This is xnu-12377.1.9. See this file in:
/*
* Copyright (c) 1999-2019 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* HISTORY
*
* OSUnserializeXML.y created by rsulack on Tue Oct 12 1999
*/
// parser for unserializing OSContainer objects serialized to XML
//
// to build :
// bison -p OSUnserializeXML OSUnserializeXML.y
// head -50 OSUnserializeXML.y > ../libkern/c++/OSUnserializeXMLSharedImplementation.h
// sed -e "s/#include <stdio.h>//" < OSUnserializeXML.tab.c >> ../libkern/c++/OSUnserializeXMLSharedImplementation.h
//
// when changing code check in both OSUnserializeXML.y and OSUnserializeXMLSharedImplementation.h
//
//
//
//
//
// DO NOT EDIT OSUnserializeXMLSharedImplementation.h!
//
// this means you!
/* A Bison parser, made by GNU Bison 2.3. */
/* Skeleton implementation for Bison's Yacc-like parsers in C
*
* Copyright (C) 1984, 1989, 1990, 2000, 2001, 2002, 2003, 2004, 2005, 2006
* Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA. */
/* As a special exception, you may create a larger work that contains
* part or all of the Bison parser skeleton and distribute that work
* under terms of your choice, so long as that work isn't itself a
* parser generator using the skeleton or a modified version thereof
* as a parser skeleton. Alternatively, if you modify or redistribute
* the parser skeleton itself, you may (at your option) remove this
* special exception, which will cause the skeleton and the resulting
* Bison output files to be licensed under the GNU General Public
* License without this special exception.
*
* This special exception was added by the Free Software Foundation in
* version 2.2 of Bison. */
/* C LALR(1) parser skeleton written by Richard Stallman, by
* simplifying the original so-called "semantic" parser. */
/* All symbols defined below should begin with yy or YY, to avoid
* infringing on user name space. This should be done even for local
* variables, as they might otherwise be expanded by user macros.
* There are some unavoidable exceptions within include files to
* define necessary library symbols; they are noted "INFRINGES ON
* USER NAME SPACE" below. */
/* Identify Bison output. */
#define YYBISON 1
/* Bison version. */
#define YYBISON_VERSION "2.3"
/* Skeleton name. */
#define YYSKELETON_NAME "yacc.c"
/* Pure parsers. */
#define YYPURE 1
/* Using locations. */
#define YYLSP_NEEDED 0
/* Substitute the variable and function names. */
#define yyparse OSUnserializeXMLparse
#define yylex OSUnserializeXMLlex
#define yyerror OSUnserializeXMLerror
#define yylval OSUnserializeXMLlval
#define yychar OSUnserializeXMLchar
#define yydebug OSUnserializeXMLdebug
#define yynerrs OSUnserializeXMLnerrs
/* Tokens. */
#ifndef YYTOKENTYPE
# define YYTOKENTYPE
/* Put the tokens into the symbol table, so that GDB and other debuggers
* know about them. */
enum yytokentype {
ARRAY = 258,
BOOLEAN = 259,
DATA = 260,
DICTIONARY = 261,
IDREF = 262,
KEY = 263,
NUMBER = 264,
SET = 265,
STRING = 266,
SYNTAX_ERROR = 267
};
#endif
/* Tokens. */
#define ARRAY 258
#define BOOLEAN 259
#define DATA 260
#define DICTIONARY 261
#define IDREF 262
#define KEY 263
#define NUMBER 264
#define SET 265
#define STRING 266
#define SYNTAX_ERROR 267
/* Copy the first part of user declarations. */
#line 61 "OSUnserializeXML.y"
#include <string.h>
#if KERNEL
#include <libkern/c++/OSMetaClass.h>
#include <libkern/c++/OSContainers.h>
#include <libkern/c++/OSLib.h>
#else /* !KERNEL */
#include <DriverKit/DriverKit.h>
#endif /* KERNEL */
#define MAX_OBJECTS 131071
#define MAX_REFED_OBJECTS 65535
#define YYSTYPE object_t *
#define YYPARSE_PARAM state
#define YYLEX_PARAM (parser_state_t *)state
// this is the internal struct used to hold objects on parser stack
// it represents objects both before and after they have been created
typedef struct object {
struct object *next;
struct object *free;
struct object *elements;
OSObject *object;
OSSymbol *key; // for dictionary
int size;
void *data; // for data
char *string; // for string & symbol
int string_alloc_length;
long long number; // for number
int idref;
} object_t;
// this code is reentrant, this structure contains all
// state information for the parsing of a single buffer
typedef struct parser_state {
const char *parseBuffer; // start of text to be parsed
int parseBufferIndex; // current index into text
int lineNumber; // current line number
object_t *objects; // internal objects in use
object_t *freeObjects; // internal objects that are free
OSDictionary *tags; // used to remember "ID" tags
OSString **errorString; // parse error with line
OSObject *parsedObject; // resultant object of parsed text
int parsedObjectCount;
int retrievedObjectCount;
} parser_state_t;
#define STATE ((parser_state_t *)state)
#undef yyerror
#define yyerror(s) OSUnserializeerror(STATE, (s))
static int OSUnserializeerror(parser_state_t *state, const char *s);
static int yylex(YYSTYPE *lvalp, parser_state_t *state);
static object_t *newObject(parser_state_t *state);
static void freeObject(parser_state_t *state, object_t *o);
static void rememberObject(parser_state_t *state, int tag, OSObject *o);
static object_t *retrieveObject(parser_state_t *state, int tag);
static void cleanupObjects(parser_state_t *state);
static object_t *buildDictionary(parser_state_t *state, object_t *o);
static object_t *buildArray(parser_state_t *state, object_t *o);
static object_t *buildSet(parser_state_t *state, object_t *o);
static object_t *buildString(parser_state_t *state, object_t *o);
static object_t *buildSymbol(parser_state_t *state, object_t *o);
static object_t *buildData(parser_state_t *state, object_t *o);
static object_t *buildNumber(parser_state_t *state, object_t *o);
static object_t *buildBoolean(parser_state_t *state, object_t *o);
#if KERNEL
__BEGIN_DECLS
#include <kern/kalloc.h>
__END_DECLS
#define malloc(size) malloc_impl(size)
#define malloc_type(type) kalloc_type(type, Z_SET_NOTEARLY)
static inline void *
malloc_impl(size_t size)
{
if (size == 0) {
return NULL;
}
return kalloc_data(size,
Z_VM_TAG_BT(Z_WAITOK_ZERO, VM_KERN_MEMORY_LIBKERN));
}
#define free(addr) free_impl(addr)
#define free_type(type, addr) kfree_type(type, addr)
static inline void
free_impl(void *addr)
{
kfree_data_addr(addr);
}
static inline void
safe_free(void *addr, size_t size)
{
kfree_data(addr, size);
}
#define realloc(addr, osize, nsize) realloc_impl(addr, osize, nsize)
static inline void *
realloc_impl(void *addr, size_t osize, size_t nsize)
{
return krealloc_data(addr, osize, nsize,
Z_VM_TAG_BT(Z_WAITOK_ZERO, VM_KERN_MEMORY_LIBKERN));
}
#else /* !KERNEL */
#define malloc(size) malloc_impl(size)
#define malloc_type(type) (type *) calloc(1, sizeof(type))
static inline void *
malloc_impl(size_t size)
{
if (size == 0) {
return NULL;
}
return calloc(1, size);
}
#define safe_free(addr, size) free(addr)
#define free_type(type, addr) safe_free(addr, sizeof(type))
#define realloc(addr, osize, nsize) realloc_impl(addr, osize, nsize)
static inline void *
realloc_impl(void *addr, size_t osize, size_t nsize)
{
void * nmem;
if (!addr) {
return malloc(nsize);
}
if (nsize == osize) {
return addr;
}
nmem = (realloc)(addr, nsize);
if (nmem && nsize > osize) {
bzero((uint8_t *)nmem + osize, nsize - osize);
}
return nmem;
}
#endif /* KERNEL */
/* Enabling traces. */
#ifndef YYDEBUG
# define YYDEBUG 0
#endif
/* Enabling verbose error messages. */
#ifdef YYERROR_VERBOSE
# undef YYERROR_VERBOSE
# define YYERROR_VERBOSE 1
#else
# define YYERROR_VERBOSE 0
#endif
/* Enabling the token table. */
#ifndef YYTOKEN_TABLE
# define YYTOKEN_TABLE 0
#endif
#if !defined YYSTYPE && !defined YYSTYPE_IS_DECLARED
typedef int YYSTYPE;
# define yystype YYSTYPE /* obsolescent; will be withdrawn */
# define YYSTYPE_IS_DECLARED 1
# define YYSTYPE_IS_TRIVIAL 1
#endif
/* Copy the second part of user declarations. */
/* Line 216 of yacc.c. */
#line 283 "OSUnserializeXML.tab.c"
#ifdef short
# undef short
#endif
#ifdef YYTYPE_UINT8
typedef YYTYPE_UINT8 yytype_uint8;
#else
typedef unsigned char yytype_uint8;
#endif
#ifdef YYTYPE_INT8
typedef YYTYPE_INT8 yytype_int8;
#elif (defined __STDC__ || defined __C99__FUNC__ \
|| defined __cplusplus || defined _MSC_VER)
typedef signed char yytype_int8;
#else
typedef short int yytype_int8;
#endif
#ifdef YYTYPE_UINT16
typedef YYTYPE_UINT16 yytype_uint16;
#else
typedef unsigned short int yytype_uint16;
#endif
#ifdef YYTYPE_INT16
typedef YYTYPE_INT16 yytype_int16;
#else
typedef short int yytype_int16;
#endif
#ifndef YYSIZE_T
# ifdef __SIZE_TYPE__
# define YYSIZE_T __SIZE_TYPE__
# elif defined size_t
# define YYSIZE_T size_t
# elif !defined YYSIZE_T && (defined __STDC__ || defined __C99__FUNC__ \
|| defined __cplusplus || defined _MSC_VER)
# include <stddef.h> /* INFRINGES ON USER NAME SPACE */
# define YYSIZE_T size_t
# else
# define YYSIZE_T unsigned int
# endif
#endif
