start) {
swbytes += (off - start);
} else {
swbytes += (start - off);
}
if (start < off) {
#if BYTE_ORDER != BIG_ENDIAN
NTOHS(ip->ip_off);
NTOHS(ip->ip_len);
#endif /* BYTE_ORDER != BIG_ENDIAN */
ip->ip_len -= sizeof(*ip);
}
if (swbytes != 0) {
udp_in_cksum_stats(swbytes);
}
if (trailer != 0) {
m_adj(m, -trailer);
}
}
/* callee folds in sum */
uh->uh_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr, sum + htonl(ulen + IPPROTO_UDP));
}
uh->uh_sum ^= 0xffff;
} else {
uint16_t ip_sum;
char b[9];
bcopy(ipov->ih_x1, b, sizeof(ipov->ih_x1));
bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
ip_sum = ipov->ih_len;
ipov->ih_len = uh->uh_ulen;
uh->uh_sum = in_cksum(m, ulen + sizeof(struct ip));
bcopy(b, ipov->ih_x1, sizeof(ipov->ih_x1));
ipov->ih_len = ip_sum;
udp_in_cksum_stats(ulen);
}
if (uh->uh_sum != 0) {
udpstat.udps_badsum++;
IF_UDP_STATINC(ifp, badchksum);
return -1;
}
return 0;
}
void
udp_fill_keepalive_offload_frames(ifnet_t ifp,
struct ifnet_keepalive_offload_frame *frames_array,
u_int32_t frames_array_count, size_t frame_data_offset,
u_int32_t *used_frames_count)
{
struct inpcb *inp;
inp_gen_t gencnt;
u_int32_t frame_index = *used_frames_count;
if (ifp == NULL || frames_array == NULL ||
frames_array_count == 0 ||
frame_index >= frames_array_count ||
frame_data_offset >= IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE) {
return;
}
lck_rw_lock_shared(&udbinfo.ipi_lock);
gencnt = udbinfo.ipi_gencnt;
LIST_FOREACH(inp, udbinfo.ipi_listhead, inp_list) {
struct socket *so;
u_int8_t *data;
struct ifnet_keepalive_offload_frame *frame;
struct mbuf *m = NULL;
if (frame_index >= frames_array_count) {
break;
}
if (inp->inp_gencnt > gencnt ||
inp->inp_state == INPCB_STATE_DEAD) {
continue;
}
if ((so = inp->inp_socket) == NULL ||
(so->so_state & SS_DEFUNCT)) {
continue;
}
/*
* check for keepalive offload flag without socket
* lock to avoid a deadlock
*/
if (!(inp->inp_flags2 & INP2_KEEPALIVE_OFFLOAD)) {
continue;
}
udp_lock(so, 1, 0);
if (!(inp->inp_vflag & (INP_IPV4 | INP_IPV6))) {
udp_unlock(so, 1, 0);
continue;
}
if ((inp->inp_vflag & INP_IPV4) &&
(inp->inp_laddr.s_addr == INADDR_ANY ||
inp->inp_faddr.s_addr == INADDR_ANY)) {
udp_unlock(so, 1, 0);
continue;
}
if ((inp->inp_vflag & INP_IPV6) &&
(IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) ||
IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr))) {
udp_unlock(so, 1, 0);
continue;
}
if (inp->inp_lport == 0 || inp->inp_fport == 0) {
udp_unlock(so, 1, 0);
continue;
}
if (inp->inp_last_outifp == NULL ||
inp->inp_last_outifp->if_index != ifp->if_index) {
udp_unlock(so, 1, 0);
continue;
}
if ((inp->inp_vflag & INP_IPV4)) {
if ((frame_data_offset + sizeof(struct udpiphdr) +
inp->inp_keepalive_datalen) >
IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE) {
udp_unlock(so, 1, 0);
continue;
}
if ((sizeof(struct udpiphdr) +
inp->inp_keepalive_datalen) > _MHLEN) {
udp_unlock(so, 1, 0);
continue;
}
} else {
if ((frame_data_offset + sizeof(struct ip6_hdr) +
sizeof(struct udphdr) +
inp->inp_keepalive_datalen) >
IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE) {
udp_unlock(so, 1, 0);
continue;
}
if ((sizeof(struct ip6_hdr) + sizeof(struct udphdr) +
inp->inp_keepalive_datalen) > _MHLEN) {
udp_unlock(so, 1, 0);
continue;
}
}
MGETHDR(m, M_WAIT, MT_HEADER);
if (m == NULL) {
udp_unlock(so, 1, 0);
continue;
}
/*
* This inp has all the information that is needed to
* generate an offload frame.