#define YYSIZE_MAXIMUM ((YYSIZE_T) -1)
#ifndef YY_
# if defined YYENABLE_NLS && YYENABLE_NLS
# if ENABLE_NLS
# include <libintl.h> /* INFRINGES ON USER NAME SPACE */
# define YY_(msgid) dgettext ("bison-runtime", msgid)
# endif
# endif
# ifndef YY_
# define YY_(msgid) msgid
# endif
#endif
/* Suppress unused-variable warnings by "using" E. */
#if !defined lint || defined __GNUC__
# define YYUSE(e) ((void) (e))
#else
# define YYUSE(e) /* empty */
#endif
/* Identity function, used to suppress warnings about constant conditions. */
#ifndef lint
# define YYID(n) (n)
#else
#if (defined __STDC__ || defined __C99__FUNC__ \
|| defined __cplusplus || defined _MSC_VER)
static int
YYID(int i)
#else
static int
YYID(i)
int i;
#endif
{
return i;
}
#endif
#if !defined yyoverflow || YYERROR_VERBOSE
/* The parser invokes alloca or malloc; define the necessary symbols. */
# ifdef YYSTACK_USE_ALLOCA
# if YYSTACK_USE_ALLOCA
# ifdef __GNUC__
# define YYSTACK_ALLOC __builtin_alloca
# elif defined __BUILTIN_VA_ARG_INCR
# include <alloca.h> /* INFRINGES ON USER NAME SPACE */
# elif defined _AIX
# define YYSTACK_ALLOC __alloca
# elif defined _MSC_VER
# include <malloc.h> /* INFRINGES ON USER NAME SPACE */
# define alloca _alloca
# else
# define YYSTACK_ALLOC alloca
# if !defined _ALLOCA_H && !defined _STDLIB_H && (defined __STDC__ || defined __C99__FUNC__ \
|| defined __cplusplus || defined _MSC_VER)
# include <stdlib.h> /* INFRINGES ON USER NAME SPACE */
# ifndef _STDLIB_H
# define _STDLIB_H 1
# endif
# endif
# endif
# endif
# endif
# ifdef YYSTACK_ALLOC
/* Pacify GCC's `empty if-body' warning. */
# define YYSTACK_FREE(Ptr) do { /* empty */ ; } while (YYID (0))
# ifndef YYSTACK_ALLOC_MAXIMUM
/* The OS might guarantee only one guard page at the bottom of the stack,
* and a page size can be as small as 4096 bytes. So we cannot safely
* invoke alloca (N) if N exceeds 4096. Use a slightly smaller number
* to allow for a few compiler-allocated temporary stack slots. */
# define YYSTACK_ALLOC_MAXIMUM 4032 /* reasonable circa 2006 */
# endif
# else
# define YYSTACK_ALLOC YYMALLOC
# define YYSTACK_FREE YYFREE
# ifndef YYSTACK_ALLOC_MAXIMUM
# define YYSTACK_ALLOC_MAXIMUM YYSIZE_MAXIMUM
# endif
# if (defined __cplusplus && !defined _STDLIB_H \
&& !((defined YYMALLOC || defined malloc) \
&& (defined YYFREE || defined free)))
# include <stdlib.h> /* INFRINGES ON USER NAME SPACE */
# ifndef _STDLIB_H
# define _STDLIB_H 1
# endif
# endif
# ifndef YYMALLOC
# define YYMALLOC malloc
# if !defined malloc && !defined _STDLIB_H && (defined __STDC__ || defined __C99__FUNC__ \
|| defined __cplusplus || defined _MSC_VER)
void *malloc(YYSIZE_T); /* INFRINGES ON USER NAME SPACE */
# endif
# endif
# ifndef YYFREE
# define YYFREE free
# if !defined free && !defined _STDLIB_H && (defined __STDC__ || defined __C99__FUNC__ \
|| defined __cplusplus || defined _MSC_VER)
void free(void *); /* INFRINGES ON USER NAME SPACE */
# endif
# endif
# endif
#endif /* ! defined yyoverflow || YYERROR_VERBOSE */
#if (!defined yyoverflow \
&& (!defined __cplusplus \
|| (defined YYSTYPE_IS_TRIVIAL && YYSTYPE_IS_TRIVIAL)))
/* A type that is properly aligned for any stack member. */
union yyalloc {
yytype_int16 yyss;
YYSTYPE yyvs;
};
/* The size of the maximum gap between one aligned stack and the next. */
# define YYSTACK_GAP_MAXIMUM (sizeof (union yyalloc) - 1)
/* The size of an array large to enough to hold all stacks, each with
* N elements. */
# define YYSTACK_BYTES(N) \
((N) * (sizeof (yytype_int16) + sizeof (YYSTYPE)) \
+ YYSTACK_GAP_MAXIMUM)
/* Copy COUNT objects from FROM to TO. The source and destination do
* not overlap. */
# ifndef YYCOPY
# if defined __GNUC__ && 1 < __GNUC__
# define YYCOPY(To, From, Count) \
__builtin_memcpy (To, From, (Count) * sizeof (*(From)))
# else
# define YYCOPY(To, From, Count) \
do \
{ \
YYSIZE_T yyi; \
for (yyi = 0; yyi < (Count); yyi++) \
(To)[yyi] = (From)[yyi]; \
} \
while (YYID (0))
# endif
# endif
/* Relocate STACK from its old location to the new one. The
* local variables YYSIZE and YYSTACKSIZE give the old and new number of
* elements in the stack, and YYPTR gives the new location of the
* stack. Advance YYPTR to a properly aligned location for the next
* stack. */
# define YYSTACK_RELOCATE(Stack) \
do \
{ \
YYSIZE_T yynewbytes; \
YYCOPY (&yyptr->Stack, Stack, yysize); \
Stack = &yyptr->Stack; \
yynewbytes = yystacksize * sizeof (*Stack) + YYSTACK_GAP_MAXIMUM; \
yyptr += yynewbytes / sizeof (*yyptr); \
} \
while (YYID (0))
#endif
/* YYFINAL -- State number of the termination state. */
#define YYFINAL 33
/* YYLAST -- Last index in YYTABLE. */
#define YYLAST 108
/* YYNTOKENS -- Number of terminals. */
#define YYNTOKENS 19
/* YYNNTS -- Number of nonterminals. */
#define YYNNTS 15
/* YYNRULES -- Number of rules. */
#define YYNRULES 32
/* YYNRULES -- Number of states. */
#define YYNSTATES 40
/* YYTRANSLATE(YYLEX) -- Bison symbol number corresponding to YYLEX. */
#define YYUNDEFTOK 2
#define YYMAXUTOK 267
#define YYTRANSLATE(YYX) \
((unsigned int) (YYX) <= YYMAXUTOK ? yytranslate[YYX] : YYUNDEFTOK)
/* YYTRANSLATE[YYLEX] -- Bison symbol number corresponding to YYLEX. */
static const yytype_uint8 yytranslate[] =
{
0, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
15, 16, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 17, 2, 18, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 13, 2, 14, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12
};
#if YYDEBUG
/* YYPRHS[YYN] -- Index of the first RHS symbol of rule number YYN in
* YYRHS. */
static const yytype_uint8 yyprhs[] =
{
0, 0, 3, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 27, 31, 33, 35, 38, 41,
43, 46, 50, 52, 55, 59, 61, 63, 66, 68,
70, 72, 74
};
/* YYRHS -- A `-1'-separated list of the rules' RHS. */
static const yytype_int8 yyrhs[] =
{
20, 0, -1, -1, 21, -1, 12, -1, 22, -1,
26, -1, 27, -1, 33, -1, 30, -1, 32, -1,
29, -1, 31, -1, 13, 14, -1, 13, 23, 14,
-1, 6, -1, 24, -1, 23, 24, -1, 25, 21,
-1, 8, -1, 15, 16, -1, 15, 28, 16, -1,
3, -1, 17, 18, -1, 17, 28, 18, -1, 10,
-1, 21, -1, 28, 21, -1, 4, -1, 5, -1,
7, -1, 9, -1, 11, -1
};
/* YYRLINE[YYN] -- source line where rule number YYN was defined. */
static const yytype_uint16 yyrline[] =
{
0, 217, 217, 220, 225, 230, 242, 254, 266, 278,
290, 302, 314, 338, 341, 344, 347, 348, 363, 372,
384, 387, 390, 393, 396, 399, 402, 405, 412, 415,
418, 421, 424
};
#endif
#if YYDEBUG || YYERROR_VERBOSE || YYTOKEN_TABLE
/* YYTNAME[SYMBOL-NUM] -- String name of the symbol SYMBOL-NUM.
* First, the terminals, then, starting at YYNTOKENS, nonterminals. */
static const char *const yytname[] =
{
"$end", "error", "$undefined", "ARRAY", "BOOLEAN", "DATA", "DICTIONARY",
"IDREF", "KEY", "NUMBER", "SET", "STRING", "SYNTAX_ERROR", "'{'", "'}'",
"'('", "')'", "'['", "']'", "$accept", "input", "object", "dict",
"pairs", "pair", "key", "array", "set", "elements", "boolean", "data",
"idref", "number", "string", 0
};
#endif
# ifdef YYPRINT
/* YYTOKNUM[YYLEX-NUM] -- Internal token number corresponding to
* token YYLEX-NUM. */
static const yytype_uint16 yytoknum[] =
{
0, 256, 257, 258, 259, 260, 261, 262, 263, 264,
265, 266, 267, 123, 125, 40, 41, 91, 93
};
# endif
/* YYR1[YYN] -- Symbol number of symbol that rule YYN derives. */
static const yytype_uint8 yyr1[] =
{
0, 19, 20, 20, 20, 21, 21, 21, 21, 21,
21, 21, 21, 22, 22, 22, 23, 23, 24, 25,
26, 26, 26, 27, 27, 27, 28, 28, 29, 30,
31, 32, 33
};
/* YYR2[YYN] -- Number of symbols composing right hand side of rule YYN. */
static const yytype_uint8 yyr2[] =
{
0, 2, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 3, 1, 1, 2, 2, 1,
2, 3, 1, 2, 3, 1, 1, 2, 1, 1,
1, 1, 1
};
/* YYDEFACT[STATE-NAME] -- Default rule to reduce with in state
* STATE-NUM when YYTABLE doesn't specify something else to do. Zero
* means the default is an error. */
static const yytype_uint8 yydefact[] =
{
2, 22, 28, 29, 15, 30, 31, 25, 32, 4,
0, 0, 0, 0, 3, 5, 6, 7, 11, 9,
12, 10, 8, 19, 13, 0, 16, 0, 20, 26,
0, 23, 0, 1, 14, 17, 18, 21, 27, 24
};
/* YYDEFGOTO[NTERM-NUM]. */
static const yytype_int8 yydefgoto[] =
{
-1, 13, 29, 15, 25, 26, 27, 16, 17, 30,
18, 19, 20, 21, 22
};
/* YYPACT[STATE-NUM] -- Index in YYTABLE of the portion describing
* STATE-NUM. */
#define YYPACT_NINF -20
static const yytype_int8 yypact[] =
{
46, -20, -20, -20, -20, -20, -20, -20, -20, -20,
4, 61, -2, 10, -20, -20, -20, -20, -20, -20,
-20, -20, -20, -20, -20, 6, -20, 91, -20, -20,
76, -20, 30, -20, -20, -20, -20, -20, -20, -20
};
/* YYPGOTO[NTERM-NUM]. */
static const yytype_int8 yypgoto[] =
{
-20, -20, 0, -20, -20, -19, -20, -20, -20, 5,
-20, -20, -20, -20, -20
};
/* YYTABLE[YYPACT[STATE-NUM]]. What to do in state STATE-NUM. If
* positive, shift that token. If negative, reduce the rule which
* number is the opposite. If zero, do what YYDEFACT says.
* If YYTABLE_NINF, syntax error. */
#define YYTABLE_NINF -1
static const yytype_uint8 yytable[] =
{
14, 1, 2, 3, 4, 5, 35, 6, 7, 8,
33, 10, 23, 11, 23, 12, 31, 32, 24, 0,
34, 0, 0, 0, 0, 0, 0, 36, 0, 0,
38, 0, 38, 1, 2, 3, 4, 5, 0, 6,
7, 8, 0, 10, 0, 11, 0, 12, 39, 1,
2, 3, 4, 5, 0, 6, 7, 8, 9, 10,
0, 11, 0, 12, 1, 2, 3, 4, 5, 0,
6, 7, 8, 0, 10, 0, 11, 28, 12, 1,
2, 3, 4, 5, 0, 6, 7, 8, 0, 10,
0, 11, 37, 12, 1, 2, 3, 4, 5, 0,
6, 7, 8, 0, 10, 0, 11, 0, 12
};
static const yytype_int8 yycheck[] =
{
0, 3, 4, 5, 6, 7, 25, 9, 10, 11,
0, 13, 8, 15, 8, 17, 18, 12, 14, -1,
14, -1, -1, -1, -1, -1, -1, 27, -1, -1,
30, -1, 32, 3, 4, 5, 6, 7, -1, 9,
10, 11, -1, 13, -1, 15, -1, 17, 18, 3,
4, 5, 6, 7, -1, 9, 10, 11, 12, 13,
-1, 15, -1, 17, 3, 4, 5, 6, 7, -1,
9, 10, 11, -1, 13, -1, 15, 16, 17, 3,
4, 5, 6, 7, -1, 9, 10, 11, -1, 13,
-1, 15, 16, 17, 3, 4, 5, 6, 7, -1,
9, 10, 11, -1, 13, -1, 15, -1, 17
};
/* YYSTOS[STATE-NUM] -- The (internal number of the) accessing
* symbol of state STATE-NUM. */
static const yytype_uint8 yystos[] =
{
0, 3, 4, 5, 6, 7, 9, 10, 11, 12,
13, 15, 17, 20, 21, 22, 26, 27, 29, 30,
31, 32, 33, 8, 14, 23, 24, 25, 16, 21,
28, 18, 28, 0, 14, 24, 21, 16, 21, 18
};
#define yyerrok (yyerrstatus = 0)
#define yyclearin (yychar = YYEMPTY)
#define YYEMPTY (-2)
#define YYEOF 0
#define YYACCEPT goto yyacceptlab
#define YYABORT goto yyabortlab
#define YYERROR goto yyerrorlab
/* Like YYERROR except do call yyerror. This remains here temporarily
* to ease the transition to the new meaning of YYERROR, for GCC.
* Once GCC version 2 has supplanted version 1, this can go. */
#define YYFAIL goto yyerrlab
#define YYRECOVERING() (!!yyerrstatus)
#define YYBACKUP(Token, Value) \
do \
if (yychar == YYEMPTY && yylen == 1) \
{ \
yychar = (Token); \
yylval = (Value); \
yytoken = YYTRANSLATE (yychar); \
YYPOPSTACK (1); \
goto yybackup; \
} \
else \
{ \
yyerror (YY_("syntax error: cannot back up")); \
YYERROR; \
} \
while (YYID (0))
#define YYTERROR 1
#define YYERRCODE 256
/* YYLLOC_DEFAULT -- Set CURRENT to span from RHS[1] to RHS[N].
* If N is 0, then set CURRENT to the empty location which ends
* the previous symbol: RHS[0] (always defined). */
#define YYRHSLOC(Rhs, K) ((Rhs)[K])
#ifndef YYLLOC_DEFAULT
# define YYLLOC_DEFAULT(Current, Rhs, N) \
do \
if (YYID (N)) \
{ \
(Current).first_line = YYRHSLOC (Rhs, 1).first_line; \
(Current).first_column = YYRHSLOC (Rhs, 1).first_column; \
(Current).last_line = YYRHSLOC (Rhs, N).last_line; \
(Current).last_column = YYRHSLOC (Rhs, N).last_column; \
} \
else \
{ \
(Current).first_line = (Current).last_line = \
YYRHSLOC (Rhs, 0).last_line; \
(Current).first_column = (Current).last_column = \
YYRHSLOC (Rhs, 0).last_column; \
} \
while (YYID (0))
#endif
/* YY_LOCATION_PRINT -- Print the location on the stream.
* This macro was not mandated originally: define only if we know
* we won't break user code: when these are the locations we know. */
#ifndef YY_LOCATION_PRINT
# if defined YYLTYPE_IS_TRIVIAL && YYLTYPE_IS_TRIVIAL
# define YY_LOCATION_PRINT(File, Loc) \
fprintf (File, "%d.%d-%d.%d", \
(Loc).first_line, (Loc).first_column, \
(Loc).last_line, (Loc).last_column)
# else
# define YY_LOCATION_PRINT(File, Loc) ((void) 0)
# endif
#endif
/* YYLEX -- calling `yylex' with the right arguments. */
#ifdef YYLEX_PARAM
# define YYLEX yylex (&yylval, YYLEX_PARAM)
#else
# define YYLEX yylex (&yylval)
#endif
/* Enable debugging if requested. */
#if YYDEBUG
# ifndef YYFPRINTF
# include <stdio.h> /* INFRINGES ON USER NAME SPACE */
# define YYFPRINTF fprintf
# endif
# define YYDPRINTF(Args) \
do { \
if (yydebug) \
YYFPRINTF Args; \
} while (YYID (0))
# define YY_SYMBOL_PRINT(Title, Type, Value, Location) \
do { \
if (yydebug) \
{ \
YYFPRINTF (stderr, "%s ", Title); \
yy_symbol_print (stderr, \
Type, Value); \
YYFPRINTF (stderr, "\n"); \
} \
} while (YYID (0))
/*--------------------------------.
| Print this symbol on YYOUTPUT. |
| `--------------------------------*/
/*ARGSUSED*/
#if (defined __STDC__ || defined __C99__FUNC__ \
|| defined __cplusplus || defined _MSC_VER)
static void
yy_symbol_value_print(FILE *yyoutput, int yytype, YYSTYPE const * const yyvaluep)
#else
static void
yy_symbol_value_print(yyoutput, yytype, yyvaluep)
FILE *yyoutput;
int yytype;
YYSTYPE const * const yyvaluep;
#endif
{
if (!yyvaluep) {
return;
}
# ifdef YYPRINT
if (yytype < YYNTOKENS) {
YYPRINT(yyoutput, yytoknum[yytype], *yyvaluep);
}
# else
YYUSE(yyoutput);
# endif
switch (yytype) {
default:
break;
}
}
/*--------------------------------.
| Print this symbol on YYOUTPUT. |
| `--------------------------------*/
#if (defined __STDC__ || defined __C99__FUNC__ \
|| defined __cplusplus || defined _MSC_VER)
static void
yy_symbol_print(FILE *yyoutput, int yytype, YYSTYPE const * const yyvaluep)
#else
static void
yy_symbol_print(yyoutput, yytype, yyvaluep)
FILE *yyoutput;
int yytype;
YYSTYPE const * const yyvaluep;
#endif
{
if (yytype < YYNTOKENS) {
YYFPRINTF(yyoutput, "token %s (", yytname[yytype]);
} else {
YYFPRINTF(yyoutput, "nterm %s (", yytname[yytype]);
}
yy_symbol_value_print(yyoutput, yytype, yyvaluep);
YYFPRINTF(yyoutput, ")");
}
/*------------------------------------------------------------------.
| yy_stack_print -- Print the state stack from its BOTTOM up to its |
| TOP (included). |
| `------------------------------------------------------------------*/
#if (defined __STDC__ || defined __C99__FUNC__ \
|| defined __cplusplus || defined _MSC_VER)
static void
yy_stack_print(yytype_int16 *bottom, yytype_int16 *top)
#else
static void
yy_stack_print(bottom, top)
yytype_int16 *bottom;
yytype_int16 *top;
#endif
{
YYFPRINTF(stderr, "Stack now");
for (; bottom <= top; ++bottom) {
YYFPRINTF(stderr, " %d", *bottom);
}
YYFPRINTF(stderr, "\n");
}
# define YY_STACK_PRINT(Bottom, Top) \
do { \
if (yydebug) \
yy_stack_print ((Bottom), (Top)); \
} while (YYID (0))
/*------------------------------------------------.
| Report that the YYRULE is going to be reduced. |
| `------------------------------------------------*/
#if (defined __STDC__ || defined __C99__FUNC__ \
|| defined __cplusplus || defined _MSC_VER)
static void
yy_reduce_print(YYSTYPE *yyvsp, int yyrule)
#else
static void
yy_reduce_print(yyvsp, yyrule)
YYSTYPE *yyvsp;
int yyrule;
#endif
{
int yynrhs = yyr2[yyrule];
int yyi;
unsigned long int yylno = yyrline[yyrule];
YYFPRINTF(stderr, "Reducing stack by rule %d (line %lu):\n",
yyrule - 1, yylno);
/* The symbols being reduced. */
for (yyi = 0; yyi < yynrhs; yyi++) {
fprintf(stderr, " $%d = ", yyi + 1);
yy_symbol_print(stderr, yyrhs[yyprhs[yyrule] + yyi],
&(yyvsp[(yyi + 1) - (yynrhs)])
);
fprintf(stderr, "\n");
}
}
# define YY_REDUCE_PRINT(Rule) \
do { \
if (yydebug) \
yy_reduce_print (yyvsp, Rule); \
} while (YYID (0))
/* Nonzero means print parse trace. It is left uninitialized so that
* multiple parsers can coexist. */
int yydebug;
#else /* !YYDEBUG */
# define YYDPRINTF(Args)
# define YY_SYMBOL_PRINT(Title, Type, Value, Location)
# define YY_STACK_PRINT(Bottom, Top)
# define YY_REDUCE_PRINT(Rule)
#endif /* !YYDEBUG */
/* YYINITDEPTH -- initial size of the parser's stacks. */
#ifndef YYINITDEPTH
# define YYINITDEPTH 200
#endif
/* YYMAXDEPTH -- maximum size the stacks can grow to (effective only
* if the built-in stack extension method is used).