*/
if (inp->inp_vflag & INP_IPV4) {
struct ip *ip;
struct udphdr *udp;
frame = &frames_array[frame_index];
frame->length = (uint8_t)(frame_data_offset +
sizeof(struct udpiphdr) +
inp->inp_keepalive_datalen);
frame->ether_type =
IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV4;
frame->interval = inp->inp_keepalive_interval;
switch (inp->inp_keepalive_type) {
case UDP_KEEPALIVE_OFFLOAD_TYPE_AIRPLAY:
frame->type =
IFNET_KEEPALIVE_OFFLOAD_FRAME_AIRPLAY;
break;
default:
break;
}
data = mtod(m, u_int8_t *);
bzero(data, sizeof(struct udpiphdr));
ip = (__typeof__(ip))(void *)data;
udp = (__typeof__(udp))(void *) (data +
sizeof(struct ip));
m->m_len = sizeof(struct udpiphdr);
data = data + sizeof(struct udpiphdr);
if (inp->inp_keepalive_datalen > 0 &&
inp->inp_keepalive_data != NULL) {
bcopy(inp->inp_keepalive_data, data,
inp->inp_keepalive_datalen);
m->m_len += inp->inp_keepalive_datalen;
}
m->m_pkthdr.len = m->m_len;
ip->ip_v = IPVERSION;
ip->ip_hl = (sizeof(struct ip) >> 2);
ip->ip_p = IPPROTO_UDP;
ip->ip_len = htons(sizeof(struct udpiphdr) +
(u_short)inp->inp_keepalive_datalen);
ip->ip_ttl = inp->inp_ip_ttl;
ip->ip_tos |= (inp->inp_ip_tos & ~IPTOS_ECN_MASK);
ip->ip_src = inp->inp_laddr;
ip->ip_dst = inp->inp_faddr;
ip->ip_sum = in_cksum_hdr_opt(ip);
udp->uh_sport = inp->inp_lport;
udp->uh_dport = inp->inp_fport;
udp->uh_ulen = htons(sizeof(struct udphdr) +
(u_short)inp->inp_keepalive_datalen);
if (!(inp->inp_flags & INP_UDP_NOCKSUM)) {
udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr,
htons(sizeof(struct udphdr) +
(u_short)inp->inp_keepalive_datalen +
IPPROTO_UDP));
m->m_pkthdr.csum_flags =
(CSUM_UDP | CSUM_ZERO_INVERT);
m->m_pkthdr.csum_data = offsetof(struct udphdr,
uh_sum);
}
m->m_pkthdr.pkt_proto = IPPROTO_UDP;
in_delayed_cksum(m);
bcopy(m->m_data, frame->data + frame_data_offset,
m->m_len);
} else {
struct ip6_hdr *ip6;
struct udphdr *udp6;
VERIFY(inp->inp_vflag & INP_IPV6);
frame = &frames_array[frame_index];
frame->length = (uint8_t)(frame_data_offset +
sizeof(struct ip6_hdr) +
sizeof(struct udphdr) +
inp->inp_keepalive_datalen);
frame->ether_type =
IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV6;
frame->interval = inp->inp_keepalive_interval;
switch (inp->inp_keepalive_type) {
case UDP_KEEPALIVE_OFFLOAD_TYPE_AIRPLAY:
frame->type =
IFNET_KEEPALIVE_OFFLOAD_FRAME_AIRPLAY;
break;
default:
break;
}
data = mtod(m, u_int8_t *);
bzero(data, sizeof(struct ip6_hdr) + sizeof(struct udphdr));
ip6 = (__typeof__(ip6))(void *)data;
udp6 = (__typeof__(udp6))(void *)(data +
sizeof(struct ip6_hdr));
m->m_len = sizeof(struct ip6_hdr) +
sizeof(struct udphdr);
data = data + (sizeof(struct ip6_hdr) +
sizeof(struct udphdr));
if (inp->inp_keepalive_datalen > 0 &&
inp->inp_keepalive_data != NULL) {
bcopy(inp->inp_keepalive_data, data,
inp->inp_keepalive_datalen);
m->m_len += inp->inp_keepalive_datalen;
}
m->m_pkthdr.len = m->m_len;
ip6->ip6_flow = inp->inp_flow & IPV6_FLOWINFO_MASK;
ip6->ip6_flow = ip6->ip6_flow & ~IPV6_FLOW_ECN_MASK;
ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
ip6->ip6_vfc |= IPV6_VERSION;
ip6->ip6_nxt = IPPROTO_UDP;
ip6->ip6_hlim = (uint8_t)ip6_defhlim;
ip6->ip6_plen = htons(sizeof(struct udphdr) +
(u_short)inp->inp_keepalive_datalen);
ip6->ip6_src = inp->in6p_laddr;
if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
ip6->ip6_src.s6_addr16[1] = 0;
}
ip6->ip6_dst = inp->in6p_faddr;
if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
ip6->ip6_dst.s6_addr16[1] = 0;
}
udp6->uh_sport = inp->in6p_lport;
udp6->uh_dport = inp->in6p_fport;
udp6->uh_ulen = htons(sizeof(struct udphdr) +
(u_short)inp->inp_keepalive_datalen);
if (!(inp->inp_flags & INP_UDP_NOCKSUM)) {
udp6->uh_sum = in6_pseudo(&ip6->ip6_src,
&ip6->ip6_dst,
htonl(sizeof(struct udphdr) +
(u_short)inp->inp_keepalive_datalen +
IPPROTO_UDP));
m->m_pkthdr.csum_flags =
(CSUM_UDPIPV6 | CSUM_ZERO_INVERT);
m->m_pkthdr.csum_data = offsetof(struct udphdr,
uh_sum);
}
m->m_pkthdr.pkt_proto = IPPROTO_UDP;
in6_delayed_cksum(m);
bcopy(m->m_data, frame->data + frame_data_offset,
m->m_len);
}
if (m != NULL) {
m_freem(m);
m = NULL;
}
frame_index++;
udp_unlock(so, 1, 0);
}
lck_rw_done(&udbinfo.ipi_lock);
*used_frames_count = frame_index;
}
int
udp_defunct(struct socket *so)
{
struct ip_moptions *imo;
struct inpcb *inp;
inp = sotoinpcb(so);
if (inp == NULL) {
return EINVAL;
}
imo = inp->inp_moptions;
if (imo != NULL) {
struct proc *p = current_proc();
SODEFUNCTLOG("%s[%d, %s]: defuncting so 0x%llu drop multicast memberships",
__func__, proc_pid(p), proc_best_name(p),
so->so_gencnt);
inp->inp_moptions = NULL;
IMO_REMREF(imo);
}
return 0;
}