*
* Do not make this value too large; the results are undefined if
* YYSTACK_ALLOC_MAXIMUM < YYSTACK_BYTES (YYMAXDEPTH)
* evaluated with infinite-precision integer arithmetic. */
#ifndef YYMAXDEPTH
# define YYMAXDEPTH 10000
#endif
#if YYERROR_VERBOSE
# ifndef yystrlen
# if defined __GLIBC__ && defined _STRING_H
# define yystrlen strlen
# else
/* Return the length of YYSTR. */
#if (defined __STDC__ || defined __C99__FUNC__ \
|| defined __cplusplus || defined _MSC_VER)
static YYSIZE_T
yystrlen(const char *yystr)
#else
static YYSIZE_T
yystrlen(yystr)
const char *yystr;
#endif
{
YYSIZE_T yylen;
for (yylen = 0; yystr[yylen]; yylen++) {
continue;
}
return yylen;
}
# endif
# endif
# ifndef yystpcpy
# if defined __GLIBC__ && defined _STRING_H && defined _GNU_SOURCE
# define yystpcpy stpcpy
# else
/* Copy YYSRC to YYDEST, returning the address of the terminating '\0' in
* YYDEST. */
#if (defined __STDC__ || defined __C99__FUNC__ \
|| defined __cplusplus || defined _MSC_VER)
static char *
yystpcpy(char *yydest, const char *yysrc)
#else
static char *
yystpcpy(yydest, yysrc)
char *yydest;
const char *yysrc;
#endif
{
char *yyd = yydest;
const char *yys = yysrc;
while ((*yyd++ = *yys++) != '\0') {
continue;
}
return yyd - 1;
}
# endif
# endif
# ifndef yytnamerr
/* Copy to YYRES the contents of YYSTR after stripping away unnecessary
* quotes and backslashes, so that it's suitable for yyerror. The
* heuristic is that double-quoting is unnecessary unless the string
* contains an apostrophe, a comma, or backslash (other than
* backslash-backslash). YYSTR is taken from yytname. If YYRES is
* null, do not copy; instead, return the length of what the result
* would have been. */
static YYSIZE_T
yytnamerr(char *yyres, const char *yystr)
{
if (*yystr == '"') {
YYSIZE_T yyn = 0;
char const *yyp = yystr;
for (;;) {
switch (*++yyp) {
case '\'':
case ',':
goto do_not_strip_quotes;
case '\\':
if (*++yyp != '\\') {
goto do_not_strip_quotes;
}
/* Fall through. */
default:
if (yyres) {
yyres[yyn] = *yyp;
}
yyn++;
break;
case '"':
if (yyres) {
yyres[yyn] = '\0';
}
return yyn;
}
}
do_not_strip_quotes:;
}
if (!yyres) {
return yystrlen(yystr);
}
return yystpcpy(yyres, yystr) - yyres;
}
# endif
/* Copy into YYRESULT an error message about the unexpected token
* YYCHAR while in state YYSTATE. Return the number of bytes copied,
* including the terminating null byte. If YYRESULT is null, do not
* copy anything; just return the number of bytes that would be
* copied. As a special case, return 0 if an ordinary "syntax error"
* message will do. Return YYSIZE_MAXIMUM if overflow occurs during
* size calculation. */
static YYSIZE_T
yysyntax_error(char *yyresult, int yystate, int yychar)
{
int yyn = yypact[yystate];
if (!(YYPACT_NINF < yyn && yyn <= YYLAST)) {
return 0;
} else {
int yytype = YYTRANSLATE(yychar);
YYSIZE_T yysize0 = yytnamerr(0, yytname[yytype]);
YYSIZE_T yysize = yysize0;
YYSIZE_T yysize1;
int yysize_overflow = 0;
enum { YYERROR_VERBOSE_ARGS_MAXIMUM = 5 };
char const *yyarg[YYERROR_VERBOSE_ARGS_MAXIMUM];
int yyx;
# if 0
/* This is so xgettext sees the translatable formats that are
* constructed on the fly. */
YY_("syntax error, unexpected %s");
YY_("syntax error, unexpected %s, expecting %s");
YY_("syntax error, unexpected %s, expecting %s or %s");
YY_("syntax error, unexpected %s, expecting %s or %s or %s");
YY_("syntax error, unexpected %s, expecting %s or %s or %s or %s");
# endif
char *yyfmt;
char const *yyf;
static char const yyunexpected[] = "syntax error, unexpected %s";
static char const yyexpecting[] = ", expecting %s";
static char const yyor[] = " or %s";
char yyformat[sizeof yyunexpected
+ sizeof yyexpecting - 1
+ ((YYERROR_VERBOSE_ARGS_MAXIMUM - 2)
* (sizeof yyor - 1))];
char const *yyprefix = yyexpecting;
/* Start YYX at -YYN if negative to avoid negative indexes in
* YYCHECK. */
int yyxbegin = yyn < 0 ? -yyn : 0;
/* Stay within bounds of both yycheck and yytname. */
int yychecklim = YYLAST - yyn + 1;
int yyxend = yychecklim < YYNTOKENS ? yychecklim : YYNTOKENS;
int yycount = 1;
yyarg[0] = yytname[yytype];
yyfmt = yystpcpy(yyformat, yyunexpected);
for (yyx = yyxbegin; yyx < yyxend; ++yyx) {
if (yycheck[yyx + yyn] == yyx && yyx != YYTERROR) {
if (yycount == YYERROR_VERBOSE_ARGS_MAXIMUM) {
yycount = 1;
yysize = yysize0;
yyformat[sizeof yyunexpected - 1] = '\0';
break;
}
yyarg[yycount++] = yytname[yyx];
yysize1 = yysize + yytnamerr(0, yytname[yyx]);
yysize_overflow |= (yysize1 < yysize);
yysize = yysize1;
yyfmt = yystpcpy(yyfmt, yyprefix);
yyprefix = yyor;
}
}
yyf = YY_(yyformat);
yysize1 = yysize + yystrlen(yyf);
yysize_overflow |= (yysize1 < yysize);
yysize = yysize1;
if (yysize_overflow) {
return YYSIZE_MAXIMUM;
}
if (yyresult) {
/* Avoid sprintf, as that infringes on the user's name space.
* Don't have undefined behavior even if the translation
* produced a string with the wrong number of "%s"s. */
char *yyp = yyresult;
int yyi = 0;
while ((*yyp = *yyf) != '\0') {
if (*yyp == '%' && yyf[1] == 's' && yyi < yycount) {
yyp += yytnamerr(yyp, yyarg[yyi++]);
yyf += 2;
} else {
yyp++;
yyf++;
}
}
}
return yysize;
}
}
#endif /* YYERROR_VERBOSE */
/*-----------------------------------------------.
| Release the memory associated to this symbol. |
| `-----------------------------------------------*/
/*ARGSUSED*/
#if (defined __STDC__ || defined __C99__FUNC__ \
|| defined __cplusplus || defined _MSC_VER)
static void
yydestruct(const char *yymsg, int yytype, YYSTYPE *yyvaluep)
#else
static void
yydestruct(yymsg, yytype, yyvaluep)
const char *yymsg;
int yytype;
YYSTYPE *yyvaluep;
#endif
{
YYUSE(yyvaluep);
if (!yymsg) {
yymsg = "Deleting";
}
YY_SYMBOL_PRINT(yymsg, yytype, yyvaluep, yylocationp);
switch (yytype) {
default:
break;
}
}
/* Prevent warnings from -Wmissing-prototypes. */
#ifdef YYPARSE_PARAM
#if defined __STDC__ || defined __cplusplus
int yyparse(void *YYPARSE_PARAM);
#else
int yyparse();
#endif
#else /* ! YYPARSE_PARAM */
#if defined __STDC__ || defined __cplusplus
int yyparse(void);
#else
int yyparse();
#endif
#endif /* ! YYPARSE_PARAM */
/*----------.
| yyparse. |
| `----------*/
#ifdef YYPARSE_PARAM
#if (defined __STDC__ || defined __C99__FUNC__ \
|| defined __cplusplus || defined _MSC_VER)
int
yyparse(void *YYPARSE_PARAM)
#else
int
yyparse(YYPARSE_PARAM)
void *YYPARSE_PARAM;
#endif
#else /* ! YYPARSE_PARAM */
#if (defined __STDC__ || defined __C99__FUNC__ \
|| defined __cplusplus || defined _MSC_VER)
int
yyparse(void)
#else
int
yyparse()
#endif
#endif
{
/* The look-ahead symbol. */
int yychar;
/* The semantic value of the look-ahead symbol. */
YYSTYPE yylval;
/* Number of syntax errors so far. */
int yynerrs;
int yystate;
int yyn;
int yyresult;
/* Number of tokens to shift before error messages enabled. */
int yyerrstatus;
/* Look-ahead token as an internal (translated) token number. */
int yytoken = 0;
#if YYERROR_VERBOSE
/* Buffer for error messages, and its allocated size. */
char yymsgbuf[128];
char *yymsg = yymsgbuf;
YYSIZE_T yymsg_alloc = sizeof yymsgbuf;
#endif
/* Three stacks and their tools:
* `yyss': related to states,
* `yyvs': related to semantic values,
* `yyls': related to locations.
*
* Refer to the stacks thru separate pointers, to allow yyoverflow
* to reallocate them elsewhere. */
/* The state stack. */
yytype_int16 yyssa[YYINITDEPTH];
yytype_int16 *yyss = yyssa;
yytype_int16 *yyssp;
/* The semantic value stack. */
YYSTYPE yyvsa[YYINITDEPTH];
YYSTYPE *yyvs = yyvsa;
YYSTYPE *yyvsp;
#define YYPOPSTACK(N) (yyvsp -= (N), yyssp -= (N))
YYSIZE_T yystacksize = YYINITDEPTH;
/* The variables used to return semantic value and location from the
* action routines. */
YYSTYPE yyval;
/* The number of symbols on the RHS of the reduced rule.
* Keep to zero when no symbol should be popped. */
int yylen = 0;
YYDPRINTF((stderr, "Starting parse\n"));
yystate = 0;
yyerrstatus = 0;
yynerrs = 0;
yychar = YYEMPTY; /* Cause a token to be read. */
/* Initialize stack pointers.
* Waste one element of value and location stack
* so that they stay on the same level as the state stack.
* The wasted elements are never initialized. */
yyssp = yyss;
yyvsp = yyvs;
goto yysetstate;
/*------------------------------------------------------------.
| yynewstate -- Push a new state, which is found in yystate. |
| `------------------------------------------------------------*/
yynewstate:
/* In all cases, when you get here, the value and location stacks
* have just been pushed. So pushing a state here evens the stacks. */
yyssp++;
yysetstate:
*yyssp = yystate;
if (yyss + yystacksize - 1 <= yyssp) {
/* Get the current used size of the three stacks, in elements. */
YYSIZE_T yysize = yyssp - yyss + 1;
#ifdef yyoverflow
{
/* Give user a chance to reallocate the stack. Use copies of
* these so that the &'s don't force the real ones into
* memory. */
YYSTYPE *yyvs1 = yyvs;
yytype_int16 *yyss1 = yyss;
/* Each stack pointer address is followed by the size of the
* data in use in that stack, in bytes. This used to be a
* conditional around just the two extra args, but that might
* be undefined if yyoverflow is a macro. */
yyoverflow(YY_("memory exhausted"),
&yyss1, yysize * sizeof(*yyssp),
&yyvs1, yysize * sizeof(*yyvsp),
&yystacksize);
yyss = yyss1;
yyvs = yyvs1;
}
#else /* no yyoverflow */
# ifndef YYSTACK_RELOCATE
goto yyexhaustedlab;
# else
/* Extend the stack our own way. */
if (YYMAXDEPTH <= yystacksize) {
goto yyexhaustedlab;
}
yystacksize *= 2;
if (YYMAXDEPTH < yystacksize) {
yystacksize = YYMAXDEPTH;
}
{
yytype_int16 *yyss1 = yyss;
union yyalloc *yyptr =
(union yyalloc *) YYSTACK_ALLOC(YYSTACK_BYTES(yystacksize));
if (!yyptr) {
goto yyexhaustedlab;
}
YYSTACK_RELOCATE(yyss);
YYSTACK_RELOCATE(yyvs);
# undef YYSTACK_RELOCATE
if (yyss1 != yyssa) {
YYSTACK_FREE(yyss1);
}
}
# endif
#endif /* no yyoverflow */
yyssp = yyss + yysize - 1;
yyvsp = yyvs + yysize - 1;
YYDPRINTF((stderr, "Stack size increased to %lu\n",
(unsigned long int) yystacksize));
if (yyss + yystacksize - 1 <= yyssp) {
YYABORT;
}
}
YYDPRINTF((stderr, "Entering state %d\n", yystate));
goto yybackup;
/*-----------.
| yybackup. |
| `-----------*/
yybackup:
/* Do appropriate processing given the current state. Read a
* look-ahead token if we need one and don't already have one. */
/* First try to decide what to do without reference to look-ahead token. */
yyn = yypact[yystate];
if (yyn == YYPACT_NINF) {
goto yydefault;
}
/* Not known => get a look-ahead token if don't already have one. */
/* YYCHAR is either YYEMPTY or YYEOF or a valid look-ahead symbol. */
if (yychar == YYEMPTY) {
YYDPRINTF((stderr, "Reading a token: "));
yychar = YYLEX;
}
if (yychar <= YYEOF) {
yychar = yytoken = YYEOF;
YYDPRINTF((stderr, "Now at end of input.\n"));
} else {
yytoken = YYTRANSLATE(yychar);
YY_SYMBOL_PRINT("Next token is", yytoken, &yylval, &yylloc);
}
/* If the proper action on seeing token YYTOKEN is to reduce or to
* detect an error, take that action. */
yyn += yytoken;
if (yyn < 0 || YYLAST < yyn || yycheck[yyn] != yytoken) {
goto yydefault;
}
yyn = yytable[yyn];
if (yyn <= 0) {
if (yyn == 0 || yyn == YYTABLE_NINF) {
goto yyerrlab;
}
yyn = -yyn;
goto yyreduce;
}
if (yyn == YYFINAL) {
YYACCEPT;
}
/* Count tokens shifted since error; after three, turn off error
* status. */
if (yyerrstatus) {
yyerrstatus--;
}
/* Shift the look-ahead token. */
YY_SYMBOL_PRINT("Shifting", yytoken, &yylval, &yylloc);
/* Discard the shifted token unless it is eof. */
if (yychar != YYEOF) {
yychar = YYEMPTY;
}
yystate = yyn;
*++yyvsp = yylval;
goto yynewstate;
/*-----------------------------------------------------------.
| yydefault -- do the default action for the current state. |
| `-----------------------------------------------------------*/
yydefault:
yyn = yydefact[yystate];
if (yyn == 0) {
goto yyerrlab;
}
goto yyreduce;
/*-----------------------------.
| yyreduce -- Do a reduction. |
| `-----------------------------*/
yyreduce:
/* yyn is the number of a rule to reduce with. */
yylen = yyr2[yyn];
/* If YYLEN is nonzero, implement the default value of the action:
* `$$ = $1'.
*
* Otherwise, the following line sets YYVAL to garbage.
* This behavior is undocumented and Bison
* users should not rely upon it. Assigning to YYVAL
* unconditionally makes the parser a bit smaller, and it avoids a
* GCC warning that YYVAL may be used uninitialized. */
yyval = yyvsp[1 - yylen];
YY_REDUCE_PRINT(yyn);
switch (yyn) {
case 2:
#line 217 "OSUnserializeXML.y"
{ yyerror("unexpected end of buffer");
YYERROR;
;}
break;
case 3:
#line 220 "OSUnserializeXML.y"
{ STATE->parsedObject = (yyvsp[(1) - (1)])->object;
(yyvsp[(1) - (1)])->object = 0;
freeObject(STATE, (yyvsp[(1) - (1)]));
YYACCEPT;
;}
break;
case 4:
#line 225 "OSUnserializeXML.y"
{ yyerror("syntax error");
YYERROR;
;}
break;
case 5:
#line 230 "OSUnserializeXML.y"
{ (yyval) = buildDictionary(STATE, (yyvsp[(1) - (1)]));
if (!yyval->object) {
yyerror("buildDictionary");
YYERROR;
}
STATE->parsedObjectCount++;
if (STATE->parsedObjectCount > MAX_OBJECTS) {
yyerror("maximum object count");
YYERROR;
}
;}
break;
case 6:
#line 242 "OSUnserializeXML.y"
{ (yyval) = buildArray(STATE, (yyvsp[(1) - (1)]));
if (!yyval->object) {
yyerror("buildArray");
YYERROR;
}
STATE->parsedObjectCount++;
if (STATE->parsedObjectCount > MAX_OBJECTS) {
yyerror("maximum object count");
YYERROR;
}
;}
break;
case 7:
#line 254 "OSUnserializeXML.y"
{ (yyval) = buildSet(STATE, (yyvsp[(1) - (1)]));
if (!yyval->object) {
yyerror("buildSet");
YYERROR;
}
STATE->parsedObjectCount++;
if (STATE->parsedObjectCount > MAX_OBJECTS) {
yyerror("maximum object count");
YYERROR;
}
;}
break;
case 8:
#line 266 "OSUnserializeXML.y"
{ (yyval) = buildString(STATE, (yyvsp[(1) - (1)]));
if (!yyval->object) {
yyerror("buildString");
YYERROR;
}
STATE->parsedObjectCount++;
if (STATE->parsedObjectCount > MAX_OBJECTS) {
yyerror("maximum object count");
YYERROR;
}
;}
break;
case 9:
#line 278 "OSUnserializeXML.y"
{ (yyval) = buildData(STATE, (yyvsp[(1) - (1)]));
if (!yyval->object) {
yyerror("buildData");
YYERROR;
}
STATE->parsedObjectCount++;
if (STATE->parsedObjectCount > MAX_OBJECTS) {
yyerror("maximum object count");
YYERROR;
}
;}
break;
case 10:
#line 290 "OSUnserializeXML.y"
{ (yyval) = buildNumber(STATE, (yyvsp[(1) - (1)]));
if (!yyval->object) {
yyerror("buildNumber");
YYERROR;
}
STATE->parsedObjectCount++;
if (STATE->parsedObjectCount > MAX_OBJECTS) {
yyerror("maximum object count");
YYERROR;
}
;}
break;
case 11:
#line 302 "OSUnserializeXML.y"
{ (yyval) = buildBoolean(STATE, (yyvsp[(1) - (1)]));
if (!yyval->object) {
yyerror("buildBoolean");
YYERROR;
}
STATE->parsedObjectCount++;
if (STATE->parsedObjectCount > MAX_OBJECTS) {
yyerror("maximum object count");
YYERROR;
}
;}
break;
case 12:
#line 314 "OSUnserializeXML.y"
{ (yyval) = retrieveObject(STATE, (yyvsp[(1) - (1)])->idref);
if ((yyval)) {
STATE->retrievedObjectCount++;
(yyval)->object->retain();
if (STATE->retrievedObjectCount > MAX_REFED_OBJECTS) {
yyerror("maximum object reference count");
YYERROR;
}
} else {
yyerror("forward reference detected");
YYERROR;
}
freeObject(STATE, (yyvsp[(1) - (1)]));
STATE->parsedObjectCount++;
if (STATE->parsedObjectCount > MAX_OBJECTS) {
yyerror("maximum object count");
YYERROR;
}
;}
break;
case 13:
#line 338 "OSUnserializeXML.y"
{ (yyval) = (yyvsp[(1) - (2)]);
(yyval)->elements = NULL;
;}
break;
case 14:
#line 341 "OSUnserializeXML.y"
{ (yyval) = (yyvsp[(1) - (3)]);
(yyval)->elements = (yyvsp[(2) - (3)]);
;}
break;
case 17:
#line 348 "OSUnserializeXML.y"
{ (yyval) = (yyvsp[(2) - (2)]);
(yyval)->next = (yyvsp[(1) - (2)]);
object_t *o;
o = (yyval)->next;
while (o) {
if (o->key == (yyval)->key) {
yyerror("duplicate dictionary key");
YYERROR;
}
o = o->next;
}
;}
break;
case 18:
#line 363 "OSUnserializeXML.y"
{ (yyval) = (yyvsp[(1) - (2)]);
(yyval)->key = (OSSymbol *)(yyval)->object;
(yyval)->object = (yyvsp[(2) - (2)])->object;
(yyval)->next = NULL;
(yyvsp[(2) - (2)])->object = 0;
freeObject(STATE, (yyvsp[(2) - (2)]));
;}
break;
case 19:
#line 372 "OSUnserializeXML.y"
{ (yyval) = buildSymbol(STATE, (yyvsp[(1) - (1)]));
// STATE->parsedObjectCount++;
// if (STATE->parsedObjectCount > MAX_OBJECTS) {
// yyerror("maximum object count");
// YYERROR;
// }
;}
break;
case 20:
#line 384 "OSUnserializeXML.y"
{ (yyval) = (yyvsp[(1) - (2)]);
(yyval)->elements = NULL;
;}
break;
case 21:
#line 387 "OSUnserializeXML.y"
{ (yyval) = (yyvsp[(1) - (3)]);
(yyval)->elements = (yyvsp[(2) - (3)]);
;}
break;
case 23:
#line 393 "OSUnserializeXML.y"
{ (yyval) = (yyvsp[(1) - (2)]);
(yyval)->elements = NULL;
;}
break;
case 24:
#line 396 "OSUnserializeXML.y"
{ (yyval) = (yyvsp[(1) - (3)]);
(yyval)->elements = (yyvsp[(2) - (3)]);
;}
break;
case 26:
#line 402 "OSUnserializeXML.y"
{ (yyval) = (yyvsp[(1) - (1)]);
(yyval)->next = NULL;
;}
break;
case 27:
#line 405 "OSUnserializeXML.y"
{ (yyval) = (yyvsp[(2) - (2)]);
(yyval)->next = (yyvsp[(1) - (2)]);
;}
break;
/* Line 1267 of yacc.c. */
#line 1772 "OSUnserializeXML.tab.c"
default: break;
}
YY_SYMBOL_PRINT("-> $$ =", yyr1[yyn], &yyval, &yyloc);
YYPOPSTACK(yylen);
yylen = 0;
YY_STACK_PRINT(yyss, yyssp);
*++yyvsp = yyval;
/* Now `shift' the result of the reduction. Determine what state
* that goes to, based on the state we popped back to and the rule
* number reduced by. */
yyn = yyr1[yyn];
yystate = yypgoto[yyn - YYNTOKENS] + *yyssp;
if (0 <= yystate && yystate <= YYLAST && yycheck[yystate] == *yyssp) {
yystate = yytable[yystate];
} else {
yystate = yydefgoto[yyn - YYNTOKENS];
}
goto yynewstate;
/*------------------------------------.
| yyerrlab -- here on detecting error |
| `------------------------------------*/
yyerrlab:
/* If not already recovering from an error, report this error. */
if (!yyerrstatus) {
++yynerrs;
#if !YYERROR_VERBOSE
yyerror(YY_("syntax error"));
#else
{
YYSIZE_T yysize = yysyntax_error(0, yystate, yychar);
if (yymsg_alloc < yysize && yymsg_alloc < YYSTACK_ALLOC_MAXIMUM) {
YYSIZE_T yyalloc = 2 * yysize;
if (!(yysize <= yyalloc && yyalloc <= YYSTACK_ALLOC_MAXIMUM)) {
yyalloc = YYSTACK_ALLOC_MAXIMUM;
}
if (yymsg != yymsgbuf) {
YYSTACK_FREE(yymsg);
}
yymsg = (char *) YYSTACK_ALLOC(yyalloc);
if (yymsg) {
yymsg_alloc = yyalloc;
} else {
yymsg = yymsgbuf;
yymsg_alloc = sizeof yymsgbuf;
}
}
if (0 < yysize && yysize <= yymsg_alloc) {
(void) yysyntax_error(yymsg, yystate, yychar);
yyerror(yymsg);
} else {
yyerror(YY_("syntax error"));
if (yysize != 0) {
goto yyexhaustedlab;
}
}
}
#endif
}
if (yyerrstatus == 3) {
/* If just tried and failed to reuse look-ahead token after an
* error, discard it. */
if (yychar <= YYEOF) {
/* Return failure if at end of input. */
if (yychar == YYEOF) {
YYABORT;
}
} else {
yydestruct("Error: discarding",
yytoken, &yylval);
yychar = YYEMPTY;
}
}
/* Else will try to reuse look-ahead token after shifting the error
* token. */
goto yyerrlab1;
/*---------------------------------------------------.
| yyerrorlab -- error raised explicitly by YYERROR. |
| `---------------------------------------------------*/
yyerrorlab:
/* Pacify compilers like GCC when the user code never invokes
* YYERROR and the label yyerrorlab therefore never appears in user
* code. */
if (/*CONSTCOND*/ 0) {
goto yyerrorlab;
}
/* Do not reclaim the symbols of the rule which action triggered
* this YYERROR. */
YYPOPSTACK(yylen);
yylen = 0;
YY_STACK_PRINT(yyss, yyssp);
yystate = *yyssp;
goto yyerrlab1;
/*-------------------------------------------------------------.
| yyerrlab1 -- common code for both syntax error and YYERROR. |
| `-------------------------------------------------------------*/
yyerrlab1:
yyerrstatus = 3; /* Each real token shifted decrements this. */
for (;;) {
yyn = yypact[yystate];
if (yyn != YYPACT_NINF) {
yyn += YYTERROR;
if (0 <= yyn && yyn <= YYLAST && yycheck[yyn] == YYTERROR) {
yyn = yytable[yyn];
if (0 < yyn) {
break;
}
}
}
/* Pop the current state because it cannot handle the error token. */
if (yyssp == yyss) {
YYABORT;
}
yydestruct("Error: popping",
yystos[yystate], yyvsp);
YYPOPSTACK(1);
yystate = *yyssp;
YY_STACK_PRINT(yyss, yyssp);
}
if (yyn == YYFINAL) {
YYACCEPT;
}
*++yyvsp = yylval;
/* Shift the error token. */
YY_SYMBOL_PRINT("Shifting", yystos[yyn], yyvsp, yylsp);
yystate = yyn;
goto yynewstate;
/*-------------------------------------.
| yyacceptlab -- YYACCEPT comes here. |
| `-------------------------------------*/
yyacceptlab:
yyresult = 0;
goto yyreturn;
/*-----------------------------------.
| yyabortlab -- YYABORT comes here. |
| `-----------------------------------*/
yyabortlab:
yyresult = 1;
goto yyreturn;
#ifndef yyoverflow
/*-------------------------------------------------.
| yyexhaustedlab -- memory exhaustion comes here. |
| `-------------------------------------------------*/
yyexhaustedlab:
yyerror(YY_("memory exhausted"));
yyresult = 2;
/* Fall through. */
#endif
yyreturn:
if (yychar != YYEOF && yychar != YYEMPTY) {
yydestruct("Cleanup: discarding lookahead",
yytoken, &yylval);
}
/* Do not reclaim the symbols of the rule which action triggered
* this YYABORT or YYACCEPT. */
YYPOPSTACK(yylen);
YY_STACK_PRINT(yyss, yyssp);
while (yyssp != yyss) {
yydestruct("Cleanup: popping",
yystos[*yyssp], yyvsp);
YYPOPSTACK(1);
}
#ifndef yyoverflow
if (yyss != yyssa) {
YYSTACK_FREE(yyss);
}
#endif
#if YYERROR_VERBOSE
if (yymsg != yymsgbuf) {
YYSTACK_FREE(yymsg);
}
#endif
/* Make sure YYID is used. */
return YYID(yyresult);
}
#line 427 "OSUnserializeXML.y"
int
OSUnserializeerror(parser_state_t * state, const char *s) /* Called by yyparse on errors */
{
if (state->errorString) {
char tempString[128];
snprintf(tempString, 128, "OSUnserializeXML: %s near line %d\n", s, state->lineNumber);
*(state->errorString) = OSString::withCString(tempString);
}
return 0;
}
#define TAG_MAX_LENGTH 32
#define TAG_MAX_ATTRIBUTES 32
#define TAG_BAD 0
#define TAG_START 1
#define TAG_END 2
#define TAG_EMPTY 3
#define TAG_IGNORE 4
#define currentChar() (state->parseBuffer[state->parseBufferIndex])
#define nextChar() (state->parseBuffer[++state->parseBufferIndex])
#define prevChar() (state->parseBuffer[state->parseBufferIndex - 1])
#define isSpace(c) ((c) == ' ' || (c) == '\t')
#define isAlpha(c) (((c) >= 'A' && (c) <= 'Z') || ((c) >= 'a' && (c) <= 'z'))
#define isDigit(c) ((c) >= '0' && (c) <= '9')
#define isAlphaDigit(c) ((c) >= 'a' && (c) <= 'f')
#define isHexDigit(c) (isDigit(c) || isAlphaDigit(c))
#define isAlphaNumeric(c) (isAlpha(c) || isDigit(c) || ((c) == '-'))
static int
getTag(parser_state_t *state,
char tag[TAG_MAX_LENGTH],
int *attributeCount,
char attributes[TAG_MAX_ATTRIBUTES][TAG_MAX_LENGTH],
char values[TAG_MAX_ATTRIBUTES][TAG_MAX_LENGTH] )
{
int length = 0;
int c = currentChar();
int tagType = TAG_START;
*attributeCount = 0;
if (c != '<') {
return TAG_BAD;
}
c = nextChar(); // skip '<'
// <!TAG declarations >
// <!-- comments -->
if (c == '!') {
c = nextChar();
bool isComment = (c == '-') && ((c = nextChar()) != 0) && (c == '-');
if (!isComment && !isAlpha(c)) {
return TAG_BAD; // <!1, <!-A, <!eos
}
while (c && (c = nextChar()) != 0) {
if (c == '\n') {
state->lineNumber++;
}
if (isComment) {
if (c != '-') {
continue;
}
c = nextChar();
if (c != '-') {
continue;
}
c = nextChar();
}
if (c == '>') {
(void)nextChar();
return TAG_IGNORE;
}
if (isComment) {
break;
}
}
return TAG_BAD;
} else
// <? Processing Instructions ?>
if (c == '?') {
while ((c = nextChar()) != 0) {
if (c == '\n') {
state->lineNumber++;
}
if (c != '?') {
continue;
}
c = nextChar();
if (!c) {
return TAG_IGNORE;
}
if (c == '>') {
(void)nextChar();
return TAG_IGNORE;
}
}
return TAG_BAD;
} else
// </ end tag >
if (c == '/') {
c = nextChar(); // skip '/'
tagType = TAG_END;
}
if (!isAlpha(c)) {
return TAG_BAD;
}
/* find end of tag while copying it */
while (isAlphaNumeric(c)) {
tag[length++] = c;
c = nextChar();
if (length >= (TAG_MAX_LENGTH - 1)) {
return TAG_BAD;
}
}
tag[length] = 0;
// printf("tag %s, type %d\n", tag, tagType);
// look for attributes of the form attribute = "value" ...
while ((c != '>') && (c != '/')) {
while (isSpace(c)) {
c = nextChar();
}
length = 0;
while (isAlphaNumeric(c)) {
attributes[*attributeCount][length++] = c;
if (length >= (TAG_MAX_LENGTH - 1)) {
return TAG_BAD;
}
c = nextChar();
}
attributes[*attributeCount][length] = 0;
while (isSpace(c)) {
c = nextChar();
}
if (c != '=') {
return TAG_BAD;
}
c = nextChar();
while (isSpace(c)) {
c = nextChar();
}
if (c != '"') {
return TAG_BAD;
}
c = nextChar();
length = 0;
while (c != '"') {
values[*attributeCount][length++] = c;
if (length >= (TAG_MAX_LENGTH - 1)) {
return TAG_BAD;
}
c = nextChar();
if (!c) {
return TAG_BAD;
}
}
values[*attributeCount][length] = 0;
c = nextChar(); // skip closing quote
// printf(" attribute '%s' = '%s', nextchar = '%c'\n",
// attributes[*attributeCount], values[*attributeCount], c);
(*attributeCount)++;
if (*attributeCount >= TAG_MAX_ATTRIBUTES) {
return TAG_BAD;
}
}
if (c == '/') {
c = nextChar(); // skip '/'
tagType = TAG_EMPTY;
}
if (c != '>') {
return TAG_BAD;
}
c = nextChar(); // skip '>'
return tagType;
}
static char *
getString(parser_state_t *state, int *alloc_lengthp)
{
int c = currentChar();
int start, length, i, j;
char * tempString;
start = state->parseBufferIndex;
/* find end of string */
while (c != 0) {
if (c == '\n') {
state->lineNumber++;
}
if (c == '<') {
break;
}
c = nextChar();
}
if (c != '<') {
return 0;
}
length = state->parseBufferIndex - start;
/* copy to null terminated buffer */
tempString = (char *)malloc(length + 1);
if (tempString == NULL) {
printf("OSUnserializeXML: can't alloc temp memory\n");
goto error;
}
if (alloc_lengthp) {
*alloc_lengthp = length + 1;
}
// copy out string in tempString
// "&" -> '&', "<" -> '<', ">" -> '>'
i = j = 0;
while (i < length) {
c = state->parseBuffer[start + i++];
if (c != '&') {
tempString[j++] = c;
} else {
if ((i + 3) > length) {
goto error;
}
c = state->parseBuffer[start + i++];
if (c == 'l') {
if (state->parseBuffer[start + i++] != 't') {
goto error;
}
if (state->parseBuffer[start + i++] != ';') {
goto error;
}
tempString[j++] = '<';
continue;
}
if (c == 'g') {
if (state->parseBuffer[start + i++] != 't') {
goto error;
}
if (state->parseBuffer[start + i++] != ';') {
goto error;
}
tempString[j++] = '>';
continue;
}
if ((i + 3) > length) {
goto error;
}
if (c == 'a') {
if (state->parseBuffer[start + i++] != 'm') {
goto error;
}
if (state->parseBuffer[start + i++] != 'p') {
goto error;
}
if (state->parseBuffer[start + i++] != ';') {
goto error;
}
tempString[j++] = '&';
continue;
}
goto error;
}
}
tempString[j] = 0;
// printf("string %s\n", tempString);
return tempString;
error:
if (tempString) {
safe_free(tempString, length + 1);
if (alloc_lengthp) {
*alloc_lengthp = 0;
}
}
return 0;
}
static long long
getNumber(parser_state_t *state)
{
unsigned long long n = 0;
int base = 10;
bool negate = false;
int c = currentChar();
if (c == '0') {
c = nextChar();
if (c == 'x') {
base = 16;
c = nextChar();
}
}
if (base == 10) {
if (c == '-') {
negate = true;
c = nextChar();
}
while (isDigit(c)) {
n = (n * base + c - '0');
c = nextChar();
}
if (negate) {
n = (unsigned long long)((long long)n * (long long)-1);
}
} else {
while (isHexDigit(c)) {
if (isDigit(c)) {
n = (n * base + c - '0');
} else {
n = (n * base + 0xa + c - 'a');
}
c = nextChar();
}
}
// printf("number 0x%x\n", (unsigned long)n);
return n;
}
// taken from CFXMLParsing/CFPropertyList.c
static const signed char __CFPLDataDecodeTable[128] = {
/* 000 */ -1, -1, -1, -1, -1, -1, -1, -1,
/* 010 */ -1, -1, -1, -1, -1, -1, -1, -1,
/* 020 */ -1, -1, -1, -1, -1, -1, -1, -1,
/* 030 */ -1, -1, -1, -1, -1, -1, -1, -1,
/* ' ' */ -1, -1, -1, -1, -1, -1, -1, -1,
/* '(' */ -1, -1, -1, 62, -1, -1, -1, 63,
/* '0' */ 52, 53, 54, 55, 56, 57, 58, 59,
/* '8' */ 60, 61, -1, -1, -1, 0, -1, -1,
/* '@' */ -1, 0, 1, 2, 3, 4, 5, 6,
/* 'H' */ 7, 8, 9, 10, 11, 12, 13, 14,
/* 'P' */ 15, 16, 17, 18, 19, 20, 21, 22,
/* 'X' */ 23, 24, 25, -1, -1, -1, -1, -1,
/* '`' */ -1, 26, 27, 28, 29, 30, 31, 32,
/* 'h' */ 33, 34, 35, 36, 37, 38, 39, 40,
/* 'p' */ 41, 42, 43, 44, 45, 46, 47, 48,
/* 'x' */ 49, 50, 51, -1, -1, -1, -1, -1
};
#define DATA_ALLOC_SIZE 4096
static void *
getCFEncodedData(parser_state_t *state, unsigned int *size)
{
int numeq = 0, cntr = 0;
unsigned int acc = 0;
int tmpbufpos = 0;
size_t tmpbuflen = DATA_ALLOC_SIZE;
unsigned char *tmpbuf = (unsigned char *)malloc(tmpbuflen);
int c = currentChar();
*size = 0;
while (c != '<') {
c &= 0x7f;
if (c == 0) {
safe_free(tmpbuf, tmpbuflen);
return 0;
}
if (c == '=') {
numeq++;
} else {
numeq = 0;
}
if (c == '\n') {
state->lineNumber++;
}
if (__CFPLDataDecodeTable[c] < 0) {
c = nextChar();
continue;
}
cntr++;
acc <<= 6;
acc += __CFPLDataDecodeTable[c];
if (0 == (cntr & 0x3)) {
if (tmpbuflen <= tmpbufpos + 2) {
size_t oldsize = tmpbuflen;
tmpbuflen *= 2;
tmpbuf = (unsigned char *)realloc(tmpbuf, oldsize, tmpbuflen);
}
tmpbuf[tmpbufpos++] = (acc >> 16) & 0xff;
if (numeq < 2) {
tmpbuf[tmpbufpos++] = (acc >> 8) & 0xff;
}
if (numeq < 1) {
tmpbuf[tmpbufpos++] = acc & 0xff;
}
}
c = nextChar();
}
*size = tmpbufpos;
if (*size == 0) {
safe_free(tmpbuf, tmpbuflen);
return 0;
}
return tmpbuf;
}
static void *
getHexData(parser_state_t *state, unsigned int *size)
{
int c;
unsigned char *d, *start;
size_t buflen = DATA_ALLOC_SIZE; // initial buffer size
start = d = (unsigned char *)malloc(buflen);
c = currentChar();
while (c != '<') {
if (isSpace(c)) {
while ((c = nextChar()) != 0 && isSpace(c)) {
}
}
;
if (c == '\n') {
state->lineNumber++;
c = nextChar();
continue;
}
// get high nibble
if (isDigit(c)) {
*d = (c - '0') << 4;
} else if (isAlphaDigit(c)) {
*d = (0xa + (c - 'a')) << 4;
} else {
goto error;
}
// get low nibble
c = nextChar();
if (isDigit(c)) {
*d |= c - '0';
} else if (isAlphaDigit(c)) {
*d |= 0xa + (c - 'a');
} else {
goto error;
}
d++;
size_t oldsize = d - start;
if (oldsize >= buflen) {
assert(oldsize == buflen);
buflen *= 2;
start = (unsigned char *)realloc(start, oldsize, buflen);
d = start + oldsize;
}
c = nextChar();
}
*size = d - start;
return start;
error:
*size = 0;
safe_free(start, buflen);
return 0;
}
static int
yylex(YYSTYPE *lvalp, parser_state_t *state)
{
int c, i;
int tagType;
char tag[TAG_MAX_LENGTH];
int attributeCount;
char attributes[TAG_MAX_ATTRIBUTES][TAG_MAX_LENGTH];
char values[TAG_MAX_ATTRIBUTES][TAG_MAX_LENGTH];
object_t *object;
int alloc_length;
top:
c = currentChar();
/* skip white space */
if (isSpace(c)) {
while ((c = nextChar()) != 0 && isSpace(c)) {
}
}
;
/* keep track of line number, don't return \n's */
if (c == '\n') {
STATE->lineNumber++;
(void)nextChar();
goto top;
}
// end of the buffer?
if (!c) {
return 0;
}
tagType = getTag(STATE, tag, &attributeCount, attributes, values);
if (tagType == TAG_BAD) {
return SYNTAX_ERROR;
}
if (tagType == TAG_IGNORE) {
goto top;
}
// handle allocation and check for "ID" and "IDREF" tags up front
*lvalp = object = newObject(STATE);
object->idref = -1;
for (i = 0; i < attributeCount; i++) {
if (attributes[i][0] == 'I' && attributes[i][1] == 'D') {
// check for idref's, note: we ignore the tag, for
// this to work correctly, all idrefs must be unique
// across the whole serialization
if (attributes[i][2] == 'R' && attributes[i][3] == 'E' &&
attributes[i][4] == 'F' && !attributes[i][5]) {
if (tagType != TAG_EMPTY) {
return SYNTAX_ERROR;
}
object->idref = strtol(values[i], NULL, 0);
return IDREF;
}
// check for id's
if (!attributes[i][2]) {
object->idref = strtol(values[i], NULL, 0);
} else {
return SYNTAX_ERROR;
}
}
}
switch (*tag) {
case 'a':
if (!strcmp(tag, "array")) {
if (tagType == TAG_EMPTY) {
object->elements = NULL;
return ARRAY;
}
return (tagType == TAG_START) ? '(' : ')';
}
break;
case 'd':
if (!strcmp(tag, "dict")) {
if (tagType == TAG_EMPTY) {
object->elements = NULL;
return DICTIONARY;
}
return (tagType == TAG_START) ? '{' : '}';
}
if (!strcmp(tag, "data")) {
unsigned int size;
if (tagType == TAG_EMPTY) {
object->data = NULL;
object->size = 0;
return DATA;
}
bool isHexFormat = false;
for (i = 0; i < attributeCount; i++) {
if (!strcmp(attributes[i], "format") && !strcmp(values[i], "hex")) {
isHexFormat = true;
break;
}
}
// CF encoded is the default form
if (isHexFormat) {
object->data = getHexData(STATE, &size);
} else {
object->data = getCFEncodedData(STATE, &size);
}
object->size = size;
if ((getTag(STATE, tag, &attributeCount, attributes, values) != TAG_END) || strcmp(tag, "data")) {
return SYNTAX_ERROR;
}
return DATA;
}
break;
case 'f':
if (!strcmp(tag, "false")) {
if (tagType == TAG_EMPTY) {
object->number = 0;
return BOOLEAN;
}
}
break;
case 'i':
if (!strcmp(tag, "integer")) {
object->size = 64; // default
for (i = 0; i < attributeCount; i++) {
if (!strcmp(attributes[i], "size")) {
object->size = strtoul(values[i], NULL, 0);
}
}
if (tagType == TAG_EMPTY) {
object->number = 0;
return NUMBER;
}
object->number = getNumber(STATE);
if ((getTag(STATE, tag, &attributeCount, attributes, values) != TAG_END) || strcmp(tag, "integer")) {
return SYNTAX_ERROR;
}
return NUMBER;
}
break;
case 'k':
if (!strcmp(tag, "key")) {
if (tagType == TAG_EMPTY) {
return SYNTAX_ERROR;
}
object->string = getString(STATE, &alloc_length);
if (!object->string) {
return SYNTAX_ERROR;
}
object->string_alloc_length = alloc_length;
if ((getTag(STATE, tag, &attributeCount, attributes, values) != TAG_END)
|| strcmp(tag, "key")) {
return SYNTAX_ERROR;
}
return KEY;
}
break;
case 'p':
if (!strcmp(tag, "plist")) {
freeObject(STATE, object);
goto top;
}
break;
case 's':
if (!strcmp(tag, "string")) {
if (tagType == TAG_EMPTY) {
object->string = (char *)malloc(1);
object->string_alloc_length = 1;
object->string[0] = 0;
return STRING;
}
object->string = getString(STATE, &alloc_length);
if (!object->string) {
return SYNTAX_ERROR;
}
object->string_alloc_length = alloc_length;
if ((getTag(STATE, tag, &attributeCount, attributes, values) != TAG_END)
|| strcmp(tag, "string")) {
return SYNTAX_ERROR;
}
return STRING;
}
if (!strcmp(tag, "set")) {
if (tagType == TAG_EMPTY) {
object->elements = NULL;
return SET;
}
if (tagType == TAG_START) {
return '[';
} else {
return ']';
}
}
break;
case 't':
if (!strcmp(tag, "true")) {
if (tagType == TAG_EMPTY) {
object->number = 1;
return BOOLEAN;
}
}
break;
}
return SYNTAX_ERROR;
}
// !@$&)(^Q$&*^!$(*!@$_(^%_(*Q#$(_*&!$_(*&!$_(*&!#$(*!@&^!@#%!_!#
// !@$&)(^Q$&*^!$(*!@$_(^%_(*Q#$(_*&!$_(*&!$_(*&!#$(*!@&^!@#%!_!#
// !@$&)(^Q$&*^!$(*!@$_(^%_(*Q#$(_*&!$_(*&!$_(*&!#$(*!@&^!@#%!_!#
// "java" like allocation, if this code hits a syntax error in the
// the middle of the parsed string we just bail with pointers hanging
// all over place, this code helps keeps it all together
//static int object_count = 0;
object_t *
newObject(parser_state_t *state)
{
object_t *o;
if (state->freeObjects) {
o = state->freeObjects;
state->freeObjects = state->freeObjects->next;
} else {
o = malloc_type(object_t);
// object_count++;
o->free = state->objects;
state->objects = o;
}
return o;
}
void
freeObject(parser_state_t * state, object_t *o)
{
o->next = state->freeObjects;
state->freeObjects = o;
}
void
cleanupObjects(parser_state_t *state)
{
object_t *t, *o = state->objects;
while (o) {
if (o->object) {
// printf("OSUnserializeXML: releasing object o=%x object=%x\n", (int)o, (int)o->object);
o->object->release();
}
if (o->data) {
// printf("OSUnserializeXML: freeing object o=%x data=%x\n", (int)o, (int)o->data);
free(o->data);
}
if (o->key) {
// printf("OSUnserializeXML: releasing object o=%x key=%x\n", (int)o, (int)o->key);
o->key->release();
}
if (o->string) {
// printf("OSUnserializeXML: freeing object o=%x string=%x\n", (int)o, (int)o->string);
free(o->string);
}
t = o;
o = o->free;
free_type(object_t, t);
// object_count--;
}
// printf("object_count = %d\n", object_count);
}
// !@$&)(^Q$&*^!$(*!@$_(^%_(*Q#$(_*&!$_(*&!$_(*&!#$(*!@&^!@#%!_!#
// !@$&)(^Q$&*^!$(*!@$_(^%_(*Q#$(_*&!$_(*&!$_(*&!#$(*!@&^!@#%!_!#
// !@$&)(^Q$&*^!$(*!@$_(^%_(*Q#$(_*&!$_(*&!$_(*&!#$(*!@&^!@#%!_!#
static void
rememberObject(parser_state_t *state, int tag, OSObject *o)
{
char key[16];
snprintf(key, 16, "%u", tag);
// printf("remember key %s\n", key);
state->tags->setObject(key, o);
}
static object_t *
retrieveObject(parser_state_t *state, int tag)
{
OSObject *ref;
object_t *o;
char key[16];
snprintf(key, 16, "%u", tag);
// printf("retrieve key '%s'\n", key);
ref = state->tags->getObject(key);
if (!ref) {
return 0;
}
o = newObject(state);
o->object = ref;
return o;
}
// !@$&)(^Q$&*^!$(*!@$_(^%_(*Q#$(_*&!$_(*&!$_(*&!#$(*!@&^!@#%!_!#
// !@$&)(^Q$&*^!$(*!@$_(^%_(*Q#$(_*&!$_(*&!$_(*&!#$(*!@&^!@#%!_!#
// !@$&)(^Q$&*^!$(*!@$_(^%_(*Q#$(_*&!$_(*&!$_(*&!#$(*!@&^!@#%!_!#
object_t *
buildDictionary(parser_state_t *state, object_t * header)
{
object_t *o, *t;
int count = 0;
OSDictionary *dict;
// get count and reverse order
o = header->elements;
header->elements = 0;
while (o) {
count++;
t = o;
o = o->next;
t->next = header->elements;
header->elements = t;
}
dict = OSDictionary::withCapacity(count);
if (header->idref >= 0) {
rememberObject(state, header->idref, dict);
}
o = header->elements;
while (o) {
dict->setObject(o->key, o->object);
o->key->release();
o->object->release();
o->key = 0;
o->object = 0;
t = o;
o = o->next;
freeObject(state, t);
}
o = header;
o->object = dict;
return o;
};
object_t *
buildArray(parser_state_t *state, object_t * header)
{
object_t *o, *t;
int count = 0;
OSArray *array;
// get count and reverse order
o = header->elements;
header->elements = 0;
while (o) {
count++;
t = o;
o = o->next;
t->next = header->elements;
header->elements = t;
}
array = OSArray::withCapacity(count);
if (header->idref >= 0) {
rememberObject(state, header->idref, array);
}
o = header->elements;
while (o) {
array->setObject(o->object);
o->object->release();
o->object = 0;
t = o;
o = o->next;
freeObject(state, t);
}
o = header;
o->object = array;
return o;
};
object_t *
buildSet(parser_state_t *state, object_t *header)
{
object_t *o = buildArray(state, header);
#if KERNEL
OSArray *array = (OSArray *)o->object;
OSSet *set = OSSet::withArray(array, array->getCapacity());
// write over the reference created in buildArray
if (header->idref >= 0) {
rememberObject(state, header->idref, set);
}
array->release();
o->object = set;
#endif /* KERNEL */
return o;
};
object_t *
buildString(parser_state_t *state, object_t *o)
{
OSString *string;
string = OSString::withCString(o->string);
if (o->idref >= 0) {
rememberObject(state, o->idref, string);
}
free(o->string);
o->string = 0;
o->object = string;
return o;
};
object_t *
buildSymbol(parser_state_t *state, object_t *o)
{
OSSymbol *symbol;
symbol = const_cast < OSSymbol * > (OSSymbol::withCString(o->string));
if (o->idref >= 0) {
rememberObject(state, o->idref, symbol);
}
safe_free(o->string, o->string_alloc_length);
o->string = 0;
o->object = symbol;
return o;
};
object_t *
buildData(parser_state_t *state, object_t *o)
{
OSData *data;
if (o->size) {
data = OSData::withBytes(o->data, o->size);
} else {
data = OSData::withCapacity(0);
}
if (o->idref >= 0) {
rememberObject(state, o->idref, data);
}
if (o->size) {
free(o->data);
}
o->data = 0;
o->object = data;
return o;
};
object_t *
buildNumber(parser_state_t *state, object_t *o)
{
OSNumber *number = OSNumber::withNumber(o->number, o->size);
if (o->idref >= 0) {
rememberObject(state, o->idref, number);
}
o->object = number;
return o;
};
object_t *
buildBoolean(parser_state_t *state __unused, object_t *o)
{
o->object = ((o->number == 0) ? kOSBooleanFalse : kOSBooleanTrue);
o->object->retain();
return o;
};
OSObject*
OSUnserializeXML(const char *buffer, OSString **errorString)
{
OSObject *object;
if (!buffer) {
return 0;
}
parser_state_t *state = (parser_state_t *)malloc_type(parser_state_t);
if (!state) {
return 0;
}
// just in case
if (errorString) {
*errorString = NULL;
}
state->parseBuffer = buffer;
state->parseBufferIndex = 0;
state->lineNumber = 1;
state->objects = 0;
state->freeObjects = 0;
state->tags = OSDictionary::withCapacity(128);
state->errorString = errorString;
state->parsedObject = 0;
state->parsedObjectCount = 0;
state->retrievedObjectCount = 0;
(void)yyparse((void *)state);
object = state->parsedObject;
cleanupObjects(state);
state->tags->release();
free_type(parser_state_t, state);
return object;
}
#if KERNEL
#include <libkern/OSSerializeBinary.h>
OSObject*
OSUnserializeXML(const char *buffer, size_t bufferSize, OSString **errorString)
{
if (!buffer) {
return 0;
}
if (bufferSize < sizeof(kOSSerializeBinarySignature)) {
return 0;
}
if (!strcmp(kOSSerializeBinarySignature, buffer)
|| (kOSSerializeIndexedBinarySignature == (uint8_t)buffer[0])) {
return OSUnserializeBinary(buffer, bufferSize, errorString);
}
// XML must be null terminated
if (buffer[bufferSize - 1]) {
return 0;
}
return OSUnserializeXML(buffer, errorString);
}
#else /* !KERNEL */
OSObject*
OSUnserializeXML(const char *buffer, size_t bufferSize, OSString **errorString)
{
if (!buffer) {
return 0;
}
// XML must be null terminated
if (buffer[bufferSize - 1]) {
return 0;
}
return OSUnserializeXML(buffer, errorString);
}
#endif /* KERNEL */
//
//
//
//
//
// DO NOT EDIT OSUnserializeXMLSharedImplementation.h!
//
// this means you!
//
//
//
//
//